AP32401 Infineon

An introduction to MTV

Multi-Core Debug Solution (MCDS) Trace Viewer

About this document

Scope and purpose

This Application Note describes the basic usage of the MCDS (Multi-Core Debug Solution) Trace Viewer (MTV)
tool.

Non-intrusive, parallel trace with MCDS is a very powerful tool to analyze and debug a hard real-time system in
full operation.

Note: MTV can only be used with Emulation Devices (ED) and production devices with miniMCDS.

Intended audience

This Application Note is intended to introduce MTV to first-time users.

Disclaimer

Note: MTV is a free tool without support, and does not cover the complete MCDS functionality. For a tool
with full MCDS support please contact Infineon tool partners.

Table of contents

About this dOCUMENT ... ccciiiiiiiiiiiiiiriiiiiiiiiiriiiticitieitteiitattsetisestsesraestsestsesssssssassssssssssssassssssssssssnssns 1
=101 C= 0 o] 1 =] NN 1
1 Getting Started.....ccccireuiiieniiirnniininuiintuniiiteiintuieeeeietseiistaesesssesstsssnnses 3
1.1 [T 2=] - 14 o o OO PP TSR RTPRRRRRR 3
1.2 FIFST STAMT-UD couteeieiieetetert sttt se st st e st e st e bt e s aaesae e s s e ssba s baesbaessaesssesssesssassseensesnsaesssesssesssessen 3
1.3 L R V= ot =] o] (USRS 4
2 FIrSt trace cceuuuiiiiiinniiiiiiitiiiiiiiiinttniinrietietteteieetetaeteetensesestesnsssssssnsssssssssssssssssssssssssnsssssssans 5
2.1 CONNECT NG DEBVICE ..vviiiieeiiiieiiecieest sttt st st e st e saesne st e et e s baesbaesseesssessseessasssaesssesssessseessessseesseesssenns 5
2.2 Load the Executable and Linking FOrmMat file........co it 6
2.3 ‘RESEL DEVICE FIrSt’ OPTION weviiiiiieciteiieccteete ettt te e s ae e sbe e sste e e s be e s baeessteesnsaesnssassnsaesnns 6
2.4 SEANING T TrACE ittt e s s e e s e e s st e st e s s be s baessaesasesssesssaessaensaesseesssesns 7
3 Example: Data Tracing inside an INterrupt.....ccccciviiieiiiniineninniinniiiniiiasisescssscssssrsssasssssssssssasssans 8
3.1 THACE SETUD teeiiiieettee ettt et e eeeertre et e e e e s ssreaeeeeeessesansseeaaeesasssssssseaaassssssesssssneeeessssssssnsnnaeeessssssssnsnneees 8
311 Trace DUFFEI SEEEINGS ..eeeieieetee ettt st s bt s e b e ae et e nsa s e eneas 8
3.1.2 ObSErvation POINT SETLING ..cccuevrtririerieee ettt sttt st ettt et e sbe st e besbe e e beeseenee 11
3.1.2.1 PrOZram TraCE ..cciieeiiiiiiiii ittt ettt et st ae e s s se e e s s et e s s rae s 12
3.1.2.2 PrOZIram TN .eeenieiieeieeteetteeee ettt e st s e st s bt et e bt e st essee st e s b e e bt e s bt e saeesabesabesaseeneennes 13
3.1.23 D= T I = < PP 14
3.2 TraCiNG the ISRttt ettt st s bt et e st et et e sat et e be st e besse et e beestensesasentessesnsans 15
4 Common errors and further RiNtscccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiciiseiiseiireirsesisesssescsasssaes 18
4.1 No data traced or Wrong data traCedcoceueeeerienieieee ettt sttt ettt 18
Application Note Please read the Important Notice and Warnings at the end of this document V1.0

www.infineon.com page 1 of 24 2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer

Table of contents

41.1 HAILEA CPU ettt ettt s e et e st e et e e be e be e s be e s rteenteeste e baesbaesseesstesntaensasnsassennnes 18
4.1.2 VOlatile PrOZIramMIMIUNG ..cceeuieieiereeiece ettt st ettt s et s st e e s bt st et e sbe et e sbeeneensesneenses 18
4.1.3 WEONG EMIZEON ettt ettt s st s bt e et e st e st e st e s b e e b e esbaessaesatesatesabasssaesssessaesssesnsessesnsenn 18
4.2 ZEIO TICKS ettt ettt ettt et et e et s bt et et e at et e bt et e b e s a e et e e bt et e b e e a e et e e ht et e be et e besat et e beeatenee 18
4.3 NEEATIVE STACK LOVEL. ...ttt sttt ettt e sae et e b s e e b st eaees 19
4.4 Unable to CONNECE thE EVICEouiiiiieiieteete ettt sttt sbe st et sae b s saenaesanenees 19
4.5 B e To] LT =3RRI 20
4.6 FILE NANAIING .ttt ettt e s b st e st e s bt e s e s se et e s e eneessesseessansesseensenseensan 20
4.7 Address qualification = FUNCLION NOTfOUNccuviiiieeieeceeeee et 21
5 ACKONYIMS coereiererererererecesesesesesesessssssssssssssssssssssssssesesssesssesssessssssssssssssssssssssssasssssssssesssssesssssesssess 22
REVISION NISTOrY cuuiuiiiiiiiiuiieiiiiieiiniiinieiieiinniesiascsestesiscssnssssssscsssesssssrsssnsanss 23
Application Note 20f24 V1.0

2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer

Getting started
1 Getting started
1.1 Installation

MTV is part of the DAS installation. DAS can be downloaded at http://www.infineon.com/DAS.

Once DAS is installed, MTV can be found in the start menu or inside the DAS installation directory. For example
‘C:/Program Files/DAS/clients/mcds_trace_viewer.exe’.

1.2 First start-up

At MTV start-up the main GUI appears, providing some controls and the trace table. The trace table is of course
empty at first start-up, and no content is displayed (Figure 1 item (5)).

If a device is connected to the PC (such as a USB cable to a TriBoard or with a DAP miniWiggler), a standard
trace can be immediately generated by just pressing the record button (4).

B MCDE Trace Viewes

File | Device MCDS3 Edit Help - 14 5

" TimeA | TimeR |Tkks Opoint | Orgin | Data | Operalion | Address | Symbollabel | S0 | Comment | SL | Trace | CFTJLFIMF |
Figure 1 Main MTV GUI

The important controls to first take note of are the following:

1. File

- The file menuis used to select the appropriate Executable-and-Linking-Format (ELF) file for the target
HW/SW-System. It is also possible to save the current MCDS configuration or load a previously saved
configuration. The trace data can also be saved (see Chapter 4.6).

2. Device

- Under the device menu, MTV can be connected to a specific device. Please make sure that the device is
powered, running and connected with the PC.

3. MCDS

- The MCDS menu is used to set up the complete MCDS on the target system. For example, observation
points, triggers, a trace buffer, and so on.

4. Record
- Therecord button is used to start and stop the tracing of the target system.
5. Tracetable

- Thetrace table displays the trace data. The information is converted to a human readable format and
arranged in different columns which will be explained in the following section.

Application Note 3of24 V1.0
2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer

(infineon

Getting started

1.3 The trace table
Note: Other controls not listed in this table are described in the next chapter where a first data trace is
set up and performed.

Table1 Description of the trace table columns

Column header | Description

TimeA The timestamp of the trace in nano seconds.
Be aware that the column default width may be too small and hides the first digits
(seconds).

TimeR TimeR displays the accumulation of the Ticks at a given time step.

Ticks The MCDS clock Ticks between trace messages.
Please note that one Tick is equal to two CPU cycles.

Opoint Displays the Observation Point of the trace data. The observation point is the physical
data acquisition point inside the SoC. For example the CPUO, CPU1, SRI bus, and so on.

Origin The origin of the activity. In most cases this is the same as Opoint.
For data trace at busses the Origin column displays the original master.

Data The Data column displays the data written or read.

Operation The operation being executed but not on the level of assembler mnemonics for program
trace. It displays a more abstract type of the operation.
For example; IP CALL, IP RET for program trace or R32, W32, R16, and so on, for data
trace.

Address The address column displays the pointer of the instruction (IP) which is being executed.

If the Operation column displays an R/W Operation, the address column displays the
address where data is read or written to.

Symbol / Label

The Symbol and Label column refers to the symbols and labels provided by the ELF file.
Here you can see for instance which function an instruction belongs to.

Note that the function here refers directly to the C-Function. In case that there is no
symbol defined for a certain address range in the ELF file, the name of the HW resource is
displayed (such as memory or peripheral name).

SO Symbol Offset (SO) refers to the executed instruction or a data address.
Code or data symbols in an ELF file have a start address and a range. SO is the difference
to the start address. If there is no symbol defined in the ELF file the offset is displayed for
the associated HW resource.

Comment The Comment column mainly displays the mnemonic of the assembler instruction which
is being executed in this time step.

SL Stack Level (SL) indicates the current position on the stack.
The stack is used to save and restore the context when a function is called or returned.
Please note that the stack level is assumed as 0 at the beginning of the tracing.

Trace This column provides some additional information concerning the tracing. For example,
CFT for (Compact) Function Trace.

CFT JLF/TMF This column contains special information for compact function trace. This is out of the

scope for this basic application note.

Application Note

40f24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer
First trace

2 First trace

In order to perform the first trace, some settings are required. These basic settings will be described in this
section.

2.1 Connect the Device

As the first step, make sure your device is connected properly via a USB-Cable for a TriBoard, or otherwise via a
DAP miniWiggler.

After connecting the Device to the PC, open the ‘Device’ menu at the top and select ‘Connect Device...” or press
[ALT]+[D]. Awindow with all the devices which are connected to the PC is shown (Figure 2).

DAS Device Select
Host Computer: |localhost Change
Start DAS Server
TriCore-Family Info | Select
Info | Select
Info | Select
Info | Select
Info | Select
Info | Select
Info | Select
Info | Select
Figure 2 Device selection window

Identify the correct Device and click the ‘Select’ button to connect to the device. If only one device is connected
to the computer it can be automatically connected by just clicking the record button.

Application Note 50f24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer
First trace

2.2 Load the Executable and Linking Format file

To get the full information of the trace data, an ELF file is needed. To load this, simply open the ‘File’ menu and
select ‘Open .elf File...” or press [ALT]+[E]. A file browsing dialog is opened. In this dialog search for the ELF file
which runs on the device and open it (Figure 3).

Open .elf File

T <« Daten » Aurix1G_Workspace » BaseFramework_TC298 » 2 Out » Tricore_Gnuc v O Search Tricore_Gnuc 0
Organize New folder = [@
MName Date modified Type Size
#F Quick access
Gnuc_Files 17.11.2017 0907 File folder
3 This PC | | BaseFramework_TC29B_tc.elf ELF File 681 KB
=¥ Network
Fileﬂame:|BaseFramework_TCZE?B_tc.eIf V| ELF Files (".elf) b
Figure 3 ELF file browsing dialog
¢ . .) .
2.3 Reset Device First’ option

This step is not mandatory but offers a reproducible trace behavior while observing the first trace. With this
option, any time a device is being traced, in any state, a reset of the device is performed first and then the
tracing is started. This allows us to see the initialization sequence of the device, which is normally being
executed before the main function after the device start.

To select this option, simply open the ‘Device’ menu and click the radio button control named ‘Reset Device
First’ (Figure 4).

MCDS Trace Viewer

File MCDS Edt Hep | ®

Connect Device At+D |t | origin | Data | Operation | Address | SymboliLabel | SO | Comment | SL | Trace | CFTJLF/TMF
Change DAP Frequency...

Device Info

Start Recording Alt+R

Stop Recording Alt+P

Read Config from Device
Recording Options
& Single Shot

& Reset Device First
> Automatic Restart

Read Code from Device:
@ When device is suspended
£ When not in _elf file

& Always
£ Never
Figure 4 ‘Reset Device First’ option turned on with the appropriate radio button
Application Note 6of24 V1.0

2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer
First trace

infineon

2.4 Starting the trace

After all the settings are made, we can start our first trace by simply clicking the button at the top:

This button can have one of three different colors, all indicating the current status of the trace:

e Black

- Notracing is currently running.

- Ifthe button is now pressed, the tracing will be started on the target device.
¢ Red

- The MTV / device is currently recording.

- If the button is now pressed again, the recording is stopped and the collected trace data will be
displayed.
e Yellow

- Ifatrigger condition is set for tracing, yellow indicates that the trigger condition was already met, but the
trace is still running until the circular trace buffer is ‘full’. Chapter 3 will cover triggers and go more into
detail on this.

After the trace has finished the trace data is displayed (Figure 5).

BaseFramework_TC29B_tc.elf - DAS JDS TriBoard TC297 V1.0 TBY17KAC - MCDS Trace Viewer
File Device MCDS Edit Help . |
TimeA |TimeR|Ticks| Opoint | origin | Data [operation| Adaress Symbol/Label S0 Gomment [sL] Trace CFT JLFTMF [4]
1 0 0/ CPUD CPUC 300 STATE ISR=0 IEN=0
2 0 0|SPB SPB 000 STATE EI=0 SAFEEI=0
3| 0.000.000.100 10 10| CPUO CPUO P AD00002A | _START 2000000A CFT IP START
4| 0.000.001.340 134 124 SPB SPB 001 STATE El=1 SAFEEI=0 |
5| 0.000.001.670| 187 53 SPB SPB 000 STATE EI=0 SAFEEI=0
| 0.000.002.310 231 44| SPB SPB 001 STATE El=1 SAFEEI=0
7| 0.000.002.800 280 49 SPB SPB 000 STATE El=0 SAFEEI=0
8| 0.000.003.260| 326 46 SPB SPB 001 STATE El=1 SAFEEI=0
""""""""""""""""""""""""""""" 500008C8 | Cored s T iREIGALL oA s
g| 0.000.010.120 1012| 686 CPUO CPUC IP CALL | 800019F4 IxSculWdt_getSafetyWaichdogPassword 0 MOVH.A A15, 0xT0030000 0/ CFT
""""""""""""""""""""""""""""" BO00TAD TRGcaWdl getSatehWaichdogPassword |~~~ JBTRET 11
10| 0.000.010.290 1029 17 CPUOD CPUO IP RET 800008CC _Core0_start 202 MOV D4, D8 1/ CFT
800008D0 _Core0_start 206 | CALL Oxf70
11| 0.000.010.300 1030 1/ CPUO CPUC IP CALL | 80001840 IfxScuWdt_disableCpuWatchdog 0/MFCR D15, Oxfelc 0 CFT
12| 0.000.010.770 1077 47 SPB SPB 000 STATE El=0 SAFEEI=0
13| 0.000.011.310 1131 54 SPB SPB 001 STATE El=1 SAFEEI=0
80001898 IfxScuwdt_disableCpuWatchdog 58 RET
14| 0.000.011.400 1140 9 CPUD CPUC IPRET 800008D4 _Core0_start 20A MOV D4, D15 1/ CFT
800008D6 _Core0_start 20C CALL Oxfcd
15| 0.000.011.410 1141 1/ CPUO CPUC IP CALL | 8000189A IfxScuWwdi_disableSafetyWatchdog 0 MOVH.A A15, 0xf0030000 0 CFT
16| 0.000.012.350 1235 94 SPB SPB 101 STATE El=1 SAFEEI=1
80001906 | IxScuWdt_disableSafetyWatchdog 6C|RET
17| 0.000.012.470 1247 12 CPUO CPUQ IPRET §00008DA _Core0_start 210 1|CFT
800008DA | _Core0_start 210 | CALL OxfiifdO8
18| 0.000.012.480 1248 1/ CPUO CPUC IP CALL | 800003E2|Ifx_C_Init 0 MOVH.A A15, 0x80000000 | O CFT
800006C8 Ifx_C_Init E6 RET
19| 0.000.016.130| 1613 365 CPUO CPUC IPRET B600008DE | _Core0_start 214 MOV D4, D8 1/ CFT
G00008BEQ _Core0_start 216 | CALL 0x1028
20| 0.000.016.210 1621 8 CPUO CPUO IP CALL | 80001908 IfxScuWdt_enableCpuWatchdog 0 MFCR D15, Oxfelc 0|CFT
21| 0.000.016.640 1664 43 SPB SPB 100 | STATE El=0 SAFEEI=1
22| 0.000.017.180 1718 54 SPB SPB 101 STATE El=1 SAFEEI=1
80001962 | IfxScuWdt_enableCpuWatchdog SA RET
23| 0.000.017.270 1727 9/ CPUO CPUO IPRET B800008E4 | _Core0_start 21A MOV D4, D15 1/ CFT
GS00008E6 _Core0_start 21C CALL Ox107e
24| 0.000.017.280 1728 1/ CPUO CPUC IP CALL | 80001964 | IfxScuWdt_enableSafetyWatchdog 0 MOVH.A A15, 0xf0030000 0|CFT :l
Figure 5 The result of the first trace
Here we can observe the start-up function of the target device.
At the Symbol/Label ‘_Core0_start’ (red dotted area) the first call inside the program creates the first CFT
message. This standard configuration trace is on Function level and without data.
The MTV has much more to offer than this basic trace. Therefore the next chapter will cover a more detailed
trace setting for a specific purpose.
Application Note 7of24 V1.0

2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

3 Example: Data Tracing inside an Interrupt

To demonstrate a more detailed trace setup, the following code snippet is used.

Code Listing 1

// timer initialization missing here
IFX INTERRUPT (Stml Isr, 0, 9) {

uint32 stmTicks = (uint32) (2 * IfxStm getFrequency (&MODULE STM1)) ;
IfxStm increaseCompare (&MODULE STM1, IfxStm Comparator 0, stmTicks);
while (_ cmpAndSwap (&lock, 1, 0)); // «uviiiiiinii... Acquire Lock

for (int pp = 10; pp <= 13; pp++) {
IfxPort togglePin (sMODULE P33, pp);

10CK = 07 /7 e e e e e Release Lock

The code snippet implements an Interrupt Service Routine (ISR) for the STM1 of the device.

Inside the interrupt, firstly the compare value is increased by a calculated value. With this compare value the
timer fires an interrupt every 100 milliseconds.

At each interrupt, 4 LEDs on the TriBoard are toggled inside the for-loop. Due to another interrupt manipulating
the same LEDs, a simple spinlock is implemented in line 4 and 8.

The chosen example goal is to trace the Spinlock-Mechanism inside the interrupt, to see if everything works as
expected. This will be used for introducing MTV in more detail.

3.1 Trace setup

3.1.1 Trace buffer settings

First we have to precisely set-up MTV in order to get the desired trace data. The first steps for the set-up can be
adapted from the previous chapter covering the device connection, ELF file loading, and device reset options.

Next, we want to increase the trace buffer size and set it to a circular buffer, which is stopped by a trigger. The
settings are opened by clicking the ‘MCDS’ menu and clicking ‘General’ or pressing [ALT]+[G]. The window that
appears is shown in Figure 6.

At the top of this window we can set up the trace memory. We want to use one MB of memory, instead of the
default size of 16 kB, which is displayed as ‘16 at 0 XTM’. The ‘at 0 XTM’ refers to the memory which is used to
store the trace data and at which position (0 means start) the trace data section starts. The definition of the
start address is important for TCM (Trace/Common Memory) which can be shared between tracing and
application.

To get 1 MB of trace memory just replace the complete line with ‘1024’ and press [Enter]. MTV now asks if we
want to switch to the ‘TCM’ memory, because the ‘XTM’ memory has only a size of 16 kB. Click ‘Yes’.

Application Note 80of24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

General 5... -

Trace Memory Settings [kB]
|16 at 0 XTM

On-Chip Trace Buffer Mode
|Record until ful]|

Trigger Trace Position
| ~|

Ticks/Timestamps
| Ticks On]|

Figure 6 Trace buffer settings (Default)

Now we need to set-up the ‘On-Chip Trace Buffer Mode’. As default, the trace buffer is filled with trace data until
itis full and the tracing is stopped automatically (Record until full). We don’t know at which time the interrupt
will occur, and therefore we can’t be sure to get the desired trace data. It could happen that the timer interrupt
of our example is fired after the buffer is full. To address this case we select ‘Circular stopped by trigger’ (see
Figure 7).

General 5... -

Trace Memory Settings [kB]
[1024 ato TCM

On-Chip Trace Buffer Mode
| Circular stopped by trigger |

Trigger Trace Position

|60% |

Ticks/Timestamps

| Ticks On |
Figure 7 Trace buffer settings (Trigger)

Now the buffer is filled as a circular buffer (if it is full, the oldest trace data will be overwritten).

Itis important now to set a trigger in order to stop the tracing. The trigger is set in another menu and will be
covered later.

There are now two settings in this window, the ‘Trigger Trace Position’ and the ‘Ticks/Timestamps’.

The Trigger Position indicates how much data will be traced after the trigger condition has been met. For
example, if ‘40 Bytes before End’ is selected here, the MCDS will trace 40 additional bytes of trace data after the
trigger condition has been met and the tracing stops. This default setting maximizes the trace data before the
trigger condition. In many cases the trigger is on the symptom and the interesting cause is before the trigger.
The small overhang of 40 bytes ensures that relevant data around the trigger point is in the trace buffer before
the trace is stopped.

A more balanced pre and post-trigger setting is the ‘60%’ option. With this setting 40% of the buffer will be filled
with trace data following after the first trigger hit.

Application Note 90of24 V1.0
2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

The last setting is the setting for the ticks and timestamps of the MCDS. This document will only cover the first
three options:

e Ticks Disabled

- Ifthis setting is used, the MCDS does not give any time or tick information. On the one hand, the trace
data needs less memory but on the other there is no information on timing behavior. There is no
indicator for the elapsed time. The first three columns of the trace data will remain empty.

This option is useful to trace a longer time if no timing information is needed.

e TicksOn

- With this default setting the MCDS shares information about the time behavior of the tracing. If some
timing behaviors have to be observed, this is the right setting.
e Ticks and Timestamps
- This setting is the same as the ‘Ticks On’ setting but with the difference that the MCDS gives an exact

timestamp of the device up-time every 4 kB of trace data. The user can now see that the device is already
running for some time and the trace data is aligned to this time.

Because we don’t want to trace a huge time window, we can leave the setting at the default value ‘Ticks On’. If
everything is set up correct, the general settings for the trace buffer should be the same as those in Figure 7.

Application Note 10 of 24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

3.1.2 Observation point setting

After the trace buffer has been set up correctly, we have to set up the observation point. Here we can set the
trigger condition, the data to be traced, and the memory sections to be observed.

The window can be opened at the ‘MCDS’ menu by clicking on ‘Opoint CPUa’ or pressing [CTRL]+[P].

Right after the window has appeared, click the ‘Trigger Menu’ button at the upper right corner to open the
trigger settings for this observation point. The window presented should appear as follows:

Opoint CPUO
Opoint
CPUD w | Trigger Menul
Program Trace Status Trace Program Trigger
|[Function w||Enabed »| |Disabled |
|No STDSW Task Condition | | ~]
|No Address Qualification ¥ | |
Data Trace Data Trigger
[Disabled | | Disabled ~]
| =] | El
| = |
| El
|]

Figure 8 Opoint CPUO (Default)

In this window are 4 sections:

Program Trace / Status Trace
Program Trigger
Data Trace

A

Data Trigger

To achieve our goal, we need to set up (1), (2) and (3) properly. The ‘Data Trigger’ section will not be covered in
this application note.

Beside these 4 sections, the correct CPU should be selected with the ‘Opoint’ drop down selection. In our case
this will be CPUO.

Application Note 11 of 24 V1.0
2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

3.1.2.1 Program trace

The first section defines how detailed and at which memory sections the tracing should be performed.

Level of trace detail
For the level of detail there are three settings:

e Function

- This is the default setting and traces only the calls and returns of functions so that a basic program flow
behavior can be observed. This setting generates the minimum trace data.

e Flow

- This setting keeps track of all instructions being executed. A trace message is generated at points where
the program execution is not sequential. With this setting we can see what is going on inside the traced
functions.

e |nstruction

- The Instruction setting will generate as much as possible trace messages for the program execution. This
adds more details for the execution time of instructions. Note that this option needs much more trace
memory than the Flow setting.

We will use the Instruction setting to achieve our goal.

Address qualification

The next important setting is the address qualification. With the address qualification you can specify in which
regions of the program memory the device should be traced. There are three options available:

¢ No Address Qualification
- With this option the complete program execution is traced.
e InRange Qualification:

- Ifthe In Range Qualification is used, the device is only traced if the Instruction Pointer (IP) points to an
address inside of the configured ranges.

e Out Of Range Qualification

- Thisis the same option as the In Range Qualification but in reverse. Here the device will only be traced if
the IP is pointing to an address outside of the configured ranges.

To set the range of the address qualification the two text areas below the address qualification setting can be
used.

In these text areas only the first line is used to define the address range. The range can be defined by using two
hexadecimal addresses.

For instance, if one writes ‘0x8000F000 0x8000F010’ in the first line of one of the text areas, the address range
for the qualification is set to ‘Ox8000F000’ to ‘0x8000F010’. In the case that an ELF file is loaded, there is an
easier way to set the address qualification. Just type the function name to be traced, and de-focus the text
area. MTV will then automatically replace the function name with the correct address range. The function name
will also be moved to the second line of the text area, showing which function is traced with the address range.

For our goal, we simply write ‘Stm1_Isr’ in the first text area and click on another control (defocus the text
area). The MTV will then automatically set the right address range for us, as seen in Figure 9.

Application Note 12 of 24 V1.0
2018-02-07

An introduction to MTV

Multi-Core Debug Solution (MCDS) Trace Viewer

Example: Data Tracing inside an Interrupt

infineon

Opoint CPUO

Opoint
ICPUD vl Trigger Menu |

Program Trace Status Trace Program Trigger
[Instruction ¥| |[Enabled »| |Disabled |
|No STDSW Task Condition | | ~]
|In Range Qualification ¥ | |
0xB0000538 0xB0000595 ’
Stm1_lsr
Data Trace Data Trigger
[Disabled | | Disabled |
| = | =~
| =] |
|]
| El

Figure 9

3.1.2.2

Opoint CPUO (Timer interrupt trace)

Program Trigger

We will use the Program trigger to stop the tracing at a certain point. To set up the trigger, select ‘Trigger Trace
Record’ on the top of the Program Trigger section, where ‘Disabled’ is the default. MTV will display a message

regarding the trace buffer mode, if it is still set to ‘Record until full’ (section 3.1.1). In this case MTV
automatically changes the buffer settings for the use of a trigger. Simply close this message.

The second drop down menu can be ignored, because STDSW (STandarD SoftWare) Tasks will not be covered in

this application note.

The third drop down menu is again the range qualification. This time the qualification is used to trigger the

device to stop tracing. If the IP points to this range, the trigger will be fired. For our goal we use the range of the
timer ISR again here. Simply write ‘Stm1_Isr’ and defocus the text area, as done for the Program Trace section.
The result should look like Figure 10.

Application Note

130f 24

V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

Opoint CPUO

Opoint

CPUO w| Trigger Menu |

Program Trace Status Trace Program Trigger
[instruction | [Enabled | [Trigger Trace Recording |

[No STDSW Task Condition || |No STDSW Task Condition ¥|
|In Range Qualification :I |Out of Range Comparison :]

0x80000538 0x30000595 0x80000538 0x80000595
StmA_lsr Stm1_lsr
Data Trace Data Trigger

[Disabled »| [Disabled |
=

Figure 10 Opoint CPUO (Program Trigger)

3.1.2.3 Data Trace

The last section we have to modify is the Data Trace section, because we want to see which data is read and
written. For this purpose select ‘All’ on the drop down menu at the top of the Data Trace section. The other
options are self-explanatory. Use these to see only reads or writes. ‘A’ refers to ‘address’ and ‘D’ to ‘data’. For
instance, ‘A+D Write’ will display address and data of all write operations.

There is also a range qualification possible, to see only reads or writes in specific sections. We will not use this
for now, because we already set the program trace to the ISR so that we only see reads and writes in this ISR.
But we will later use this address qualification to hide some read and write operations inside the traced ISR
function that we do not want to observe.

Note: In AURIX TC2xx only the read address and not the data is available for trace and triggering. In
AURIX TC3xx (after TC39x A-step) also the read data is available.

Application Note 14 of 24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

3.2 Tracing the ISR

Now that we have set everything up, we are able to start the tracing of the timer interrupt by clicking the record
button:

After the tracing has finished, the trace data view will be displayed. For example:

BaseFramework_TC298 _tc.elf - DAS JDS TriBoard TC297 V1.0 TBY17KAC - MCDS Trace Viewer
File Device MCDS Edit Help L]
TimeA | TimeR [Ticks[Opoint | Origin | Data Operation Address Symbol/Label [s0] Comment [sL] Trace CFT JLFTMF |~
-l [T ——=rr o oo SO TR oot
44| 0.786.042.340, -27| 1|CPUD CPUO 388 STATE ISR_START ISR=1 [EN=1 is
10| 0.786.042.350 25| 2|CPUD | CPUO 308 STATE 1SR=1 [EN=0
9| 0786042370, 24| 1|CPUO | CPUO 98000000000 | Wed 7001BC18|__CSAD 0| CSA[7°0] of save at 7001BC00 (lowe
8| 0786042410, -20| 4|CPUO | CPUO)0000000003C |Wed 7001BC0O8|__CSAD 10| CSA[23 16] of save at 7001BC00
7| 0.786.042.450, 16| 4|CPUD CPUG DODOFB001000|We4d 7001BC38 __CSAD 20 CSA[39:32] of save at 7001BC00
6| 0786042450, 16| 0|CPUD | CPUD)00400002COA| W84 7001BC28 | __CSAD 30 CSA[55 48] of save at 7001BC00
5| 0786 042 560 5 11/ CPUO |CPUD)4BE003706F0 W64 7001BC58|__CSAD 40 CSA[7°0] of save at 7001BCA0 (lowe
_4| 0.786.042.560 -5 0/ CPUO |CPUD D00G0OD000OT WE4 7001BC48 | __CSAD 50 CSA[23:16] of save at 7001BC40
3| 0.786.042.570 4 1/ CPU0D |CPUD 35F4F0000130 Wed 7001BC78 | __CSAD 60 CSA[39:32] of save at 7001BC40
2| 0786042 570 4 0/CPUD |CPUD 102020765B54 W64 7001BCE8 | __CSAD 70 CSA[55 48] of save at 7001BC40
1| 0786042 610 0| 4[cPus | CPUD P B000054E | Stm1_lst 0 MOVH A A15_ 0xf0030000 10/ 1P START
0] 0.786.042.610 0 0CPUO CPUD Trig CPU IP 0X8000054E <= IP <= 0x80000587 TRIGGER TRACE
1] 0786042 620 1 1/CPUD |CPUD DABOD24706F1 W64 7001BCA8 | __CSAD 80 CSA[7-0] of save at 7001BCBO (lowe
80000552 StmA_Isr 4| LEA A15, [A15], 0x6034
2| 0786042 620 1 0/CcPUO |CPUD IP CALL 80000556 | Stm1_Isr 8| CALL Oxesic 10
3| 0.786.042.630 3| 1[CPUD | CPUG)00000D00003C|Wed 7001BCE8 __CSAD 90 CSA[23:16] of save at 7001BCE0
4| 0786 042 630 2| 0[CPUO |CPUD DODOFB001000|Wed 7001BCB8 | _CSAD AD | CSA[39°32] of save at 7001BC80
5| 0786 042 640 3| 1[CPUG | CPUO J00400002COA| W64 7001BCAS | __CSAD BO | CSA[55 48] of save at 7001BC80
80001362 | IWSCUCCU_getSourceFrequency | 0 MOVH.A A15, 0XT0030000
6| 0.786.042 660 5| 2|cPuo cPuo P 20001386 | IfxScuCcu_getSourceFrequency | 4 LEA A15, [A15], 0x6030 11/IP END
7| 0786 042 710 10| & CPUO |CPUD R FOD36030 | SCU 30
8| 0786042810 20| 10|cPUT | CPUD R FO036034 | SCU 34
9| 0.786.042.840 23| 3[CPUD | CPUO)AB1025706F2|Wed 7001BCDS|__CSAD CO| CSA[7:0] of save at 7001BCCO (lowe
10| 0.786.042.850 24| 1[CPUD |CPUO)0000D00003C | Wed 7001BCCE | __CSAD DO CSA[23:16] of save at 7001BCCO
11| 0786042 850 24| 0|CPUO | CPUO DODOFB001000|Wed 7001BCF8| _CSAD E0| CSA[30°32] of save at 7001BCCO
12| 0786 042 860 25| 1[CPUO | CPUO J00400002COA| W64 7001BCES | __CSAD FO| CSA[55 48] of save at 7001BCCO
13| 0.786.042.920 31| &|CPUD CPUO R FO036034 | .SCU 34
14| 0 786 042 990 38| 7/CPUD | CPUD R 50000000 | IMGcuCeu_xtalFrequency 0
15| 0786 043 000 39| 1|cPug | CPUD R 7001BCD8|__CSAD €0 CSA[7-0] of restore from 7001BCCO
16| 0.786.043.000 30| 0|cPun | CPUD R 7001BCCE|__CSAD DO CSA[23:16] of restore from 7001BC(
17| 0.786.043.010 40| 1[cPUD CPUO R 7001BCF8 | _CSAD E0 | CSA[39:32] of restore from 7001BC(
18| 0786043010 40| 0|CPUO | CPUO DODOD0O7OGFA|Wed 7001BCCO|__CSAD C0 | CSA[7°0] update of now free CSA (Io
19| 0786 043070 46| &|CPUT | CPUD R FO036014 | SCU 14
20| 0.786.043.130 52| &[CPUD CPUO R FO036014 | .SCU 14
21| 0786043180 58| &/CPUD | CPUD R FOD36018 | SCU 18 -
22| 0786043 240 63| 5/CPUO | CPUD R FO03601C | SCU 1C
23| 0.786.043.300 60| E|/CPUD CPUO R FO036018 | .SCU iE
24 0.786.043.380 77| 8[cPUD | CPUO R 7001BC98 | __CSAD 80 CSA[7:0] of restore from 7001BCE0 -

Figure 11 First ISR tracing

The trigger that stopped the tracing is highlighted in grey by MTV.

We can now observe that there are many read and write operations that don’t belong to our goal and that are
making the whole trace data less readable. In this case these read and write operations are from the Context-
Save-Array ‘°__CSA0’ and from the stack °__USTACKO’. To exclude these two we now use the ‘Out Of Range
Qualification’ of the Data Trace section.

Put‘__CSAO0’ in the first text area and ‘__USTACKO’ in the second and change the qualification to ‘Out Of Range
Quialification’. The trace settings should now look like Figure 12.

Application Note 15 of 24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

Dpljil"lt CPUD

Opoint

CPUD w | Trigger Menu |

Program Trace Status Trace Program Trigger
|Instruction ¥ |Enabled ¥ |Trigger Trace Recording ¥ |

[No STDSW Task Condition | [No STDSW Task Condition |

|In Range Qualification ~ »| |[In Range Comparison]|
0xB0000538 0x80000595 0xB0000538 0x80000505

Stm1_lsr Stm1_lsr

Data Trace Data Trigger

[Ai ~] | Disabled

L4 [

|No STDSW Task Condition | |

|Out Of Range Qualification | |

0x7001B600 0x7001BAFF I
_ USTACKD

L4

0x7001BCO0 0x7001DBFF
__CSAD

Figure 12 Opoint CPUO (Final)

Now after rerunning the tracing we should be able to get the trace data without the read and write operations
of the context saving and stack operations, and get a clearer view of the instructions belonging to our code
(Figure 13).

Application Note 16 of 24 V1.0
2018-02-07

o~ _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer
Example: Data Tracing inside an Interrupt

BaseFramework_TC298_tc.elf - DAS JDS TriBoard TC297 V1.0 TBY17KAC - MCDS Trace Viewer

File Device MCDS Edit Help
TimeA |T|rneR|T\ck5| Opoint ‘ Qrigin Data Operation Address Symbol/Label | 50 ‘ Comment | SL | Trace CFT JLF/TMF |~
0| 0.001.438 850 0 0 CPUD CPUO Trig CPU IP 0x8000054E <= IP <= 0xB800005B7 TRIGGER TRACE
80000552 Stm1_lIsr 4|LEA A15, [A15], 0x6034
1| 0.001.438 860 1 1/ CPUO CPUO IP CALL 80000556 Stm1_lIsr 8 CALL OxeSec 10
800013B2 IfxScuCcu_getSourceFrequency 0 MOVH.A A15, 0xf0030000
2| 0.001.438.900 5 4/ CPUO CPUO IP 60001386 | IfxScuCcu_getSourceFrequency 4|LEA A15, [A15]. 0x6030 11/IPEND
3| 0.001.438.950 10 &|CPUO CPUO R F0036030 .SCU 30
4| 0.001.439.050 20 10 CPUO CPUO R F0036034 SCU 34
5/ 0.001.439.160 Eal 11| CPUO CPUO R FOD36034 .SCU 34
6| 0.001.439 230 38 7|CPUO CPUO R 60000000 IxScuCcu_xtalFrequency 1]
7| 0.001.439.310 46 8| CPUO CPUO R F0036014 | SCU 14
§| 0.001.439.370 o2 6|CPUO CPUO R F0036014 | .SCU 14
9| 0.001.439.430 98 6/ CPUO CPUO R F0036018 | .SCU 18
10| 0.001.439 480 63 &|CPUO CPUO R F003601C | .SCU 1Cc
11| 0.001.439.540 69 6|CPUO CPUO R F0036018 .SCU 18
12| 0.001.439.690 84, 15 CPUD CPUO P 8000055A Stm1_lsr C LD.W D15, [A14], 0x0 11/IP START
13| 0.001.439.690 84 0|CPUO CPUO R F0036034 .SCU 34
14| 0.001.439.690 84 0|CPUO CPUO Trig CPU IP 0x8000054E <= IP <= 0x80000587 TRIGGER TRACE
8000055C Stm1_Isr E | LD.W D3, 0xf0000130
15| 0.001.439.750 90 6/ CPUO CPUO P 80000560 | Stm1_lsr 12 EXTR.U D15, D15, 0x8, Ox4 1
16| 0.001.439.750 90 0|CPUO CPUO R FO000130 .STM1 30
80000564 Stm1_lIsr 16 MOVH A A15, 0xd0000000
17| 0.001.439.760 91 1/ CPUO CPUO P 80000568 Stm1_lsr 1A |ITOF D15, D15 1
8000056C Stm1_lsr 1E LEA A15, [A15], Ox0
18| 0.001.439.770 92 1/CPUD CPUD IP 80000570 | Stm1_lsr 22 DIVF D2 D2 D15 1
19| 0.001.439.780 93 1/ CPUD CPUO P 80000574 Stm1_lsr 26 MOV E4, Ox1 1
80000576 Stm1_lIsr 28 MOV AA A2 A15
20| 0.001.439.810 96 3|CPUO CPUO P 80000578 Stm1_lIsr 2A|ADD.F D2, D2, D2 1
21| 0.001.439.820 97 1/CPUD CPUO IP 8000057C | Stm1_lsr 2E FTOUZ D2, D2 1
22| 0.001.439 830 98 1/ CPUD CPUO P 80000580 Stm1_lsr 32 ADD D2, D3 1
80000582 Stm1_lIsr 34 ST.W 0xf0000130, D2
23| 0.001.439.840 99 1/ CPUD CPUO P 80000586 Stm1_lIsr 38 MOV EZ, D5, D4 1
24| 0.001.439.840 99 0 CPUO CPUD 0C148752 W32 FOD00130 .STMA1 30
25| 0001439850 100 1/CPUC[cPUD [T P B000058A Stmi_isr T 3C CMPSWAPW[AT5] 0x0,E2° || AT
26| 0.001.439.910 106 6|CPUO CPUO P 8000058E Stm1_lIsr 40 JNE D2, 0x0, OXfiffiifs 1
27| 0.001.439.910 106 0/ CPUO CPUO 00000001 /W32 D0000000 .CPUO.DSPR 0
28| 0001430920 107, 1/cPU6 |CPUo | TR T 80000592 Stmi_isr - 44[MOVH D15, oxd000000 | ArTTTTTTTTITTTTRE
80000596 Stm1_lIsr 48 ADDI D15, D15, 0x400
8000059A Stm1_lsr 4C MOVH.A A15, 0xf0040000
29| 0.001.439.930 108 1/ CPUD CPUO P 8000059E Stm1_lIsr 50 LEA A15, [A15], Oxfid300 1
600003A2 Stm1_lsr 54 ST.W[A13], Ox4, D15
30| 0.001.439.940 109 1/ CPUD CPUO P 800005A4 Stm1_lsr 56 SH D15, Ox1 1
31| 0.001.439.940 109 0|CPUO CPUO 04000400 W32 F003D304 | P33 4
B800005A6 Stm1_lIsr 58 ST.W[A15], 0x4, D15
800005A8 Stm1_lsr 5A SH D15, 0x1
800005AA Stm1_lsr SC ST.W [A15]. 0x4, D15
32| 0.001.439.950 110 1/ CPUD CPUO P B800005AC Stm1_lsr SE|SH D15, ox1 1
33| 0.001.439.950 110 0|CPUO CPUO 08000800 W32 F003D304 | P33 4
34| 0.001.439.950 110 0|CPUO CPUO 10001000 W32 F003D304 P33 4
800005AE Stm1_lsr 60 ST.W[A13], 0x4, D15
80000580 Stm1_lsr 62 ST W [A2] D2
35| 0.001.439.960 111 1/ CPUO CPUO P 80000582 Stm1_lsr 64 RSLCX 11
36| 0.001.439.960 111 0|CPUD CPUO 20002000 W32 F003D304 P33 4
o — e e e e
38| 0.001.439.970 112 1/ CPUD CPUO IP RFE 80000566 Stm1_Isr 68 RFE 1 —
39| 0.001.440.000 118 3|CPUO CPUO 300 STATE ISR_END ISR=0 IEN=0 le x|
. . .
Figure 13 ISR-Trace without Context Save and Stack operations

The trigger that stopped the tracing is again marked in grey (at the top) by MTV. The area marked with the red
dotted border in the figure above displays the instructions representing the spinlock mechanism. We can
observe that firstly a Compare-And-Swap instruction is executed, which in this case at first attempt acquires
the lock variable.

Right after the Compare-And-Swap instruction a Jump-Not-Equal instruction follows, which would jump back
before the Compare-And-Swap instruction to repeat it, as long as the lock variable is acquired by somebody
else.

While acquiring the lock variable it is set to 1, which can be seen at the W32 command right after the JNE
instruction in line 27. After the critical code section has been executed, the lock variable is set to 0 to release the
spinlock mechanism for the other timer interrupt. The release of the lock variable can be seen at the W32
instruction in line 37.

Note: There can be a certain delay between the data trace messages (here W32) and the associated
instructions (here CMPSWAP and ST.W). This is due to the different stages at the CPU pipeline
where this information is retrieved.

Application Note 17 of 24 V1.0
2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer ’

Common errors and further hints

4 Common errors and further hints

This section discusses common errors and gives further hints for the correct usage of the MTV.
4.1 No data traced or wrong data traced

4.1.1 Halted CPU

A common error while using MTV is, that the CPU is halted for instance by another debugging tool. In this case
the record button stays red and no trace data is generated since even the tick message generation only starts
after the first regular trace message.

4.1.2 Volatile programming

While writing and testing software on the SoC, volatile RAM is often used to save limited write cycles of the flash
memory. If MTV is used to collect trace data with the option ‘Reset Device First’, make sure that the software
was written to the permanent flash instead of RAM. Otherwise a reset will result in tracing the execution of the
old software which is stored in the permanent flash.

4.1.3 Wrong trigger

If a circular buffer is used for tracing, meaning that the trace is in an infinite loop until the first trigger condition
is met, MTV can be stuck in an infinite tracing loop. This happens if the trigger is wrong and doesn’t hit. In that
case the tracing will never stop. Another problem might be that there was no trigger set at all.

4,2 Zero ticks

For certain traces the column displaying the ‘Ticks’ of the CPU reads zero. At first this might be confusing and
looks like an error inside the CPU or the MTV but this is not the case.

There are two main reasons why this can happen.

e There may be two different trace units (Program Trace Unit PTU and Data Trace Unit DTU) or even at
different observation points (Corel and Core2 for example) which are operating independently. Therefore it
will happen that two trace messages are generated at the same time. The second trace message is then
displayed with zero Ticks.

e Asecond reason belongs to the reduced clock frequency of the MCDS. As mentioned, one Tick is equal to
two CPU cycles, therefore the clock of the MCDS runs with half the frequency of the CPU. Due to this clock
difference, it might happen that there are more trace messages observed at a time. If this happens there are
for instance two trace messages which in reality have different time stamps, but the same timestamp while
being observed by the MCDS. The second trace message then has zero Ticks.

Application Note 18 of 24 V1.0
2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer

Common errors and further hints

4.3 Negative stack level
The Stack Level indicates the current position on the stack for the function context.

Normally the main function is on Stack Level 0. If now a function is called, the context is stored on the stack and
the Stack Level is incremented to 1. After executing the function, a return operation is called which restores the
context of the main function from the stack. This results in a decreasing Stack Level.

Take for instance the following source code:

void func 2() {
calc _something();

}

void func 1() {
func 2();

}

int main (void) {
func 1();
return 0;

}

This generates the Stack Level history in the following table:

Table 2 Stack level history
main func_1 called func_2 called func_2 return func_1return
SL = 0 SL =1 SL = 2 SL =1 SL = 0

If the data tracing is now started without a reset of the device, the Stack Level may be on some higher value
because a function f, is in execution. In fact the Stack Level observed by the MCDS always starts with 0. If then f,
returns and the context of the function f,, which has called f,, is restored, the Stack Level decreases to -1.

4.4 Unable to connect the device
There may be several reasons why MTV cannot connect to the device:

e Thedeviceis not plugged in on the PC or the USB cable is damaged.
e The device is not powered or the power supply is damaged.

e Another debugging tools hardware is connected to the device.

e The required DAS USB drivers are not installed correctly.

Note: Please read the DAS Release notes that are included in the DAS installation.

Application Note 19 of 24 V1.0
2018-02-07

An introduction to MTV
Multi-Core Debug Solution (MCDS) Trace Viewer
Common errors and further hints

infineon

4.5

Most, but not all of the controls in MTV (buttons, text areas, drop down menus, and so on) provide usage-hints
as tooltips. These tooltips are displayed, after a brief pause, when you hover the cursor over a control. An
example is shown in Figure 14.

Tooltips

File Device MCDS Edit Help []
TimeA TimeR ‘T\cks‘ Opoint ‘ Origin Data Operation Address Symbol/Label ‘ SO ‘ Comment | SL ‘ Trac2)
i 0 0 CPUO CPUD IP B00004AA | init_ethernet 52 CFTIP ST
2 0 0/ CPUO CPUD 380 | STATE ISR=0 IEN=1
3 0 0 SPB SPB 101 STATE El=1 SAFEEI=1
4 53101431014 CPUO CPUD 388 | STATE ISR_START ISR=1 IEN=1 Is
5 531018 2| Chid oun, ne A ISR=1 IEN=0
6 531024 E[el @ Opoint CPUO 80000482 init_ethernet 5A ISR CFT
7 531045 21|C| Opoint 8000134E | IfxCpu_Trap_nonMaskablelnterrupt 22 ISR|CFT
800012EE | IfxCpu_Trap_systemCall_Cpu1 30
s sat068 23/c) [CPUO_] [Trigger enu] 80001352 | ICpu_Trap_nonMaskablelnterrupt | 26 MOV D D2, A15 ISR/ CFT
9 531118 50/C 800004CE | init_ethernet 76 ISR/ CFT
10 531122 4 c| Program Trace Status Trace Program Trigger 80001C7C IKEth_init 14C ISR CFT
Al 531163 41 C| |Function | |Enabled - Disabled > 800004E8 ERROR Instruction Address Alignmern ISR CFT
12 531168 5/ C B0001EBE IfxScuCcu_getPlIFrequency 3c ISR/ CFT
No STDSW Task Condition :I :l 800024F6 IfxScuwdt_enableSafetyWatchdog 2C
13 531181 13 C 80001E92 IixScuCcu_getPlIFrequency 40 ITOF D4, D4 ISR|CFT
14 s3t182| 1] INoAddress Qualfication] i 80001EQE ERROR Instruction Address Alignmer. 1SR | CFT
800024F6 IfxScuWdt_enableSafetyWaichdog
15 531194 12/ C = Sme = <OUSrequency 4C | ILLEGAL ISR/ CFT
16 531271 77/ gnhl!r"r‘w:ﬁﬂn‘w‘g:z 'S'L’F"%I”ég'mcg‘jzgnerz%'s'ﬁnﬁ; ERROR Instruction Address Algnmen ISR CFT |
17 531274 3 C B B ERROR Instruction Address Alignmern ISR CFT
18 531278 4/C] The trigger is generated when the range is entered for ERROR Instruction Address Alignmer ISR CFT
s31201| 13l In Range and when left for Out of Range. BafetyWatchdog ;ﬂg ADDA AB. AD R cFT
19 3
20 531202 1|C] lﬁ?z;(ﬁ ’[%a;g%gimease note that address 0 will trigger on a hardware ERROR Insiruction Address Alignmen ISR/ CFT
artefact. Use ALL address range for triggering on the SafetyWatchdog 2c
21 531304, 12|C| first code exection after reset. 20C | ILLEGAL ISR/ CFT |
4 =] | | LlJ
|
=
-

Figure 14 Tooltips inside the MTV

4.6 File handling

Besides loading an ELF file, it is possible to save the current MCDS configuration and load it again later. The
trace data can also be saved, which can then be processed by other tools, such as Excel or Matlab for example.

If you intend to post-process the data with Microsoft Excel, MTV already provides an appropriate handler for the

copy and paste of trace data. To copy the data open the ‘Edit’ menu and click ‘Select All’, after everything is
selected (the trace data will be highlighted in grey), again open the ‘Edit’ menu and click ‘Copy’. The same

result can be achieved by pressing [Ctrl]+[A] followed by [Ctrl]+[C]. It is also possible to select specific trace
lines or ranges with the mouse by using the normal Windows conventions.

After the trace data has been copied to the clipboard, you can paste it directly into an Excel table. The trace
data is then automatically parsed into several rows and columns within the Excel sheet.

Application Note

20 0f 24

V1.0
2018-02-07

o _.
An introduction to MTV |nf|neon
Multi-Core Debug Solution (MCDS) Trace Viewer

Common errors and further hints

4.7 Address qualification - Function not found

It is possible to type the function name into the text area for the address qualification. Under some
circumstances this will fail. The entered name will then disappear and no address range is inserted by MTV. This
happens if the function is existent in the C-Code of the application, but has been removed due to optimizations
performed by the compiler.

Take the following code for instance:

void func () {
calc something();
}
int main (void) {
func () ;

}
can be optimized to:

int main (void) {
calc_something();

}

In this case it is not possible to enter ‘func’ as a range qualifier, only ‘main’ or ‘calc_something’ (except
‘calc_something’ has been removed to further optimizations).

To prevent the compiler of removing some specific function, the ‘volatile’ keyword can be used:

volatile void func () {
calc something();

}

int main (void) {
func () ;
return 0;

}

With this keyword the return type ‘void’ of the function is marked as ‘volatile’ and the compiler is not allowed to
remove the function ‘func’, because of the volatile return type.

With this trick the function can be used as a range qualifier, even if the compiler wants to remove it due to
optimization reasons.

Obviously an alternative is to turn off the optimization instead of using this solution, but most of the time the
compiler optimization is desired.

Application Note 210f24 V1.0
2018-02-07

o _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer

Acronyms

5 Acronyms

The following table shows the most common acronyms used in the MTV GUI and this document:

Table3 Acronyms

Acronym Explanation

A Address

A+D Address + Data

CPU Central Processing Unit

DAP Device Access Port

DAS Device Access Server

DMA Direct Memory Access

ELF Executable and Linking Format
EMEM Emulation Memory

GUI Graphical User Interface

INT Interrupt

IP Instruction Pointer

IS See ‘INT TS8_IS’ in the manual
LMU Local bus Memory Unit

MCDS Multi-Core Debug Solution

0CDS On-Chip Debug Support

OLDA Online Data Acquisition

OTGB OCDS Trigger Bus

PMU Program Memory Unit

R/W Read/Write

SMU Safety Management Unit

SP Service Provider

SPA See ‘INT TS8_SPA’ in the manual
SRN Service Request Node

SSI Single Signal Interface

STDSW Task Standard Software Task

TCM Trace and Common Memory (part of EMEM)
TS Trigger Set

XCM Extended Common Memory (part of EMEM)
XTM Extra Trace Memory (part of EMEM)
Application Note 22 of 24 V1.0

2018-02-07

o _.
An introduction to MTV |nf|ne0n
Multi-Core Debug Solution (MCDS) Trace Viewer

Revision history

Revision history

Document Date of release Description of changes
version
V1.0 February 2018 First release
Application Note 230f24 V1.0

2018-02-07

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-02-07
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2018 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
AP32401

IMPORTANT NOTICE

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Getting started
	1.1 Installation
	1.2 First start-up
	1.3 The trace table

	2 First trace
	2.1 Connect the Device
	2.2 Load the Executable and Linking Format file
	2.3 ‘Reset Device First’ option
	2.4 Starting the trace

	3 Example: Data Tracing inside an Interrupt
	3.1 Trace setup
	3.1.1 Trace buffer settings
	3.1.2 Observation point setting
	3.1.2.1 Program trace
	3.1.2.2 Program Trigger
	3.1.2.3 Data Trace

	3.2 Tracing the ISR

	4 Common errors and further hints
	4.1 No data traced or wrong data traced
	4.1.1 Halted CPU
	4.1.2 Volatile programming
	4.1.3 Wrong trigger

	4.2 Zero ticks
	4.3 Negative stack level
	4.4 Unable to connect the device
	4.5 Tooltips
	4.6 File handling
	4.7 Address qualification – Function not found

	5 Acronyms
	Revision history

