
PSoC 3 Programming Specifications

CY8C32xxx, CY8C34xxx, CY8C36xxx, CY8C38xxx

CY8CTMA39x, CY8CTMA8xx, CY8CTMA6xx

PSoC® 3 Device Programming Specifications

Document # 001-62391 Rev. *L

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
www.cypress.com

www.cypress.com

Copyrights
Copyrights

© Cypress Semiconductor Corporation, 2010-2017. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or refer-
enced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as spe-
cifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organi-
zation, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resell-
ers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software
is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without fur-
ther notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weap-
ons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-
RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.
2 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

Contents
1. Introduction 5

1.1 Host Programmer...5
1.2 Hardware Connections ..5

1.2.1 SWD Interface ..5
1.2.2 JTAG Interface..7

Document Revision History ..9

2. PSoC 3 Programming Interface 11
2.1 Test Controller Block..11

2.1.1 Debug Port/Access Port (DP/AP) Access Register ..11
2.1.2 Debug Port/Access Port (DP/AP) Registers...12

2.2 SWD Interface..13
2.2.1 Register Access Using SWD Interface ...15

2.3 JTAG Interface...16
2.3.1 Register Access Using JTAG Interface ..16

2.4 Switching between JTAG and SWD Interfaces..17
2.4.1 SWD to JTAG Switching...17
2.4.2 JTAG to SWD Switching...17

3. PSoC 3 Programming Flow 19
3.1 Step1: Enter Programming Mode...20

3.1.1 Enter Programming Mode through SWD Interface...20
3.1.2 Enter Programming Mode through JTAG Interface ..26

3.2 Step 2: Configure Target Device..30
3.3 Step 3: Verify JTAG ID...30
3.4 Step 4: Erase Flash ...30
3.5 Step 5: Program Device Configuration NVL...31
3.6 Step 6: Program Flash ...32
3.7 Step 7: Verify Flash (Optional) ...34
3.8 Step 8: Program WO NVL..34
3.9 Step 9: Program Flash Protection ...35
3.10 Step 10: Verify Flash Protection (Optional)..36
3.11 Step 11: Validate Checksum..36
3.12 Step 12: Program EEPROM (Optional)..36
3.13 Step 13: Verify EEPROM (Optional) ..37

4. Programming Specifications 39

4.1 SWD Interface Timing and Specifications..39
4.2 JTAG Interface Timing and Specifications...40
4.3 Programming Mode Entry Specifications ...41
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 3

Contents
5. SWD and JTAG Vectors for Programming 43

5.1 Step 1: Enter Programming Mode ...43
5.1.1 Method A..43
5.1.2 Method B..44
5.1.3 Method C..44
5.1.4 Method D..45

5.2 Step 2: Configure Target Device ...46
5.3 Step 3: Verify JTAG ID ..46
5.4 Step 4: Erase All (Entire Flash memory) ...46
5.5 Step 5: Program Device Configuration Nonvolatile Latch..47
5.6 Step 6: Program Flash...51
5.7 Step 7: Verify Flash (Optional)...55
5.8 Step 8: Program Write Once Nonvolatile Latch ...57
5.9 Step 9: Program Flash Protection Data ...60
5.10 Step 10: Verify Flash Protection Data (Optional)...62
5.11 Step 11: Validate Checksum ...63
5.12 Step 12: Program EEPROM (Optional) ...64
5.13 Step 13: Verify EEPROM (Optional)..68

A. Appendix 71
A.1 Intel Hex File Format ...71

A.1.1 Organization of Hex File Data ..72
A.2 Nonvolatile Memory Organization in PSoC 3 ..74

A.2.1 Nonvolatile Memory Programming...74
A.2.2 Commands...74
A.2.3 Command Status..74
A.2.4 Nonvolatile Memory Organization ..75

A.3 Example Schematic ...78
4 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

1. Introduction
PSoC® 3 device programming refers to the programming of nonvolatile memory in PSoC 3 using an external host program-
mer. Nonvolatile memory, in the context of external host programmer, includes flash memory, EEPROM, device configuration
nonvolatile latch (NVL), and write once NVL. PSoC 3 supports programming through the serial wire debug (SWD) interface or
the Joint Test Action Group (JTAG) interface. The data to be programmed is stored in a hex file. This document explains the
hardware connections, programming protocol, programming vectors, and the timing information to develop programming
solutions for a PSoC 3 device.

1.1 Host Programmer

The host programmer can be the MiniProg3 Programmer supplied by Cypress, a third-party programmer, or a hardware
device such as a microcontroller or an FPGA. MiniProg3 programmer is used in the prototype stage of application develop-
ment to program and debug PSoC 3 devices on the board. Third-party programmers are used for production programming of
PSoC 3 in large numbers. They are used when the design is finalized and the application needs to go in for mass production.
Apart from this, custom developed host programmers such as FPGA or external microcontroller can be used to perform in-
system programming of PSoC 3 devices either for complete programming or partial firmware upgrade.

The host programmer programs the PSoC 3 device with the program image contained in the <Project_Name>.hex file, which
is generated by the PSoC Creator™ software. See the General PSoC Programming web page for complete information on
PSoC programming documents, software, and a list of supported third-party programmers.

1.2 Hardware Connections

This section discusses hardware connections between the host programmer and the PSoC 3 device for programming through
the SWD and JTAG interfaces. Only programming related connections are discussed. For a complete schematic of the PSoC
3 device for programming, including the PSoC 3 regulator output pins (VCCD, VCCA), see “Example Schematic” on page 78.
The PSoC 3 device datasheet has information on device operating conditions, specifications, and pinouts for the different
PSoC 3 packages.

1.2.1 SWD Interface

Figure 1-1 shows the hardware connections between the host programmer and the target PSoC 3 device to program through
the SWD interface.

PSoC 3 has two pairs of pins that support SWD: P1[0] SWDIO and P1[1] SWDCK, or P15[6] USB D+ (SWDIO) and P15[7]
USB D– (SWDCK) pins. No device configuration setting is required to choose between these two pairs. The internal device
logic chooses between these pins automatically by detecting activity (clock transition on SWDCK lines) after the device
comes out of reset. To reset the PSoC 3 device for programming, either the XRES pin or power cycle mode must be used.
Power cycle mode programming involves toggling power to the Vddd, Vdda, and Vddio pins of PSoC 3 to reset the device. All
SWD interface programmers support programming using the XRES pin, but only some of them support power cycle mode. If
power cycle mode programming is needed, make sure it is supported by the programmer being used.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 5

http://www.cypress.com/?rID=38154
http://www.cypress.com/?rID=2543
http://www.cypress.com/?rID=2543
http://www.cypress.com/?id=2232&rtID=107

Introduction
Figure 1-1. SWD Programming Interface Connections between Host Programmer and PSoC 3

VSSD, VSSA

VDDD, VDDA, VDDIO0,
 VDDIO1, VDDIO2, VDDIO3 1, 2, 3

SWDCK (P1[1] or P15[7]) 5

SWDIO (P1[0] or P15[6]) 5

XRES_N or P1[2] 3, 4

GND
GND

SWDCK

SWDIO

XRES

Host Programmer PSoC 3VPOWER

VDD_HOST

Notes for Figure 1-1:

1. The voltage level of the host programmer and the supply voltage for PSoC 3 I/O pins used in programming should be the
same. Port 1 SWD pins and XRES (XRES_N or P1[2] as XRES) pin in PSoC 3 are powered by the VDDIO1 pin. USB
SWD pins are powered by VDDD pin.

a. To program using the Port 1 SWD pins (P1[0], P1[1]) and XRES pin (XRES_N or P1[2] as XRES), the host voltage
level (VDD_HOST) should be the same as VDDIO1 pin of PSoC 3. The remaining PSoC 3 power supply pins (VDDD,

VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the same voltage level as the host programmer.

b. To program using the USB SWD pins (P15[6], P15[7]) and XRES pin, the host voltage level (VDD_HOST) should be the

same as the VDDD, VDDIO1 pins of PSoC 3. The remaining PSoC 3 power supply pins (VDDA, VDDIO0, VDDIO2,
VDDIO3) need not be at the same voltage level as the host programmer.

2. VDDA must be greater than or equal to all other power supplies (VDDD, VDDIOs) in PSoC 3.

3. For power cycle mode programming, XRES pin is not required. The VDDD, VDDA, VDDIO0, VDDIO1, VDDIO2, VDDIO3
pins of PSoC 3 should be tied together to the same power supply; power to these pins should be toggled to reset the
device. Ensure that the programmer used supports power cycle mode. MiniProg3 (rev 7 and later versions) supports
power cycle mode.

4. XRES pin can either be the dedicated XRES pin (XRES_N) or the optional XRES pin (P1[2]). P1[2] is configured as XRES
pin by default only for 48-pin devices (which do not have a dedicated XRES pin). For devices with a dedicated XRES pin
(XRES_N), P1[2] is a GPIO pin by default. Use P1[2] as reset pin only for 48-pin devices, but use the dedicated XRES pin
for other devices.

5. USB SWD pins (P15[6], P15[7]) are not present in devices without USB functionality.

Table 1-1 lists the host programmer hardware requirements for PSoC 3 pins involved in SWD interface programming.

Table 1-1. Host Programmer Requirements for PSoC 3 Programming

Pin Host Programmer Requirement PSoC 3 Function Comment

SWDCK
(SWD Clock)

Strong drive (CMOS drive) digital
output

P1[1] SWDCK pin - Digital Input
with internal 5.6 k pull-down
resistance
P15[7] SWDCK pin - High imped-
ance digital input

The internal 5.6 k pull-down resistor on the P1[1]
SWDCK pin (not on P15[7]) is for internal device
Port Acquire logic. No external resistor is needed
on the SWDCK line. SWDCK should always be in
Strong drive (CMOS drive) mode on the host pro-
grammer side.

SWDIO (SWD
Data)

Write operation: Strong drive
(CMOS drive) digital output
Read operation: High impedance
digital input

Write operation: Strong drive
(CMOS drive) digital output
Read operation: High impedance
digital input

PSoC 3 changes between two drive modes for
read and write operations on the SWDIO line using
the Turnaround (TrN) phase of SWD protocol. Host
must also change the drive mode of the SWDIO
line during this TrN phase. When the host writes to
SWDIO, PSoC 3 reads from SWDIO and vice-
versa.
6 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

Introduction
1.2.2 JTAG Interface

Figure 1-2 shows the hardware connections between the host programmer and PSoC 3 device to program through the JTAG
interface.

There are fixed port pins to program PSoC 3 through the JTAG interface: P1[0] (TMS), P1[1] (TCK), P1[3] (TDO), P1[4] (TDI),
P1[5] (nTRST). The nTRST pin is an optional connection for JTAG interface. It is not functional during PSoC 3 device pro-
gramming, but can be enabled for debugging operations by programming the device configuration NVL with a 5-wire JTAG
setting (default factory setting is 4-wire JTAG).

Figure 1-2. JTAG Programming Interface Connections between Host Programmer and PSoC 3

TCK (P1[1]) 3

TMS (P1[0]) 3

GND
GND

TCK

TMS

Host Programmer PSoC 3

TDO TDI (P1[4]) 3

TDI TDO (P1[3]) 3

nTRST 4 nTRST (P1[5]) 3, 4

VDDD, VDDA, VDDIO0,
 VDDIO1, VDDIO2, VDDIO3 1, 2VDD_HOST

VSSD, VSSA

VPOWER

Notes for Figure 1-2:

1. The voltage level of the host programmer and the supply voltage for PSoC 3 I/O pins involved in programming should be
the same. PSoC 3 JTAG pins are powered by VDDIO1. The host voltage level (VDD_HOST) should be the same as

VDDIO1 pin. The remaining PSoC 3 power supply pins (VDDD, VDDA, VDDIO0, VDDIO2, VDDIO3) need not be at the
same voltage level as host programmer.

2. VDDA must be greater than or equal to all other power supplies (VDDD, VDDIOs) in PSoC 3.

3. PSoC 3 programming using third-party JTAG programmers is only possible if Debug Port Select (DPS) = “4- /5- wire
JTAG”. Silicon revision 5 (TO6) or later added new bits in NVLs – Debug Enable, which if set, makes programming fully
compliant with the JTAG standard. Therefore, revisions 2, 3, and 4 are programmable through JTAG pins but imposes
some extra requirements to the JTAG master. Revisions 5 or later can be programmed in full compliance with the JTAG
specification. The default NVL settings are DPS = “4-wire JTAG”, Debug Enable = “ON”. Normally, these settings must not
be changed during programming. If they are modified, then the JTAG port can still be re-enabled by reprogramming NVLs
using MiniProg3 in the SWD mode (see the connection in Figure 1-1). Note that if the JTAG master can switch the silicon
between the SWD and JTAG modes, then it can still program the silicon if DPS= ”SWD”, but not when DPS = “Debug Port
Disabled".

XRES
Strong drive (CMOS drive) digital
output

Digital input with internal 5.6 k
resistive pull-up to VDDIO1

The XRES pin or P1[2] as XRES in PSoC 3 is
active low input and there is an internal 5.6 k pull-
up resistor to VDDIO1.

VDDA, VDDD,
VDDIO

Positive voltage
Digital, analog, and I/O power
supply

For power cycle mode, tie the VDDD, VDDA, and
VDDIO pins of PSoC 3 to the same power supply.
Toggle power to these pins to reset the device.
See the PSoC 3 device data sheet for specifica-
tions on power pins (VDDD, VDDA, VDDIOs) and
Ground pins (VSSD, VSSA).

VSSD, VSSA
Low resistance ground connec-
tion

Ground for all analog peripherals
(VSSA), digital logic, and I/O pins
(VSSD)

Pin Host Programmer Requirement PSoC 3 Function Comment
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 7

http://www.cypress.com/?id=2232&rtID=107

Introduction
4. The nTRST pin is an optional connection for the JTAG interface. It is not functional during PSoC 3 device programming,
but it can be enabled for debugging operations by programming the device configuration NVL with 5-wire JTAG setting.

Table 1-2 lists the host programmer hardware requirements for PSoC 3 pins involved in JTAG interface programming.

Table 1-2. Host Programmer Requirements for PSoC 3 JTAG Interface Programming

Pin
Host Programmer

Requirement
PSoC 3 Functionality Comment

JTAG Clock (TCK)
Strong drive (CMOS drive)
digital output

Digital input with internal 5.6 k
pull-down resistance

Pull-down resistor on TCK ensures that no spuri-
ous clock signals are present when TCK input is
not driven by host.

JTAG TDI (TDI) High impedance digital Input
Digital input with internal 5.6 k
pull-up resistance to VDDIO1

TDI of host is connected to TDO of PSoC 3 and
vice-versa. TDI input in PSoC 3 has a pull-up
resistor so that the pin is in known state (logic
high) when not driven by host.

JTAG TDO (TDO)
Strong drive (CMOS drive)
digital output

Strong drive (CMOS drive) digi-
tal output

TDI of host is connected to TDO of PSoC 3 and
vice-versa.

JTAG TMS (TMS)
Strong drive (CMOS drive)
digital output

Digital input with internal 5.6 k
pull-up resistance to VDDIO1

TMS input in PSoC 3 has a pull-up resistor to
ensure that the pin is in known state (logic high)
when not driven by host.

JTAG Reset (nTRST)
(Optional)

Strong drive (CMOS drive)
digital output

Digital input with internal 5.6 k
pull-up resistance to VDDIO1

nTRST pin is an optional connection for JTAG
interface. It is not functional during programming
of PSoC 3 device. Use the TMS and TCK pins to
do a reset of the JTAG TAP controller.

VDDA, VDDD,
VDDIOs

Positive voltage Digital, analog, I/O power supply See the PSoC 3 device data sheet for specifica-
tions on power pins (VDDD, VDDA, VDDIO0,
VDDIO1, VDDIO2, VDDIO3) and Ground pins
(VSSD, VSSA)VSSD, VSSA

Low resistance ground con-
nection

Ground for all analog peripher-
als (VSSA), all digital logic, and
I/O pins (VSSD)
8 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

http://www.cypress.com/?id=2232&rtID=107

Introduction
Document Revision History

Document Title: CY8C32xxx, CY8C34xxx, CY8C36xxx, CY8C38xxx, CY8CTMA39x, CY8CTMA8xx, CY8CTMA6xx PSoC® 3
Device Programming Specifications

Document Number: 001-62391

Revision Issue Date
Origin of
Change

Description of Change

** 06/29/2010 VVSK/ANDI Initial version

*A 11/25/2010 VVSK/ANDI Code changed in Step 1 - Appendix B

*B 04/04/2011 VVSK
Major rewrite of application note including addition of timing diagrams, program-
ming specifications.

Modified Step 1 of programming flow for both SWD, JTAG.

*C 04/18/2011 VVSK Hyperlink issue fixed. Figure 8 and Figure 9 modified

*D 05/31/2011 VVSK
Changed title and abstract. Added Associated Part Family. Removed checking of
"Revision ID" from Programming flow.

*E 09/20/2011 VVSK Converted to TRM category

*F 04/10/2012 VVSK Fixed typos. Corrected JTAG read procedure.

*G 05/17/2012 VVSK Updated section 3.5 including Figure 3-12. Updated the code in section 5.5.

*H 05/24/2012 VVSK Fixed a code error in section 5.5.

*I 12/05/2012 VVSK
Updated Figure 3-1, Figure 3-2, Figure 3-6, Figure 3-8. Added sections to include
Step 12 Program EEPROM and Step 13 Verify EEPROM

*J 06/20/2013 ANDI

Updates for PSoC3 TO6 revision, described JTAG-compliant programming.

Updated Sections 1.2.2, 3.1.2, 5.1.4

Added Section 5.3, A.2.4.3

*K 07/25/2016 MYKZ Sunset review; no content updates

*L 04/25/2017 AESATMP8 Updated logo and Copyright.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 9

Introduction
10 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

2. PSoC 3 Programming Interface
This section explains the programming interface in PSoC 3 and the registers used for programming. An overview of the SWD
and JTAG interfaces is also provided. See “Nonvolatile Memory Organization in PSoC 3” on page 74 for details.

2.1 Test Controller Block

The host programmer communicates with PSoC 3 through the device’s internal Test Controller (TC). The TC is the interface
that provides access to the PSoC 3 Debug on Chip (DoC) module, which in turn provides access to the device memory and
registers. Using TC and DoC, the host programmer writes to SRAM, sets internal registers, and programs the device’s flash
memory and nonvolatile latches (NVLs).

Figure 2-1. PSoC 3 Programming Interface

Test Controller

TDI

SWDIO

SWDCK

TDO

Debug
On-
Chip

8051

nTRST

JTAG interface
pins

SWD interface
pins

JTAG
Debug

Port

SWD
Debug

Port

DP/AP Access
Register

TRNS_ADDR,
DATA_RW

Access Port (AP)
Registers

IDCODE,
DBGPRT_CFG,
READBUFF

Debug Port (DP)
Registers

TCK

TMS

2.1.1 Debug Port/Access Port (DP/AP) Access Register

PSoC 3 test controller has a DP/AP Access register that is 35 bits wide. This register, which is part of the TC interface, is used
to transfer data between the JTAG or SWD interface and the Debug Port and Access Port registers. The SWD interface
enables direct reads and writes of the DP/AP Access register. The JTAG interface uses the DPACC and APACC instructions.
The Access Port (AP) registers are used to read data from a specific address or write data to a specific address. The Debug
Port Registers contain the Debug Port configuration such as byte size of AP register memory access and device JTAG ID.

2.1.1.1 Write to DP/AP Access Register

Figure 2-2 shows the structure in the JTAG Update-DR stage or when writing to the DP/AP Access register from the SWD
interface.

Figure 2-2. Writing to the DP/AP Access Register

 Bits 34 to 3: (32 bits). If the register is less than 32-bits wide, zero-pad the remaining bits that are sent to PSoC 3.

 Bits 2 to 1: 2-bit address for selecting DP or AP registers. These address bits are listed in Table 2-2.

 Bit 0: RnW – 1 = read (from PSoC 3 to host programmer); 0 = write (to device from debug host).
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 11

PSoC 3 Programming Interface
2.1.1.2 Read from DP/AP Access Register

Figure 2-3 shows the structure of the 35-bit data register in the Capture-DR state of JTAG FSM (before start of shift out of
data through TDO) or when reading the DP/AP Access register from the SWD interface.

Figure 2-3. Reading from the DP/AP Access Register

 Bits 34 to 3: (32 bits): If the register is less than 32-bits wide (N-bit), it is still required to read the entire 32-bits to complete
the transaction. Of the 32 bits, only the least N-bit data should be considered.

 Bits 2 to 0: (ACK response code): Depending on the interface, the ACK response is indicated in Table 2-1. This ACK
response is for the previous JTAG/SWD transfer; if there is an error, it indicates that the previous transfer must be redone.

Table 2-1. ACK Response for SWD Transfers

ACK[2:0] JTAG SWD

OK 010 001

WAIT 001 010

FAULT 100 100

2.1.2 Debug Port/Access Port (DP/AP) Registers

The DP and AP registers listed in Table 2-2 are part of TC. JTAG has separate instructions (DPACC, APACC) to distinguish
between AP and DP access; the SWD protocol uses the APnDP bit for this.

Table 2-2. Debug Port and Access Port Registers (PSoC 3)

Register Name
Register

Type
Address
 (A[3:2])

Function

IDCODE DP 00
32-bit Device JTAG IDCODE register. IDCODE register address bits are appli-
cable only for SWD interface. JTAG interface has a separate IDCODE instruc-
tion to access IDCODE register directly.

DBGPRT_CFG DP 01

8-bit Debug Port Configuration register - Bits [2:1] determine if the transfer size
is 8, 16, or 32 bits. Bit [3] enables the auto address increment functionality. For
8-bit transfer size, write 2'b00 to Bits [2:1]; for 16-bit transfer size, write 2'b01 to
Bits [2:1]; and for 32-bit transfer size, write 2'b10 to Bits [2:1]. To enable auto
increment of address, write a 1'b1 to Bit [3]. Remaining bits are written '0'.

READBUFF DP 11
Port Acquire key is written to this 32-bit register to acquire debug port for pro-
gramming PSoC 3 through the SWD interface.

TRNS_ADDR AP 01
24-bit Transfer Address register that holds the address that is used for PSoC 3
register access.

DATA_RW AP 11
32-bit Data register that holds the data to be read from/written to the address
specified by the TRNS_ADDR register.
12 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Interface
2.2 SWD Interface

The SWD interface has two signals: data (SWDIO) and clock for data (SWDCK). The host programmer always drives the
clock line, whereas either the programmer or PSoC 3 device drives the data line. The timing diagram for SWD protocol is
given in Programming Specifications chapter on page 39. Host programmer and PSoC 3 communicate in packet format
through the SWD interface. Write packet refers to the SWD packet transaction in which the host writes data to PSoC 3. Read
packet refers to the SWD packet transaction in which the host reads data from PSoC 3. The Write packet and Read packet
formats are illustrated in Figure 2-4 and Figure 2-5, respectively

Figure 2-4. SWD ‘Write Packet’ Timing Diagram

S
ta

rt

 (
1

)

A
P

nD
P

R
n

W

(0
)

A[2:3]
P

a
ri

ty

S
to

p
 (

0
)

P
ar

k

(1
)

T
rN 1 0 0

ACK[0:2]

w
d

at
a

[0
]

w
d

at
a[

1
]

w
d

a
ta

[3
1

]

P
ar

ity

0 0 0
Dummy Phase (3'b000)

SWDIO driven by: Host PSoC 3 Host

SWDCK
(Driven by Host)

SWDIO
(Bidirectional)

T
rN

a.) Host Write Operation: Host sends data on the SWDIO line on the falling edge of SWDCK; PSoC 3 reads that data on the next SWDCK
 rising edge (Example: 8-bit header data, Write data(wdata[31:0]), Dummy phase (3'b000))

 b.) Host Read Operation: PSoC 3 sends data on the SWDIO line on the rising edge of SWDCK; host reads that data on the next SWDCK
 falling edge (Example: ACK data (ACK[2:0])

zz

c.) The host should not drive the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, PSoC 3 drives the ACK
 data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent falling edge of SWDCK.
 The second TrN phase is 1.5 SWDCK clock cycles. Both PSoC 3 and the host will not drive the line during the entire second TrN phase
 (indicated as ‘z’). Host starts sending the Write data (wdata) on the next falling edge of SWDCK after second TrN phase.

d.) “DUMMY” phase is three SWD clock cycles with SWDIO line low. This DUMMY phase is not part of SWD protocol. The three extra clocks with
 SWDIO low are required for the Test Controller in PSoC 3 to complete the Read/Write operation when the SWDCK clock is not free-running.
 For a reliable implementation, include three IDLE clock cycles with SWDIO low for each packet. According to the SWD protocol, the host can
 generate any number of SWD clock cycles between two packets with SWDIO low.

Figure 2-5. SWD ‘Read Packet’ Timing Diagram

S
ta

rt

 (
1)

A
P

nD
P

R
nW

 (
1)

A[2:3]

P
ar

ity

S
to

p
 (

0
)

P
a

rk

(1
)

T
rN 1 0 0

ACK[0:2]

rd
at

a
[0

]

rd
at

a
[1

]

rd
a

ta
[3

0]

rd
a

ta
[3

1
]

P
ar

ity

T
rN 0 0

Dummy Phase (3

SWDIO driven by: Host
PSoC 3 Host

SWDCK
(Driven by Host)

SWDIO
(Bidirectional)

a.) Host Write Operation: Host sends data on the SWDIO line on the falling edge of SWDCK; PSoC 3 reads that data on the next SWDCK
 rising edge (Example: 8-bit header data, Dummy phase (3'b000))

 b.) Host Read Operation: PSoC 3 sends data on the SWDIO line on the rising edge of SWDCK; the Host reads that data on the next
 SWDCK falling edge (Example: ACK data (ACK[2:0], Read data (rdata[31:0]))

c.) The host should not drive the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, PSoC 3 drives the ACK
 data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent falling edge of SWDCK.
 The second TrN phase is 1.5 SWDCK clock cycles. Both PSoC 3 and the host will not drive the line during the entire second TrN phase
 (indicated as ‘z’). Host starts sending the Dummy phase (3'b000) on the next falling edge of SWDCK after the second TrN phase.

d.) “DUMMY” phase is three SWD clock cycles with SWDIO line low. This DUMMY phase is not part of SWD protocol. The three extra clocks with
 SWDIO low are required for the Test Controller in PSoC 3 to complete the Read/Write operation when the SWDCK clock is not free-running.
 For a reliable implementation, include three IDLE clock cycles with SWDIO low for each packet. According to the SWD protocol, the host can
 generate any number of SWD clock cycles between two packets with SWDIO low.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 13

PSoC 3 Programming Interface
A complete data transfer requires 46 clocks (not including
the optional three dummy clock cycles in Figure 2-4 and
Figure 2-5). Each data transfer consists of three phases:

 Packet request – External host programmer issues a
request to PSoC 3.

 Acknowledge response – PSoC 3 sends an acknowl-
edgement to the host.

 Data – Data is valid only when a packet request is fol-
lowed by a valid (OK) acknowledge response.

The data transfer is either:

 PSoC 3 to host, following a read request – RDATA

 Host to PSoC 3, following a write request – WDATA

In Figure 2-4 and Figure 2-5, the following sequence occurs:

1. The start bit initiates a transfer; it is always logic ‘1’.

2. The APnDP bit determines whether the transfer is an AP
access, ‘1’, or a DP access, ‘0’.

3. The next bit is RnW, which is ‘1’ for a read from PSoC 3,
or ‘0’ for a write to PSoC 3.

4. The ADDR bits (A[3:2]) are register select bits for access
port or debug port. See Table 2-2 for address bit defini-
tions.

5. The parity bit has the parity of APnDP, RnW, and ADDR.
This is even parity bit. If number of logical 1’s in these
bits is odd, then parity must be ‘1’, otherwise it is ‘0’.

If the parity bit is not correct, the header is ignored by the
target device; there is no ACK response. For host imple-
mentation, the programming operation should be
stopped and tried again by doing a device reset.

6. The stop bit is always logic ‘0’.

7. The park bit is always logic’1’ and should be driven high
by the host.

8. The ACK bits are the device-to-host response.

Possible values are shown in Table 2-1. Note that the
ACK in the current SWD transfer reflects the status of
the previous transfer. OK ACK means the previous
packet was successful. WAIT response indicates that
the previous packet transaction is not yet complete. For
a Fault operation, the programming operation should be
aborted immediately.

a. For a WAIT response, if the transaction is a read, the
host ignores the data read in the data phase. PSoC 3
does not drive the line and the host must not check
the parity bit as well.

b. For a WAIT response, if the transaction is a write,
PSoC 3 ignores the data phase. However, the host
must still send the data to be written from an imple-
mentation standpoint. The parity data corresponding
to the data should also be sent by the host.

c. A WAIT response indicates that the PSoC 3 device is
processing the previous transaction. The host can try
for a maximum of four continuous WAIT responses to

see if an OK response is received, failing which, it
can abort the programming operation and retry.

d. For a FAULT response, the programming operation
should be aborted and retried by doing a device
reset.

9. The data phase includes a parity bit (even parity, similar
to the packet request phase).

a. For a read data packet, if the host detects a parity
error, then it must abort the programming operation
and restart.

b. For a write data packet, if the PSoC 3 detects a parity
error in the data packet sent by the host, it generates
a FAULT ACK response in the next packet.

10. Turnaround (TrN) phase: According to the SWD proto-
col, the TrN phase is used both by the host and PSoC 3
to change the Drive modes on their respective SWDIO
line. During the first TrN phase after packet request,
PSoC 3 drives the ACK data on the SWDIO line on the
rising edge of SWDCK in TrN phase. This ensures that
the host can read the ACK data on the next falling edge.
Thus, the first TrN cycle is only for half cycle duration.
The second TrN phase is one-and-a-half cycle long. Nei-
ther the host nor PSoC 3 should drive SWDIO line during
both phases as indicated by ‘z’ in Figure 2-4 and
Figure 2-5.

11. The address, ACK, and read and write data are always
transmitted least significant bit (LSB) first.

12. At the end of each SWD packet in Figure 2-4 and
Figure 2-5, there is a “DUMMY” phase, which is three
SWD clock cycles with SWDIO line held low. The
dummy phase is not part of the SWD protocol. The three
extra clocks with SWDIO low are required for the Test
Controller in PSoC 3 to complete the Read/Write opera-
tion when the SWDCK clock is not free-running. For a
reliable implementation, include three IDLE clock cycles
with SWDIO low for each packet. According to the SWD
protocol, the host can generate any number of SWD
clock cycles between two packets with SWDIO low.

Note The SWD interface can be reset anytime during pro-
gramming by clocking 50 or more cycles with SWDIO high.
To return to the idle state, SWDIO must be clocked low
once. The host programmer can begin a new SWD packet
transaction from the idle state.
14 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Interface
2.2.1 Register Access Using SWD Interface

To access the registers using the SWD interface, in the 8-bit transfer request packet, set the APnDP bit and select the corre-
sponding ADDR bits, as shown in Table 2-2. Table 2-3 shows the 8-bit transfer request packet to access the DP and AP reg-
isters for read or write operation. The 8-bit transfer request data in Table 2-3 is transmitted least significant bit first. The ‘Start’
bit is the LSB and the ‘Park’ bit is the most significant bit (MSB). Use Table 2-3 and vectors given in SWD and JTAG Vectors
for Programming chapter on page 43 to implement PSoC 3 programming.

Table 2-3. SWD Transfer Request Data Packet for Test Controller DPACC and APACC Register Access

Pseudo Code Register Name
Type of

Operation

SWD Transfer Request Data (LSb bit sent first)

Binary Hex

DPACC IDCODE Read IDCODE Read 8’b10100101 8’hA5

DPACC DP CONFIG Write DPGPRT_CFG Write 8’b10101001 8’hA9

DPACC READBUFF Write READBUFF Write 8’b10011001 8’h99

APACC ADDR Write TRNS_ADDR Write 8’b10001011 8’h8B

APACC DATA Read DATA_RW Read 8’b10011111 8’h9F

APACC DATA Write DATA_RW Write 8’b10111011 8’hBB

The TRNS_ADDR register holds the PSoC 3 memory
address that needs to be accessed. To read or write PSoC 3
internal registers or SRAM, first write the address to the
TRNS_ADDR register (pseudo code–APACC ADDR Write).
For a write operation, write data to the DATA_RW register
(pseudo code–APACC DATA Write). If it is a read operation,
read the DATA_RW register twice (pseudo code–APACC
DATA Read); the TC reads out data through the data line.

For example, to write 32’hB6 to the target device internal
register at address 32’h4720, the following SWD transfers
are necessary:

APACC ADDR WRITE [0x00004720]

APACC DATA WRITE [0x000000B6]

The binary data for the two SWD packets, with the bit pat-
tern being LSB to MSB (from left to right), are as follows.

11010001 (TrN)(ACK)
(TrN)00000100111000100000000000000000(1)

11011101 (TrN) (ACK)
(TrN)01101101000000000000000000000000(1)

‘(ACK)’ indicates waiting for ACK from target device. This
‘(ACK)’ is for the previous SWD transfer as explained earlier.
The last bit in data phase (enclosed in brackets above) is
the parity bit for the 32-bit data.

SWD register read is similar to SWD write operation, except
that the read operation should be done twice to get the cor-
rect data. First, write the address to the APACC ADDR reg-
ister address. Then, read the DATA_RW register twice. The
first read initiates the command to the DoC interface and the
second read returns the requested value. For example, to

read from address 32’h4720, the following transfers need to
be done:

APACC ADDR Write [0x00004720]

Dummy_data = APACC DATA Read //dummy SWD read

Data = APACC DATA Read //returns actual data

Note The previous two examples do not consider the three
dummy clocks cycles required at the end of each SWD
packet. They should be appended, as shown in Figure 2-4
and Figure 2-5, if the SWDCK clock is not free running.

To simplify the process, the programmer can have a SWD
command interpreter that implements Table 2-3 and outputs
data in binary format. An example is as follows. The
SWD_packet function recognizes the SWD transfer, and
puts the corresponding binary data into the outgoing data
buffer for transmission.

SWD_packet(APACC_ADDR, 32’h4720)

SWD_packet(APACC_DATA_WRITE, 32’hB6)

Data= SWD_packet(APACC_DATA_READ)
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 15

PSoC 3 Programming Interface
2.3 JTAG Interface

PSoC 3 JTAG interface complies with the IEEE 1149.1-2001
specification and provides additional instructions. It has a
35-bit data register (called DP/AP access register) and 4-bit
instruction register. Refer to "Test Controller" chapter of the
PSoC 3 Architecture TRM for details on the instructions sup-
ported by JTAG interface and an explanation of JTAG TAP
controller state machine. The important instructions to pro-
gram the device through JTAG are listed in Table 2-4. The
timing diagrams are in Programming Specifications chapter
on page 39.

Table 2-4. PSoC 3 JTAG Instructions

Bit
Code
[3:0]

Instruction PSoC 3 Function

1110 IDCODE
Connects TDI and TDO to the device 32-bit
JTAG ID code

1010 DPACC
Connects TDI and TDO to the DP/AP
access register (35-bit), for access to the
Debug Port registers.

1011 APACC
Connects TDI and TDO to the DP/AP
access register (35-bit), for access to the
Access Port registers.

1111 BYPASS
Bypasses the device, by providing 1-bit
latch (bypass register) connected between
TDI and TDO.

The 35-bit data register (DP/AP access register) is used for
DPACC and APACC instructions. The 35-bit data register
structure for JTAG write and read operations are as shown
in Figure 2-2 and Figure 2-3, respectively.

2.3.1 Register Access Using JTAG
Interface

The following steps show how to access an address using
the JTAG interface.

1. Assume that the address value to be 0xADD8E5 and
data '0xDA' needs to be written to this register.

a. Shift the APACC instruction into the instruction regis-
ter.

b. Shift a '0' (write) followed by '01' (selecting
TRNS_ADDR register) followed by '0x00ADD8E5'
(32-bit address), into the 35-bit data register. For
each element, the LS bit is shifted out first.

c. Shift a '0' (write) followed by '11' (selecting
DATA_RW register) followed by a '0x000000DA' (8-
bit data) into the 35-bit data register. For each ele-
ment, the LSB is shifted first.

d. The test controller initiates a write transfer request to
the PSoC 3 DoC.

2. Assume that the data to read from register has address
as 0xADD8E5.

a. Shift the APACC instruction into the instruction regis-
ter.

b. Shift a '0' (write) followed by '01' (selecting
TRNS_ADDR register) followed by '0x00ADD8E5'
(32-bit address), into the 35-bit data register. For
each element, the LSB is shifted first.

c. Shift a '1' (read) followed by '11' (selecting DATA_RW
register) into the 35-bit data register. For each ele-
ment, the LSB is shifted first. Note that for read oper-
ation, the 32-bit data written is not used.

d. The test controller initiates a read transfer request to
the PSoC 3 DoC; the data read from DATA_RW is
invalid in this cycle.

e. Wait at least 5 TCK clock cycles to avoid a WAIT
response.

f. Read the DATA_RW register again. The data is now
valid.
16 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

http://www.cypress.com/?id=2232&rtID=117

PSoC 3 Programming Interface
2.4 Switching between JTAG
and SWD Interfaces

PSoC 3 supports programming through both the SWD and
JTAG interfaces. It is also possible to switch from the SWD
to JTAG protocol or vice-versa at any time. This switching is
done by sending a specific key sequence on the SWDIO/
TMS shared pin (referred to as SWDIOTMS) with clock on
the TCK/SWDCK shared pin (referred to as SWCLKTCK).
This switching is required for JTAG interface programming
and is explained in “Step1: Enter Programming Mode” on
page 20.

2.4.1 SWD to JTAG Switching

To switch programming interface from SWD to JTAG (4-
wire) operation, the steps are as follows:
1. Send 51or more SWCLKTCK cycles with SWDIOTMS

HIGH. This ensures that the current interface is in its
reset state. The serial wire interface detects the 16-bit
SWD-to-JTAG sequence only when it is in the reset
state.

2. Send the 16-bit SWD-to-JTAG select sequence on
SWDIOTMS. The 16-bit SWD-to-JTAG select sequence
is 0b0011_1100_1110_0111, MSB first. This can be rep-
resented as either:

a. 0x3CE7 transmitted MSB first.

b. 0xE73C transmitted LSB first.

Figure 2-6. SWD to JTAG Switching Sequence

3. Send at least five SWCLKTCK cycles with SWDIOTMS
HIGH. This ensures that if programming interface is
already in JTAG operation before sending the select
sequence, the JTAG TAP enters the Test-Logic-Reset
state.

2.4.2 JTAG to SWD Switching

To switch the programming interface from JTAG to SWD
operation, the sequence is as follows:

1. Send 51 or more SWCLKTCK cycles with SWDIOTMS
HIGH. This ensures that the current interface is in its
reset state. The JTAG interface only detects the 16-bit
JTAG-to-SWD sequence starting from the Test-Logic-
Reset state.

2. Send the 16-bit JTAG-to-SWD select sequence on
SWDIOTMS. The 16-bit JTAG-to-SWD select sequence
is 0b0111_1001_1110_0111, most-significant bit (MSB)
first. This can be represented as either:

a. 0x79E7 transmitted most-significant bit (MSb) first

b. 0xE79E transmitted least-significant bit (LSb) first.

Figure 2-7. First Three Steps of JTAG to SWD Switching

3. Send 51 or more SWCLKTCK cycles with SWDIOTMS
HIGH. This ensures that if the programming spec is
already in SWD operation before sending the select
sequence, the SWD interface enters line reset state.

4. Send three or more SWCLKTCK cycles with
SWDIOTMS low. This ensures that the SWD line is in
the idle state before starting a new SWD packet transac-
tion.

5. Send the DPACC IDCODE READ SWD read packet as
given in Table 2-3. There is no need to process the
Device ID returned by the PSoC 3 device for this read
packet. Ignore the Device ID returned by PSoC 3 in this
step.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 17

PSoC 3 Programming Interface
18 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

3. PSoC 3 Programming Flow
Figure 3-1 shows the steps to program a PSoC 3 device. Each step is discussed in detail in the later sections. All steps in the
figure must be completed for a successful programming operation. The programming operation should be stopped if there is
a failure in any step. The SWD/JTAG programming vectors are provided in SWD and JTAG Vectors for Programming chapter
on page 43.

Figure 3-1. PSoC 3 Programming Flow

Enter Programming (Test) Mode

Erase All (Entire Flash memory)

Program Device Configuration Nonvolatile Latch

Program Flash

Program Flash Protection data

Verify Checksum

Verify Flash (Optional)

Verify Flash Protection data (Optional)

Configure Target Device

Verify Device JTAG ID

 Program W rite Once Nonvolatile Latch

Verify EEPROM (Optional)

Program EEPROM (Optional)
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 19

PSoC 3 Programming Flow
3.1 Step1: Enter Programming Mode

The first step in programming PSoC 3 is to enter the Pro-
gramming mode (also known as Test mode) of the device.
The host programmer must complete this step successfully
for the remaining steps to be successful.

Two hardware dependent factors must be considered when
entering programming mode. Select a method based on the
hardware capabilities of the host programmer.

 Programming interface used: PSoC 3 supports program-
ming through SWD or JTAG interfaces. The procedure to
enter PSoC 3 programming mode depends on the pro-
gramming interface used.

 Method of resetting PSoC 3 device: The first step to
enter PSoC 3 programming mode is to reset the device
and send the programming sequence. You can reset the
PSoC device by three methods. The first two reset meth-
ods are used for SWD interface programming and the
third one is used for JTAG interface programming.

 Device reset (XRES) pin: The host programmer
drives the PSoC 3 device reset pin (dedicated XRES
pin or P1[2] pin configured as XRES) low.

 Power cycle mode: The host programmer toggles
power to the PSoC 3 power supply pins (Vddd,
Vdda, Vddios) to do a device reset.

 Software reset through JTAG interface: The device
reset is done by writing to a specific register bit in
PSoC 3 through the JTAG interface. This is a JTAG
compliant method of programming PSoC 3 without
using XRES pin or power cycle mode.

3.1.1 Enter Programming Mode through
SWD Interface

Figure 3-3 shows the steps to enter programming mode (or
test mode) of PSoC 3 using SWD interface; Figure 3-2
shows the corresponding timing diagram. See Table 4-3 on
page 41 for specifications of timing parameters mentioned in
the figures. Figure 3-2 and Figure 3-3 show both XRES
method and power cycle mode of programming. Each meth-
ods is explained in later sections.

Figure 3-2. Timing Diagram to Enter Test Mode through SWD Interface

XRES method
(XRES_N or P1[2] as

XRES)

Time (Not to scale)

Host sends Port
Acquire Key until OK

ACK is received

Host sends
Test mode
Address

SWDCK
(P1[1] or P15[7])

SWDIO
(P1[0] or P15[6])

TRESET

TTESTMODE

FSWDCK_ACQUIRE is clock frequency on SWDCK line until entering Test mode

Host sends
Test Mode

Key

Toggling of SWDCK should start within time TSTART_SWDCK after releasing reset. For Power Cycle mode, the time when
 Vddd/Vdda voltages go above VPOR level is considered as release of reset.

Vddd and Vdda are above VPOR voltage level
Power Cycle method

(Vddd, Vdda, Vddio’s of
PSoC 3 are tied together)

TSTART_SWDCK

Host sends Port
Acquire Key until OK

ACK is received

OK ACK from PSoC 3

Test mode entered
within time TTESTMODE

TRAMP
20 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
Figure 3-3. Enter Programming Mode through SWD

 Entering test mode
through SWD interface

Reset the PSoC 3 Device
using XRES pin or Power cycle mode

 Send Port Acquire key SWD packet with
 SWDCK at frequency of fSWDCK_ACQUIRE.

DPACC READBUFF Write [0x7B0C 06DB]

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

No

Time, t = 0

Time, t < TTESTMODE ?
Yes

No

Fail and Exit
(Test mode timing window elapsed)

 Send Address of Test mode key register
APACC ADDR Write [0x0005 0210]

 Send 32-bit Test mode key
APACC DATA Write [0xEA7E 30A9]

Next Step

ACK = OK (3'b001)

Yes

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

YesNo

Time, t <= TSTART_SWDCK

Fail and Exit
(Test mode timing window elapsed)

Step i

Step ii

Step iii

Host programmer must start sending the Port
Acquire key within time TSTART_SWDCK of releasing
XRES pin (for XRES mode), or Vddd/Vdda voltages
crossing VPOR (for Power cycle mode)

3.1.1.1 SWD Programming using XRES Pin

The sequence in Figure 3-3 using SWD interface and XRES pin is as follows.

1. Host programmer drives the XRES pin of PSoC 3 low to cause a device reset. The reset signal is active low, and the reset
pulse width is specified by the TRESET timing parameter.

2. Within time TSTART_SWDCK of releasing the XRES signal, the host must start sending the Port Acquire key on SWDIO,

SWDCK lines. The host must send this Port Acquire key continuously until an OK ACK is received from PSoC 3. The
pseudo code is given here.

do
{
 /* Write Port Acquire key, Use SWD ADDR = 2’b11*/
 DPACC READBUFF Write [0x7B0C 06DB]
 //Check port acquire retry time and whether OK ACK has been
 //received
} while (ACK != "OK" AND time_elapsed < TTESTMODE)

// Exit on timeout
 if (ACK != “OK” OR time_elapsed > TTESTMODE) then FAIL_EXIT
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 21

PSoC 3 Programming Flow
If the debug port is disabled, PSoC 3 ignores the first
Port Acquire SWD packet sent after releasing reset. It
does not return an OK ACK for first packet. PSoC 3
sends an OK ACK only during the second try of Port
Acquire SWD packet. Therefore, the port acquire
sequence must be sent continuously on the SWD inter-
face until an OK ACK is received from PSoC 3. The
timeout window for this loop is TTESTMODE, the program-

ming (test) mode entry window duration.

Significance of SWDCK frequency fSWDCK_ACQUIRE:

In Figure 3-2 and Figure 3-3, the SWDCK frequency dur-
ing test mode entry is fSWDCK_ACQUIRE. The host pro-

grammer must meet this frequency specification to
successfully enter PSoC 3 programming mode. After
device reset is released, the internal test controller logic
in PSoC 3 looks for clock transitions on the SWDCK line.
If the test controller logic notices eight SWDCK clock
cycles within a time window of TACQUIRE, it extends the

time to enter programming mode to TTESTMODE. This

time window can be anywhere within duration TBOOT

(68 µs) after device reset. TBOOT is the time for PSoC 3

boot to complete after device reset is released. By
ensuring that SWDCK line is always clocked at a fre-
quency of fSWDCK_ACQUIRE, the host programmer can

meet PSoC 3 test mode entry timing requirements. The
host programmer must clock SWDCK line at this fre-
quency with SWDIO held low even between sending of
two SWD packets so that the TACQUIRE time window is

not missed. Note that for bit banging host programmers,
which cannot generate a constant clock frequency of
fSWDCK_ACQUIRE on the SWDCK line for entire SWDCK

packet duration, an alternate acquire method is
explained in later section.

3. After the host programmer receives an OK ACK for Port
Acquire sequence, it must write the test mode key to the
Test Mode Key register to enter PSoC 3 programming
mode. This key must be written within time TTESTMODE,

as shown in Figure 3-2 and Figure 3-3. By ensuring that
SWDCK is clocked at frequency of fSWDCK_ACQUIRE dur-

ing this step, the host programmer can enter PSoC 3
programming mode within time TTESTMODE. The pseudo

code for this step is given here.
APACC ADDR Write [0x0005 0210] // Address of
the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-
bit test mode key

/* Exit on timeout or reception of FAULT
response which means the device
did not enter Programming mode within time
TTESTMODE. Retry again by doing reset and

restarting.*/

if (ACK != "OK" OR time_elapsed > TTESTMODE
usec) then FAIL_EXIT

3.1.1.2 SWD Programming using Power
Cycle Mode:

Power cycle mode programming is identical to XRES
method from a programming algorithm standpoint, as shown
in Figure 3-3 and Figure 3-2. The only difference is that,
instead of driving XRES pin, the host programmer toggles
power to the PSoC 3 power supply pins (Vddd, Vdda,
Vddio0, Vddio1, Vddio2, and Vddio3) to cause a device
reset.

Power cycle method is complex to implement compared to
XRES method because it requires special hardware design
considerations for power toggling. Power cycle mode pro-
gramming also requires that Vdda, Vddd, Vddio power sup-
ply pins in PSoC 3 are tied to the same power supply and
toggled at the same time, as shown in Figure 3-3. It is rec-
ommended to implement the XRES method of programming
because it is easier to implement. Power cycle mode pro-
gramming is required in two cases.

 When the optional XRES pin (P1[2]) in 48-pin parts is
configured as a GPIO pin, the only way for the host pro-
grammer to do a device reset is to toggle power to
PSoC 3. This is because there is no dedicated XRES pin
in 48-pin parts unlike the other pin count packages. Note
that this condition of disabling P1[2] as XRES for 48-pin
parts is done only by the user and not by Cypress. The
48-pin parts coming from factory have the P1[2] pin con-
figured as XRES by default. But if the user programs a
hex file that disables P1[2] as XRES, then XRES method
is not available for subsequent tries of programming.
Power cycle method must be used in such a case.

 If it is required to program PSoC 3 using the SWD inter-
face's USB pins (P15[6], P15[7]), then the host program-
mer can toggle power to USB interface's VBUS pin to
cause a device reset and program using the USB SWD
pins. In this case, VBUS power pin in USB interface
powers the Vddd, Vdda, Vddio power supply pins in
PSoC 3.

Ramp Rate Requirements for Power Cycle Mode Pro-
gramming

The maximum power supply ramp rate is specified in the
PSoC 3 device data sheet as parameter Svdd. There is no
minimum ramp rate requirement specified for power cycle
mode. A slower ramp rate requires special hardware consid-
erations as follows:

 When power supply ramp duration (TRAMP) from VPOR
to final value is less than TSTART_SWDCK.

Figure 3-2 shows that the host programmer must start
sending the Port Acquire sequence within time duration
TSTART_SWDCK of Vddd and Vdda voltage levels cross-

ing VPOR voltage level specification. If the time (TRAMP)
22 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
for power supplies to ramp from VPOR to final supply
voltage is less than TSTART_SWDCK, then the host pro-

grammer can start sending the Port Acquire sequence
after Vddd, Vdda, Vddio pins have reached final voltage
value.

 When power supply ramp duration (TRAMP) from VPOR
to final value is more than TSTART_SWDCK

In this case, the host programmer cannot wait for power
supplies to ramp to the final voltage value before send-
ing the Port Acquire sequence. Otherwise, the host pro-
grammer cannot meet the timing requirements to enter
PSoC 3 programming mode. The host programmer

should implement the power cycle mode shown in
Figure 3-4. It should start sending the Port Acquire
sequence even as the power supplies (Vddd, Vdda,
Vddio) ramp up. Adjust the voltage levels of SWDCK
and SWDIO lines to match the instant value of power
supply pins. This method is implemented in Cypress's
MiniProg3 programmer in which the ramp rate duration
(TRAMP) is greater than TSTART_SWDCK. This implemen-

tation ensures that the PSoC 3's test controller is able to
detect data (logic levels) on the SWDIO and SWDCK
lines even when power supply is ramping.

Figure 3-4. Power Cycle Mode Implementation for TRAMP > TSTART_SWDCK

Vddd,
Vdda,

Vddio’s

TRAMP

 VPOR

SWDCK,
SWDIO

 VFINAL
TSTART_SWDCK

TRAMP > TSTART_SWDCK

3.1.1.3 SWD Programming using Bit
Banging Host Programmers:

Some host programmers implement the SWD interface as a
bit banging implementation. Examples of such host pro-
grammers are microcontrollers in which the SWDIO and
SWDCK signals are generated by writing to specific port
registers of the microcontroller.

It is not possible for some of the bit banging programmers to
generate the SWDCK clock signal at a constant frequency
of fSWDCK_ACQUIRE for entire SWD packet, as shown in
Figure 3-2 and Figure 3-3. A modified method of entering
PSoC 3 programming mode is given for these programmers.
This method is applicable only for programmers that use the
XRES pin. It is not applicable for power cycle mode pro-
gramming due to the constraints it imposes on power supply
ramp rates.

Figure 3-5 shows the modified steps to enter test mode of
PSoC 3; Figure 3-6 shows the corresponding timing dia-
gram. See Table 4-3 on page 41 for specifications of timing
parameters. The primary need for SWDCK clocking at fre-
quency of fSWDCK_ACQUIRE is to meet the condition of "8

SWDCK clock cycles in time window TACQUIRE". On detec-
tion of these eight clocks, the time to enter test mode is
extended to TTESTMODE. The time window TACQUIRE can
occur anywhere during time TBOOT. To simplify the imple-
mentation for bit banging programmers, the method in
Figure 3-5 and Figure 3-6 requires the programmer to tog-
gle SWDCK alone at frequency of fSWDCK_ACQUIRE with
SWDIO held low. This ensures that the host programmer
meets the initial test mode timing requirements. After time
TBOOT, the programmer must send the port acquire and test
mode key SWD packets. These SWD packets should be
sent within time TTESTMODE. An example C code that imple-
ments Figure 3-5 is given here.
/* Set LOOP_COUNT value based on number of
loop cycles needed to execute the “Initial
Port Acquire window” loop below for time
TBOOT */
#define LOOP_COUNT 240

/* Variable to keep track of no. of times to
generate SWDCK clock */
uint16 j = 0;
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 23

PSoC 3 Programming Flow
/* Generate active reset on XRES line for at
least for time TRESET */
XRES_LOW;

XRES_HIGH; /* Release XRES */

/* Hold the SWDIO line low during TBOOT */
SWDIO_LOW;

/* Initial Port Acquire window, TBOOT */
do
{

 /* Ensure that SWDCK frequency is
 greater than fSWDCK_ACQUIRE */

SWD_CLOCK_LOW;
SWD_CLOCK_HIGH;
j++;

}while(j < LOOP_COUNT);
/* End of Initial Port Acquire window */

/* Now send Port Acquire key, Test mode
address, Test mode key SWD packets at fre-
quency of fSWDCK_BITBANG to complete all steps
within time TTESTMODE */

Figure 3-5. Enter

 Entering test mode
through SWD interface

Reset the PSoC 3 Device
using XRES pin

 Send Port Acquire key SWD packet with
 SWDCK at frequency of fSWDCK_BITBANG for rest of SWD packets

DPACC READBUFF Write [0x7B0C 06DB]

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

No

Time, t = 0

Time, t < TTESTMODE ?
Yes

No

Fail and Exit
(Test mode timing window elapsed)

 Send Address of Test mode key register
APACC ADDR Write [0x0005 0210]

 Send 32-bit Test mode key
APACC DATA Write [0xEA7E 30A9]

Next Step

ACK = OK (3'b001)

Yes

ACK == OK (3'b001)
&&

Time, t < TTESTMODE ?

YesNo

Time, t >= TBOOT

Fail and Exit
(Test mode timing window elapsed)

Step i

Step iii

Step iv

Host programmer must start clocking SWDCK within
time TSTART_SWDCK of releasing XRES.

Clock SWDCK at frequency of fSWDCK_ACQUIRE
with SWDIO held low for duration TBOOT

Time, t <= TSTART_SWDCK

Step ii

 Test Mode through SWD Interface (for bit banging programmers)
24 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
Figure 3-6. Timing Diagram to Enter Test Mode through SWD Interface (for bit banging programmers)

XRES method
(XRES_N or P1[2] as

XRES)

Time (Not to scale)

Host sends Port
Acquire Key until OK

ACK is received

Host sends
Test mode
Address

SWDCK
(P1[1] or P15[7])

SWDIO
(P1[0] or P15[6])

TRESET

TTESTMODE

 (Typically 400 uS)

FSWDCK_ACQUIRE is SWDCK
frequency during TBOOT

Host sends
Test Mode

Key

Toggling of SWDCK should start within time
 TSTART_SWDCK after releasing reset.

TSTART_SWDCK

Host sends Port
Acquire Key until OK

ACK is received

OK ACK from PSoC 3

Test mode entered
within time TTESTMODE

TBOOT (68 µs)

FSWDCK_BITBANG is SWDCK
frequency after TBOOT until

entering test mode

Host must drive the SWDIO
line low during time TBOOT

3.1.1.4 Determine fSWDCK_BITBANG:

In Figure 3-5, the programmer must send the SWD packets
after time TBOOT at a frequency of fSWDCK_BITBANG. This fre-
quency requirement is to meet the TTESTMODE timing
requirement. The value of fSWDCK_BITBANG depends on bit
banging programmer implementation. An example calcula-
tion for fSWDCK_BITBANG that assumes no overhead in send-
ing SWD packets is given here.

In PSoC 3, a maximum of two Port Acquire SWD packet
tries are required to get OK ACK. The test mode address
and test mode key require another two SWD packets. A
maximum of four SWD packets must be sent by the pro-
grammer within time (TTESTMODE - TBOOT). Minimum value
of TTESTMODE from Table 4-3 on page 41 is 395 µs, and
TBOOT is 68 µs; the difference factor is 327 µs. Each SWD
packet requires 49 SWDCK clock cycles (including the three
dummy clock cycles at end of each SWD packet), and
hence 196 SWDCK clock cycles are required for four SWD
packets.

TSWDCK_BITBANG(no overhead) (327 µs/196) 1.6 µs

fSWDCK_BITBANG(no overhead) (1/1.6 µs) 0.7 MHz

This example calculation assumes no overhead in sending
the SWD packets on the host programmer side. The mini-
mum frequency requirement increases with other additional
overhead; this is specific to host programmer architecture.

The frequency parameter fSWDCK_BITBANG refers to the
average frequency of the SWDCK clock generated by host
programmer. Bit banging programmers cannot generate
constant frequency on SWDCK line during entire SWDCK
packet. But the average SWDCK frequency must be greater
than the minimum value of fSWDCK_BITBANG so that the pro-
gramming mode is entered within time TTESTMODE.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 25

PSoC 3 Programming Flow
3.1.2 Enter Programming Mode through
JTAG Interface

The programming of PSoC3 silicon through JTAG interface
can be implemented in one of the following two methods:

 Using JTAG interface (TCK, TMS, TDI, TDO) to commu-
nicate with the device, but not be in full compliance with
the JTAG standard (IEEE1149.1).

 Full compliance with JTAG standard.

The most significant deviation from the standard of first
method is frequency requirement to the JTAG master. It can-
not enter PSoC 3 in the programming mode if running at a
frequency lower than 1.5 MHz. Another deviation is that this
method uses the SWD-to-JTAG switching sequence, which
is not defined by the standard (but is ARM’s invention).

The second method is implemented in full compliance with
the JTAG standard: it is not variable with frequency (on the
lower bound) and uses the standard JTAG transactions to
go along JTAG’s Finite State Machine. This programming
method can be implemented by any standard JTAG master.
Or if the JTAG tools support the SVF (or STAPL) script inter-
pretation, then to program the device, the JTAG master can
play the script representing the hex file content.

Note The second method works only for silicon revision 5 or
later, while the first method supports all production revisions.
The second method imposes extra requirements on the con-
tent of User NVLs: Debug Port Select = “4-/5-wire JTAG”
and Debug Enable = “ON”. These are default NVL settings
from the factory. For the first method, the primary require-
ment is to have Debug Port Select = “4 -/5-wire JTAG or
SWD”.

In general, the first method is more universal and is recom-
mended for implementation by JTAG programmers (if possi-
ble). It covers all silicon revisions and the JTAG/SWD setting
of the Debug Port. To be closer to the standard, the SWD-to-
JTAG sequence can be omitted, but in that case the device’s
NVLs must be configured only to the JTAG mode.
26 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
3.1.2.1 JTAG Acquisition Sequence

Figure 3-7 shows the steps to enter programming mode (or test mode) of PSoC 3 using JTAG interface; Figure 3-8 shows the
corresponding timing diagram. See Table 4-3 on page 41 for specifications of timing parameters.

Figure 3-7. Enter Programming (Test) Mode through JTAG Interface

 Entering test mode
through JTAG interface

 Send Address of Test mode key register
APACC ADDR Write [0x0005 0210]

 Send 32-bit Test mode key
APACC DATA Write [0xEA7E 30A9]

Next Step

ACK == OK (3'b010)
&&

Time, t < TTESTMODE ?

YesNo

Fail and Exit
(Test mode timing window elapsed)

Step i

Step ii

Step iii

Step iv

Send SWD to JTAG switching sequence
on TMS, TCK pins

Generate device reset by setting the “gen_tcr” bit
 in TC_PM_CTRL register

 APACC ADDR Write [0x0005 0214]

 APACC DATA Write [0x0000 0040]

Clock TCK at frequency of fTCK_ACQUIRE
for duration TBOOT, with TMS, TDI held low.
Start this clocking within time TSTART_TCK
after releasing reset

Time, t = 0

Time, t = TBOOT

Send SWD to JTAG switching sequence
on TMS, TCK pins

ACK = OK (3'b010)

Time, t <= TSTART_TCK

Host programmer must start clocking TCK
within time TSTART_TCK of generating device
reset
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 27

PSoC 3 Programming Flow
Figure 3-8. Timing Diagram to Enter Test Mode through JTAG Interface

Time (Not to scale)

Host sends
Test mode
Address

TCK
(P1[1])

TTESTMODE

 (Typically 400 uS)

FTCK_ACQUIRE is TCK frequency during TTESTMODE

Host sends
Test Mode

Key

Toggling of TCK should start within time
 TSTART_TCK after reset

TSTART_TCK

Test mode entered
within time TTESTMODE

TBOOT (68 µs)

Host must drive TMS line
low during time TBOOT

OK
ACK

Send SWD
to JTAG
switching
sequence
on TMS

Set gen_tcr bit to reset PSoC3

APACC ADDR Write [0x00050214]
APACC DATA Write [0x0000 0040]

TDI
(P1[4])

TDO
(P1[3])

TMS
(P1[0])

Send SWD
to JTAG
switching
sequence
on TMS

Set gen_tcr bit to reset PSoC3

APACC ADDR Write [0x00050214]
APACC DATA Write [0x0000 0040]

OK
ACK

OK
ACK

Host sends
Test mode
Address

Host sends
Test Mode

Key

Host must drive TDI line
low during time TBOOT

The steps in Figure 3-7 to enter test mode using JTAG inter-
face are as follows:

1. Reset PSoC 3 device through JTAG interface:

For programming through the JTAG interface, PSoC 3
has to be reset through the JTAG interface pins. Using
the XRES pin or Power cycle mode to do device reset is
not a JTAG compliant programming method. By writing a
specific value (0x40) to a register (TC_PM_CTRL),
PSoC 3 can be reset through JTAG interface. Refer to
the PSoC 3 technical reference manual for details of this
register. Writing this value sets the "gen_tcr" bit (Bit 6) of
the TC_PM_CTRL register which in turn triggers a
device reset.

Before writing to the TC_PM_CTRL register, a SWD to
JTAG switching sequence is sent on TMS, TCK lines as
shown in Figure 2-6 on page 17. This ensures that the 4-
wire JTAG interface is selected as the debug port, even
if DPS NVL setting is SWD interface or 5-wire JTAG.
Refer to the description of the Device Configuration non-
volatile latch in “Nonvolatile Memory Organization in
PSoC 3” on page 74 for details on DPS setting. Devices
coming out of factory are configured with DPS setting of
"4-wire JTAG". So changing the DPS setting to SWD is a
conscious choice made by user. Sending this sequence
will help overcome that SWD setting impact on JTAG
programming.

2. Clock TCK line at frequency of fTCK_ACQUIRE with

TMS, TDI lines held low for duration TBOOT:

After PSoC 3 is reset through the JTAG interface, the
host starts clocking the TCK line at frequency of
fTCK_ACQUIRE for duration TBOOT after reset. The host

must start toggling the TCK line within time TSTART_TCK

of device reset. The TMS and TDI lines in PSoC 3 must
be held low during this phase. This clocking ensures that

the host meets initial timing requirement of "8 TCK clock
cycles in time TACQUIRE". When 8 TCK cycles are

detected within TACQUIRE time window, the time window

to enter test mode is extended to TTESTMODE as shown

in Figure 3-8. The time window TACQUIRE falls within

time TBOOT, the time it takes for PSoC 3 to complete the

boot phase.

3. Send SWD to JTAG switching sequence on TMS and
TCK lines:

After completing clocking of TCK for time TBOOT, the

host must send the SWD to JTAG switching sequence
on TMS and TCK lines. This changes the active debug
port to 4-wire JTAG even if the DPS setting is SWD inter-
face or 5-wire JTAG.

4. Write Test mode key to the Test mode register to enter
programming mode (test mode):

After sending the SWD to JTAG switching sequence, the
host programmer must write the test mode key to test
mode key register to enter PSoC 3 programming mode.
This key must be written within time TTESTMODE. By

ensuring that TCK is clocked at frequency of
fTCK_ACQUIRE during this step, the host programmer can

enter PSoC 3 programming mode. The pseudo code for
this step is as follows.

/* Address of the Test mode key register */
APACC ADDR Write [0x0005 0210]

/* Write 32-bit test mode key */
APACC DATA Write [0xEA7E 30A9]

/* Exit on timeout or reception of FAULT
response which means the device did not
enter Programming mode within time TTESTMODE.
28 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
Retry again by doing reset and restarting.
*/

 if (ACK != "OK" OR time_elapsed > TTESTMODE
 usec) then FAIL_EXIT

Note The programming method for JTAG interface that is
shown in Figure 3-7 and Figure 3-8 will not work if the DPS
setting is Debug Port Disabled. The third-party programmer
implementing PSoC 3 JTAG programming should ensure
that the DPS is never programmed with this setting. The
location of DPS setting in hex file is in the Appendix chapter
on page 71. This setting is not expected for JTAG interface

programming. The programmer software can throw an error
message and abort operation if a hex file with Debug Port
Disabled setting attempts to program on PSoC 3. The
default device factory setting for DPS is "4-wire JTAG".

3.1.2.2 JTAG Compliant Entry in
Programming Mode

Figure 3-9 shows the steps to enter the programming mode
using the JTAG compliant method. The verification of the
JTAG ID and Revision ID ensures that the correct device is
acquired for programming.

Figure 3-9. JTAG Compliant Entry in Programming Mode

Reset JTAG FSM

Generate device reset by setting “gen_tcr” bit in
TC_PM_CTRL register

APACC ADDR Write [0x0005 0214]
APACC DATA Write [0x0000 0040]

YES

NO

Wait >= 68 us

Reset JTAG FSM

Read JTAG ID using IDCODE instruction

JTAG ID == 1E0xx069

Fail and Exit

Read Silicon’s Revision ID:

APACC ADDR Write [0x0000 46EC]
dummyData = APACC DATA Read
Revision ID = APACC DATA Read

YES

NO

Revision ID >= 5

Fail and Exit

Next Step
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 29

PSoC 3 Programming Flow
Notes for Figure 3-9:

1. Reset JTAG FSM – Moves Test Access Ports of all
devices on the JTAG chain into the Reset state. This is a
synchronization step.

2. Device Reset – This is the software reset of the PSoC 3
device (analog to toggling the XRES pin). This step is
required if the ECC bit is changed in the NVLs during
programming. However, in general Cypress recom-
mends implementation of reset because it synchronizes
the programmer and the target.

3. Wait for 68 µs – This is a mandatory step required by
the silicon boot mechanism. It ensures that the boot is
completed before accessing the target through the SWD/
JTAG bus. It is recommended to have this delay in the
millisecond range (for example, 1 ms).

4. Verifying JTAG ID – The IDCODE instruction must be
set in the JTAG’s instruction register. After that, the 32-
bit JTAG ID must be shifted out of the data register.
Ensure that the PSoC 3 device is a target before pro-
ceeding.

5. Checking Revision ID – Ensure that the current sili-
con’s revision is 5. Previous revisions cannot be pro-
grammed in the JTAG compliant way.

3.2 Step 2: Configure Target
Device

Figure 3-10 shows the sequence to configure the target
PSoC 3 device before programming.

Figure 3-10. Configuring Target PSoC 3 Device

 Enable Debug-on-chip access

Enable individual sub-systems
(CPU, IMO, SPC, Interrupt Controller, Bus clock)

 Halt CPU

Next Step

Set IMO frequency to 24 MHz

 Configure Debug Port for 1-byte access

3.3 Step 3: Verify JTAG ID

To ensure that the target device corresponds to the device
for which the hex file is meant, the JTAG ID of the target
device must be compared against the JTAG ID information
in the hex file. This ensures that hex file is completely com-
patible with device under test (DUT). If there is a mismatch
in the JTAG IDs, the programming operation should be
stopped. See “Intel Hex File Format” on page 71 for informa-
tion on the location of JTAG ID in the hex file.

JTAG ID supports a separate instruction IDCODE to read
the IDCODE register that contains the device JTAG ID.
JTAG ID ca be read using the SWD interface with a packet
request containing ADDR = 00, APnDP = 0, and RnW = 1.

Figure 3-11. Verify Device ID of Target Device

Read Device JTAG ID Code

Next Step Fail and Exit

JTAG ID matches
With that in hex file ?

Yes No

3.4 Step 4: Erase Flash

Figure 3-12 demonstrates the Erase Flash process, which
erases all flash data and configuration bytes, and all flash
protection rows.
30 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
Figure 3-12. Erase Flash Sequence

Call ERASE_ALL

Check SPC Status Register

Next StepFail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

All the nonvolatile memory (flash, EEPROM, NVL) erase
and program operations are done through a simple com-
mand and status register interface. The Test Controller (TC)
accesses programming operations by writing to the com-
mand data register (SPC_CPU_DATA) at address 32’h4720.
After providing a valid command, the host should wait until
the command is executed. When a command is completed,
the status is available in the status register (SPC_SR). The
status register can be polled to see if the command is exe-
cuted successfully. These details are explained in “Nonvola-
tile Memory Organization in PSoC 3” on page 74. For more
information on nonvolatile memory programming, refer to
the PSoC 3 Architecture TRM.

The ERASE_ALL command should not take longer than 1
second, otherwise an overtime error occurs.

3.5 Step 5: Program Device
Configuration NVL

Figure 3-13 shows the Program Device Configuration Non-
volatile Latch (NVL) setup flow. This step writes the 4-byte
Device Configuration NVL. The data to be written to the NVL
is located in address 32'h90000000 of the hex file. The
LOAD_BYTE and WRITE_USER_NVL commands are used
in this step. The LOAD_BYTE command loads the data one
byte at a time to a 4-byte latch. The WRITE_USER_NVL
command writes the four bytes of loaded data in the latch to
NVL. Therefore, the LOAD_BYTE command needs to be
called four times, followed by one WRITE_USER_NVL com-
mand. The SPC status register needs to be polled to check

when the command finishes the write operation. The
WRITE_USER_NVL command should not take longer than
1 second, otherwise an overtime error occurs.

Before programming the device configuration nonvolatile
latches, P1[2] pin must be in resistive pull-up drive mode if it
has to function as an XRES pin. The P1[2] pin can either be
a GPIO pin or an XRES pin as determined by the NVL set-
tings. If the hex file NVL data has configuration that sets
P1[2] as XRES, then the algorithm checks the current NVL
port drive mode setting. If that setting is not in resistive pull-
up mode, the P1[2] pin drive mode registers are set for
resistive pull-up mode. This ensures that the active low
P1[2] reset pin is held high by default.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 31

http://www.cypress.com/?id=2232&rtID=117

PSoC 3 Programming Flow
Figure 3-13. Program Device Configuration NVL

Next Step
No

Load Device Config NVL
with data from hex file

Call “WRITE_USER_NVL”
with Device Config NVL Array ID

Next Step

Did “ECC_Enable”
bit in NVL change

from previous
value?

No Yes

Read Device Configuration NVL bytes from PSoC3 using
READ_BYTE command, and Device Config NVL Array ID

Compare the NVL bytes read from PSoC3 with those in hex file
(Device Config NVL bytes in region 0x90000000 of hex file)

Byte mismatch ?

Yes

Check SPC Status Register

Fail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

Re-enter Test mode (Step 1),
Configure Target Device(Step 2)

Next Step

Configure P1[2] pin in Resistive pull -up drive mode if required

The NV latches in PSoC 3 have a much lesser endurance
compared to flash and EEPROM memory. Due to this, the
user NVL is written only if new data needs to be pro-
grammed into the latch. This ensures that the latches are
programmed only when there is change in the configuration
data in the hex file, which in turn maximizes the endurance
time.

When programming the user NVL, if the ECC Enable bit has
changed from its previous value, then it is necessary to reset
the chip and acquire it again and re-enter the Programming
mode (repeat Step 1 and Step 2). This is because the modi-
fied ECC setting takes effect only when the chip is reset
again; the modified value is needed for the Program Flash,
Verify Flash, Program Flash Protection, and Verify Flash
Protection steps.

3.6 Step 6: Program Flash

Flash memory in PSoC 3 is programmed in rows. Each row
has 256 code bytes and 32 ECC bytes. There is an option to
use the ECC memory space to store configuration data. The
row latch to program the flash row is of size 256 bytes (if
ECC is enabled) or 288 bytes (if ECC is disabled).

During the programming process, if the ECC feature is
enabled, the row latch needs to be loaded with only 256
bytes of data. This data is in the region 0x00000000 of the
hex file. The 32 ECC bytes are automatically calculated and
loaded into the remaining 32 bytes of the row latch. This
step needs to be done to program all flash rows.

During the programming process, if the ECC feature is dis-
abled, the row latch needs to be loaded with all the 288
bytes. In this scenario, the 256 data bytes should be fetched
from the main flash data region of the hex file at address
0x80000000. The programmer software should concatenate
these 32 bytes with the 256 bytes to form the 288 byte row
data that needs to be loaded into the row latch. This step
needs to be done to program all flash rows.

The ECC enabled/disabled setting is stored in bit 3 of byte 3
of device configuration NVL. This byte is stored in address
0x90000003 of hex file. The Programmer software must
check this bit to determine the size of the flash row to be
programmed.

There are two parameters to consider in the flash program-
ming process.

 Number of rows (N) of flash memory: The value of ‘N’
depends on the flash memory size of the target device.
For example, a 64 KB flash memory device has 256
rows [(64K/256) = 256 rows]. Note that the maximum
size of flash memory in the PSoC 3 family is only 64 KB.
Therefore, the entire flash memory is contained in a sin-
gle flash array (a flash array is a physical organization of
flash memory in a block. The maximum capacity of a sin-
gle flash array is 64 KB). Also, the flash size parameter
does not consider the size of ECC bytes. For example, a
64 KB flash size indicates that the main flash region
capacity is 64 KB. It does not include the ECC bytes;
ECC region is used only for configuration data and not
for code space.
32 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
 Number of bytes per row (L) of flash memory: Each row
of flash has 256 code bytes and 32 bytes of ECC. There
is an option to use the 32 ECC bytes to store configura-
tion data instead of error correction.

L = 256 bytes, if ECC is enabled

L = 288 bytes, if ECC is disabled

The ECC enabled/disabled setting is stored in bit 3 of
byte 3 of device configuration NVL. This byte is stored in
address 0x 90000003 of hex file.

Figure 3-14 demonstrates the flash row programming pro-
cess. Before programming flash, it is necessary to get the
on-chip die temperature using the Get Temp command. This
temperature value is passed as one of the parameters for
the PROGRAM_ROW command. The Get Temp command
should be called twice, after device comes out of reset to get
an accurate temperature value. LOAD_ROW and
PROGRAM_ROW commands are required to program
flash. The LOAD_ROW command loads one row of flash
data into the row latch and the PROGRAM_ROW command
programs the latched data into the specified row of target
flash. This process needs to be repeated for every row of
flash. See SWD and JTAG Vectors for Programming chapter
on page 43 for more details on the command implementa-
tion.

The direct memory access (DMA) feature in PSoC 3 can
speed up the flash programming process, because the DMA
runs in parallel with the flash operations. It can call com-
mands through two DMA channels, such that one channel
can load row data and then call PROGRAM_ROW, and the
other channel can start loading data for the next row while
the previous command is still programming.

Figure 3-14. Program Flash

Fail and Exit

Yes

Write SRAM with (Even Flash Row)
LOAD_ROW and Write_ROW commands.

Increment Row_Count.

Check SPC Status Register

Command Executing
&& Time < 1 sec ?

Bytes per row, L = 256 Bytes per row, L = 288

Next Step

Yes No

ECC Enabled ?

Yes

No

Init & Start DMA CH 0

Write SRAM with (Odd Flash Row)
LOAD_ROW and WRITE_ROW commands.

Increment Row_Count

Check SPC Status Register

Command Executing
&& Time < 1 sec ?

Yes

Yes

Row_Count < N ? No

Call “GetTemp” command twice to
get current die temperature (value returned during second call)

Get the “Number of Rows” parameter ‘N’,
Set “Row_Count = 0”

No

(Time > 1 sec) OR
(Status != Success) ?

Fail and Exit

No

Init & Start DMA CH 1

Yes

No

(Time > 1 sec) OR
(Status != Success) ?
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 33

PSoC 3 Programming Flow
3.7 Step 7: Verify Flash
(Optional)

Figure 3-15 demonstrates the flash read process. This
optional step allows reading back and verifying data pro-
grammed in the Program Flash step.

The READ_MULTI_BYTE command is used to read out all
bytes in flash rows. Each read command can read out a
maximum 256 code bytes. If ECC is disabled, the 32 bytes
of configuration data should also be read out. To read this
data, call the READ_MULTI_BYTE command again,
addressed to point to that configuration data. The number of
returned data should be set to 32. This cycle needs to be
repeated for all flash rows.

After reading the data for one flash row, it should be verified
with the corresponding flash row data in the hex file. If there
is mismatch in even one of the bytes, the programming pro-
cess should be aborted and restarted.

Note that in the hex file, the code region in flash row (256
bytes) starts at address 0x00000000. If ECC is disabled, the
configuration bytes for flash rows start at the address
0x80000000 of the hex file. If ECC is disabled, 256 bytes
from the main code data region (0x00000000) and 32 bytes
from the ECC region (0x80000000) must be concatenated to
form a flash row. If ECC is enabled, only 256 bytes from the
main code data region (0x00000000) are needed to form a
flash row.

Figure 3-15. Verify Flash Sequence

Yes

Call “READ_MULTI_BYTE” command
to read 256 code bytes from Flash row

Store the 256 bytes of read data in an array

Bytes per row, L = 256 Bytes per row, L = 288

Next Step

Yes No

ECC Enabled ?

Compare the read data from Flash row with
corresponding row data from hex file

(Code region of Flash at address 0x0000 0000,
ECC region at address 0x8000 0000 of hex file)

No

Row_Count < N ?

No

Get the “Number of Rows” parameter ‘N’,
Set “Row_Count = 0”

Yes

Fail and Exit
YesNo

Byte mismatch ?

Bytes per row, L = 288 ?

Call “READ_MULTI_BYTE” command
to read 32 ECC bytes from Flash row

Append the 32 ECC bytes of read data to array.

Increment Row_Count

3.8 Step 8: Program WO NVL

Figure 3-16 shows the Program Write Once Nonvolatile
Latch setup flow. This step writes the 4-byte Write Once
(WO) NVL. Note that programming WO NVL with the correct
32-bit key (0x50536F43) makes the device One Time Pro-
grammable (OTP). Any other key value does not have any
impact on device security. Include this step after understand-
ing its implications and only if it is required for the end appli-
cation. It is recommended to have this step as an optional
selection in your programmer software's graphical user
interface in the form of a checkbox; by default, it should be
cleared. See Nonvolatile Memory Organization in PSoC
34 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
3 chapter on page 74 for details on the Device Security fea-
ture that is supported by WO NVL.

The data to be written to the NVL is located in address
32’h90100000 of the hex file. The LOAD_BYTE and
WRITE_USER_NVL commands are used in this step. The
LOAD_BYTE command loads the data one byte at a time to
a 4-byte latch. The WRITE_USER_NVL command writes
the four bytes of data in the latch to NVL. Therefore, the
LOAD_BYTE command needs to be called four times, fol-
lowed by one WRITE_USER_NVL command. The SPC sta-
tus register needs to be polled to check when the command
finishes the write operation. The WRITE_USER_NVL com-
mand should not take longer than 1 second, otherwise an
overtime error occurs.

Figure 3-16. Program Write Once NVL

Next Step

No

Load Write Once NVL
with data from hex file

Call “WRITE_USER_NVL”
with Write Once NVL Array ID

 Read Write Once (WO) NVL bytes from PSoC3 using
 READ_BYTE command, and WO NVL Array ID

Compare the NVL bytes read from PSoC 3 with those in hex file
(WO NVL bytes in region 0x90100000 of hex file)

Byte mismatch ?

Yes

Check SPC Status Register

Fail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

Next Step

The NVLs in PSoC 3 have much lesser endurance com-
pared to flash and EEPROM memory. Due to this, the write-
once NVL is written only if new data needs to be pro-
grammed into the latch. This ensures that the latches are
programmed only when there is change in the 4-byte secu-
rity key in the hex file, which in turn maximizes the endur-
ance time.

3.9 Step 9: Program Flash
Protection

Figure 3-17 shows the sequence to program the protection
rows in flash.

Figure 3-17. Program Flash Protection Sequence

Call LOAD_ROW for loading
Protection_Data

Call PROGRAM_PROTECT_ROW

 Call “GetTemp” SPC command to
get current die temperature

Get the “Number of Rows” parameter ‘N’

Bytes per row, L = 256 Bytes per row, L = 288

Yes No

ECC Enabled ?

Number of Protection bytes, P = N/4

Prepare L-size array with first ‘P’ bytes from Flash
protection data region 0x90400000 of hex file,
and rest of (L-P) bytes of array filled with zeros

Check SPC Status Register

Fail and Exit

Command executing
&& Time < 1 sec?

Yes

No

(Time > 1 sec) OR
(Status != Success) ?

Yes No

Next Step
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 35

PSoC 3 Programming Flow
The protection rows start in address 32’h90400000 in the
hex file, as shown in “Intel Hex File Format” on page 71. In
this step, commands LOAD_ROW and
PROGRAM_PROTECT_ROW are called to program flash
protection data. Similar to “Step 6: Program Flash” on
page 32, the Get Temp command is called initially to get the
on-chip die temperature. This temperature is sent as one of
the parameters for the PROGRAM_PROTECT_ROW com-
mand.

Each protection byte stores protection settings of four flash
rows. PSoC 3 can have a maximum of 256 flash rows and a
maximum of 64 flash protection bytes. The remaining bytes
((L – P) bytes) needed for the LOAD_ROW command are
initialized with zeros, as shown in Figure A-3.

3.10 Step 10: Verify Flash
Protection (Optional)

Figure 3-18 explains the flash protection data verification
procedure. This step is optional and allows reading back
and verifying the data programmed in the Program Flash
Protection step.

Figure 3-18. Verify Flash Protection Sequence

Yes
No

Call READ_HIDDEN_ROW to read
Flash protection bytes

 Byte mismatch ?

 Next step

Store the Flash Protection bytes in to an array

Compare the Protection bytes read with those in hex file

Fail and Exit

The READ_HIDDEN_ROW command is used to read out all
bytes in the Flash Protection row. This command always
returns 256 bytes irrespective of the ECC setting and the
number of valid flash protection bytes. Each protection byte
stores protection settings of four flash rows. PSoC 3 can
have a maximum of 256 flash rows and a maximum of 64
flash protection bytes. The remaining bytes returned by the
READ_HIDDEN_ROW command should be ignored during
the verification step.

3.11 Step 11: Validate Checksum

Figure 3-19 demonstrates the checksum validation step.
This step validates that the programming operation is suc-
cessful. The CHECKSUM command is used to compute and
return the checksum value, which can be read out through
the data register at 32’h00004720. The checksum is a 4-
byte value, so four SWD or JTAG read transfers are
required. Only the lower two bytes of this 4-byte value
returned from the target device should be taken for compari-
son as the hex file stores only 2-byte checksum. If the lower
2-byte checksum in the hex file and those read from the
device mismatch, terminate the programming process. In
the hex file, the 2-byte checksum of all flash rows (including
the configuration bytes in each row if ECC is disabled) is
stored at address 0x90300000 of the hex file (MSB first).
This is explained in “Intel Hex File Format” on page 71.

Figure 3-19. Checksum Validation Sequence

Call CHECKSUM

Yes

Read out 2-byte checksum
and compare with that in hex file

(Hex file address 0x9030 0000 has 2-byte checksum)

Device Programming completed
successfully

Values match ?

No
Fail and Exit

3.12 Step 12: Program EEPROM
(Optional)

EEPROM nonvolatile memory in PSoC 3 is used to store
constant data such as calibration data and look-up table.
Some applications might require the EEPROM memory in
PSoC 3 to be initialized as part of the device programming
sequence. The programmer software can provide a configu-
ration option to the end user to select whether or not to
include the EEPROM initialization as part of programming
sequence. The "Program EEPROM" and "Verify EEPROM"
steps can be included if that option is selected.

Figure 3-20 shows the sequence to program the EEPROM
memory in PSoC 3. First, the EEPROM memory needs to be
powered to do any read/write operation on the EEPROM.
36 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

PSoC 3 Programming Flow
Then, the EEPROM memory is erased by doing a sector
erase operation. A sector is a physical partition in EEPROM
array and each sector can have up to 64 rows. The size of
each row in EEPROM is 16 bytes. So a 2 KB EEPROM will
have 128 rows organized as two sectors. The number of
rows and sectors in the EEPROM memory of the PSoC 3
device can be calculated based on the EEPROM memory
size in bytes given in the device datasheet. After erasing all
the sectors in the EEPROM, the EEPROM is programmed
row wise with the programming data coming from the
EEPROM region of the hex file, as explained in A.1 Intel
Hex File Format. Before programming EEPROM, it is neces-
sary to get the on-chip die temperature using the Get Temp
command. This temperature value is passed as one of the
parameters for the PROGRAM_ROW command.

Figure 3-20. Program EEPROM

Get row count, sector count of the EEPROM

Power the EEPROM Memory

Erase entire EEPROM by doing
 erase operation on each sector

Call “GetTemp” command to
get current die temperature

Program the entire EEPROM by
 programming each EEPROM row

Next Step

3.13 Step 13: Verify EEPROM
(Optional)

This step verifies the integrity of the EEPROM program
operation by ensuring the EEPROM data read from the
device matches the data in the hex file. This step should be
included only if the "Program EEPROM" step is also
included. The EEPROM data is read from the device by
directly accessing the EEPROM memory address through
the Debug On-Chip (DoC) interface. To speed up the verifi-
cation process, the DoC is configured for 4-byte access so
that one read operation fetches four bytes of EEPROM data.
The step is successful if all the EEPROM bytes read from
the device matches with the corresponding hex file data.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 37

PSoC 3 Programming Flow
38 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

4. Programming Specifications
4.1 SWD Interface Timing and Specifications

Figure 4-1. SWD Interface Timing

SWDIO
(PSoC 3 reading on SWDIO)

SWDCK

T_SWDI_setup

SWDIO
(PSoC 3 writing to SWDIO)

(1/f_SWDCK)

T_SWDI_hold

T_SWDO_valid

The external host programmer should do all read or write operations on SWDIO line on falling edge of SWDCK. PSoC 3 does
the corresponding write or read operations on SWDIO on rising edge of SWDCK.

Table 4-1. SWD Interface AC Specifications

Parameter Description Conditions Min Typ Max Units

f_SWDCK SWDCLK frequency

3.3 V ≤ VDDD ≤ 5 V – – 8a

a. The maximum frequency of 8 MHz is less than device data sheet specification as the CPU clock frequency is configured for a fixed frequency of 24 MHz in
the programming algorithm; the f_SWDCK must be no more than 1/3 CPU clock frequency.

MHz

1.71 V ≤ VDDD < 3.3 V – – 7 MHz

1.71 V ≤ VDDD < 3.3 V,

SWD over USBIO pins
– – 5.5 MHz

T_SWDI_setup SWDIO input setup before SWDCK high T = 1/f_SWDCK max T/4 – –

T_SWDI_hold SWDIO input hold after SWDCK high T = 1/f_SWDCK max T/4 – –

T_SWDO_valid SWDCK high to SWDIO output T = 1/f_SWDCK max – – 2T/5
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 39

Programming Specifications
4.2 JTAG Interface Timing and Specifications

Figure 4-2. JTAG Interface AC Timing

TDI

TCK

T_TDI_setup

TDO

(1/f_TCK)

T_TDI_hold

T_TDO_valid T_TDO_hold

TMS

T_TMS_setup T_TMS_hold

The PSoC 3 reads data on its TMS and TDI lines on the rising edge of TCK. The host should write to TMS and TDI pins of
PSoC 3 on the falling edge of TCK. PSoC 3 writes to its TDO line on the falling edge of TCK. The host should read from the
TDO line of PSoC 3 on the rising edge of TCK.

Table 4-2. JTAG Interface AC Specifications

Parameter Description Conditions Min Typ Max Units

f_TCK TCK frequency
3.3 V ≤ VDDD ≤ 5 V – – 8a

a. The maximum frequency of 8 MHz is less than the device data sheet specification as the CPU clock frequency is configured for fixed frequency
of 24 MHz in Programming algorithm, and f_TCK must be no more than 1/3 CPU clock frequency.

MHz

1.71 V ≤ VDDD ≤ 3.3 V – – 7 MHz

T_TDI_setup TDI setup before TCK high T = 1/f_TCK max (T/10) – 5 – – ns

T_TMS_setup TMS setup before TCK high T = 1/f_TCK max T/4 – – –

T_TDI_hold
TDI, TMS hold after TCK
high

T = 1/f_TCK max T/4 – – –

T_TDO_valid TCK low to TDO valid T = 1/f_TCK max – – 2T/5 –

T_TDO_hold TDO hold after TCK high T = 1/f_TCK max T/4 – – –
40 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

Programming Specifications
4.3 Programming Mode Entry Specifications

Table 4-3. PSoC 3 Programming Mode Entry Specifications

Parameter Description Conditions Min Typ Max Units

TRESET Reset pulse width (active low) 1 – – μs

TSTART_SWDCK

Maximum time from release of device
reset to start of SWDCK signal clocking
by host programmer

– 4 – μs

TSTART_TCK

Maximum time from release of device
reset to start of TCK signal clocking by
host programmer

– 4 – μs

TACQUIRE Initial Port Acquire window 6.1 8 9 μs

TBOOT
Time for device boot process to complete
after releasing reset

– 68 – μs

TTESTMODE
Time window to enter Programming
mode (Test mode)

395 420 430 μs

fSWDCK_ACQUIRE
SWDCK clock frequency during Port
Acquire, Test mode entry

f_SWDCK max is from
Table 4-1

1.4 –
f_SWDCK

max
MHz

fSWDCK_BITBANG

Average SWDCK clock frequency during
Port Acquire, Test mode entry for bit
banging SWD interface programmers

f_SWDCK max is from
Table 4-1. The minimum
frequency is assuming
no overhead or delay
between SWD packets.

0.7 –
f_SWDCK

max
MHz

fTCK_ACQUIRE
TCK clock frequency during Port
Acquire, Test mode entry

f_TCK max is from
Table 4-2

1.4 – f_TCKmax MHz

VPOR Vddd, Vdda rising trip voltage 1.64 – 1.68 V

See the PSoC 3 device datasheet for other specifications such as minimum device operating voltage and nonvolatile memory
specifications.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 41

http://www.cypress.com/?id=2232&rtID=107

Programming Specifications
42 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

5. SWD and JTAG Vectors for Programming
5.1 Step 1: Enter Programming Mode

This is the first step in programming procedure; the timing requirements are specified in Table 4.3 on page 41. Depending on
the programming interface used, the appropriate method to enter PSoC 3’s programming mode should be used from the fol-
lowing methods. A separate method is provided for bit banging programmers that need to program PSoC 3 through SWD
interface. Detailed information on all these methods are provided in “Step1: Enter Programming Mode” on page 20.

5.1.1 Method A

/*--- Entering Programming mode through SWD Interface using XRES or Power cycle mode---*/
 /* --------For Programmers with Hardware SWDCK generation capability------------*/
 /* Based on Test mode entry flowchart given in Figure 3-3, Table 4-3 */

Step i.) Do device reset using XRES pin or Power cycle mode

time_elapsed = 0

Step ii) Start sending Port Acquire key within time TSTART_SWDCK of releasing XRES pin high (for XRES mode) or Vddd, Vdda
voltages crossing VPOR voltage level(for Power cycle mode). SWDCK frequency during this step should be fSWDCK_ACQUIRE.

do
{
 /* Write Port Acquire key, Use SWD ADDR = 2’b11*/
 DPACC READBUFF Write [0x7B0C 06DB]

} while (ACK != "OK" AND time_elapsed < TTESTMODE)//Check port acquire retry time

if (ACK != “OK” OR time_elapsed > TTESTMODE) then FAIL_EXIT // Exit on timeout

Step iii) Send SWD packets for entering test mode. SWDCK frequency during this step should be fSWDCK_ACQUIRE. This step
should be completed within time TTESTMODE as given below.

APACC ADDR Write [0x0005 0210] // Address of the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-bit test mode key

/* Exit on timeout or reception of FAULT response which means the device did not enter
Programming mode within time TTESTMODE. Retry again by doing reset and restarting.*/

if (ACK != "OK" OR time_elapsed > TTESTMODE) then FAIL_EXIT

else NEXT_STEP /* Entered PSoC 3 Programming mode */

PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 43

SWD and JTAG Vectors for Programming
5.1.2 Method B

/* ---------------Entering Programming mode through SWD Interface using XRES pin------------*/
 /* --------For Bit Banging Host Programmers ------------*/
 /* Based on Test mode entry flowchart given in Figure 3-5, Table 4-3 */

Step i.) Do device reset using XRES pin

time_elapsed = 0

Step ii.) Clock SWDCK at frequency of fSWDCK_ACQUIRE for time TBOOT. SWDIO pin of PSoC 3 should be driven low by the
Host during time TBOOT. Host should start clocking SWDCK within time TSTART_SWDCK of releasing XRES pin high.

time_elapsed = TBOOT

Step iii) Start sending Port Acquire key in a loop after time TBOOT. Average SWDCK frequency during this step should be
fSWDCK_BITBANG.

do
{
 /* Write Port Acquire key, Use SWD ADDR = 2’b11*/
 DPACC READBUFF Write [0x7B0C 06DB]

} while (ACK != "OK" AND time_elapsed < TTESTMODE)//Check port acquire retry time

if (ACK != “OK” OR time_elapsed > TTESTMODE) then FAIL_EXIT // Exit on timeout

Step iv) Send SWD packets for entering test mode. Average SWDCK frequency during this step should be fSWDCK_BITBANG.
This step should be completed within time TTESTMODE as given below.

APACC ADDR Write [0x0005 0210] // Address of the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-bit test mode key

/* Exit on timeout or reception of FAULT response which means the device did not enter
Programming mode within time TTESTMODE. Retry again by doing reset and restarting.*/

if (ACK != "OK" OR time_elapsed > TTESTMODE) then FAIL_EXIT

 else NEXT_STEP /* Entered PSoC 3 Programming mode */

5.1.3 Method C

 /* Entering Programming mode through JTAG Interface */
 /* Based on Test mode entry flowchart given in Figure 3-7, Table 4-3 */

Step i.) Do device reset through JTAG interface by sending SWD to JTAG switching sequence and then writing to a specific
register

a.)Send SWD to JTAG switching sequence on TCK/TMS pins

b.)APACC ADDR Write [0x0005 0214] //Address of TC_PM_CTRL register
 APACC DATA Write [0x0000 0040] //Set the “gen_tcr” bit to generate reset
44 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
 time_elapsed = 0

Step ii.) Clock TCK at frequency of fTCK_ACQUIRE for time TBOOT. TMS, TDI pins of PSoC 3 should be driven low by the host
during time TBOOT. Host should start clocking TCK within time TSTART_TCK of doing device reset.

time_elapsed = TBOOT

Step iii) Send the SWD to JTAG switching sequence on TMS, TCK pins after time TBOOT. TCK frequency during this step
should be fTCK_ACQUIRE.

Step iv) Send JTAG commands for entering test mode. TCK frequency during this step should be fTCK_ACQUIRE. This step
should be completed within time TTESTMODE as given below.

APACC ADDR Write [0x0005 0210] // Address of the Test mode key register
APACC DATA Write [0xEA7E 30A9] // Write 32-bit test mode key

/* Exit on timeout or reception of FAULT response which means the device did not enter
Programming mode within time TTESTMODE. Retry again by doing reset and restarting.*/

if (ACK != "OK" OR time_elapsed > TTESTMODE) then FAIL_EXIT

else NEXT_STEP /* Entered PSoC 3 Programming mode */

5.1.4 Method D

/* Entering Programming mode in JTAG compliant way */
/* Based on Test mode entry flowchart given in Figure 3-9 */
/* This method works only for silicon revision 5 (TO6) or later */
 a) Reset JTAG FSM

 b) Generate Software Reset for PSoC3

 APACC ADDR Write [0x0005 0214] //Address of TC_PM_CTLR register
 APACC DATA Write [0x0000 0040] //Set “gen_tcr” bit for reset

 c) Wait 1 ms //delay for at least 68 us

 d) Reset JTAG FSM

 e) Read and Verify JTAG ID of target

 JTAG ID = IDCODE Read //Read from IDCODE JTAG’s register
 if (JTAG ID != 0x1E0xx069) then FAIL_EXIT; //check for PSoC3

 f) Read and Check Revision ID of target

 APACC ADDR Write [0x0000 46EC] //Revision ID register
 dummyData = APACC DATA Read
 Revision ID = (APACC DATA Read) & 0xFF
 if (Revision ID < 5) then FAIL_EXIT; //check for revision
 else NEXT_STEP; //Correct device recognized
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 45

SWD and JTAG Vectors for Programming
5.2 Step 2: Configure Target Device

/* Setting DP configuration register for one-byte access. */
DPACC DP CONFIG Write [0x0000 0000]

APACC ADDR Write [0x0005 0220]
APACC DATA Write [0x0000 00B3] // Halt CPU, Enable Debug-on-chip (DoC) access

APACC ADDR Write [0x0000 46EA]
APACC DATA Write [0x0000 0001] // Halt CPU

APACC ADDR Write [0x0000 43A0]
APACC DATA Write [0x0000 00BF] // Enable individual sub-system of chip

APACC ADDR Write [0x0000 4200]
APACC DATA Write [0x0000 0002] // IMO set to 24 MHz

5.3 Step 3: Verify JTAG ID

/* Compare the 4-byte JTAG ID in Hex file(exp_idcode) at address 0x90500002 of hex file with
the JTAG ID read from device in this step. Abort programming operation if JTAG ID’s mismatch.
4-byte JTAG ID in hex file is in Big-endian format. Refer Appendix-A for details */
//The following code shows how to read ID in SWD mode. For JTAG mode set JTAG’s instruction
register to IDCODE and read ID from JTAG’s data register.
if (DPACC IDCODE Read != exp_idcode) then FAIL_EXIT // Exit on JTAG ID mismatch

5.4 Step 4: Erase All (Entire Flash memory)

APACC ADDR Write [0x0000 4720] // SPC data register address
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00DC] // Second key:00DC(0xD3 + 0x09); 0x09 is Erase All opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0009] // ERASE_ALL opcode

/* Read SPC status register to check the status of SPC command. If “Command Success” status
 is not received within 1 second, then exit the programming operation */

APACC ADDR Write [0x0000 4722]// SPC status register address
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

byte StatusReg //To store SPC_SR status register value
time_elapsed = 0
do
{
 StatusReg = (byte) APACC DATA Read// Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT
46 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
5.5 Step 5: Program Device Configuration Nonvolatile Latch

The data for this section is located in address 0x90000000 of the hex file.

/* The NV Latches have a lesser endurance, and hence should be written only when the data has
changed. First read the Device Configuration NVL bytes from target device and dump in to an
array, Data_Array. Compare the bytes read from the silicon to the NVL bytes in hex file at
address 0x90000000. Perform write operation only if there is a byte mismatch */

byte ByteRead = 0 //Variable to track number of bytes that have been read
byte Data_Array[4] //4-byte array to store the NVL data read from device

while (ByteRead < 0x0000 0004)
{

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00D6] // Second key:00D6(0xD3 + 0x03); 0x03 is Read Byte opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0003] //0x03 is Read Byte opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0080] // Device Configuration NVL array ID

APACC ADDR Write [0x0000 4720]
APACC DATA Write [ByteRead] //Byte number of User NVL to be read

// Poll status register bit till data is ready
APACC ADDR Write [0x0000 4722]

 byte dummy = APACC DATA Read //Dummy SWD Read, Next read gives correct status

byte StatusReg //To store SPC_SR status register value
 time_elapsed = 0
 do
 {

StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT // Check if command execution time < 1 second

APACC ADDR Write [0x0000 4720]
byte dummy = APACC DATA Read //Dummy SWD read, first byte read is garbage
Data_Array[ByteRead] = (byte) APACC DATA Read /* Store the data read from device in to
 array */
ByteRead = ByteRead + 1

//Check if SPC Idle bit is high
time_elapsed = 0
APACC ADDR Write [0x0000 4722]// SPC status register address
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

do
{
 StatusReg = (byte) APACC DATA Read// Save status register value
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 47

SWD and JTAG Vectors for Programming
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT
}

/*Compare the NVL bytes read from target device with those in hex file. Set “WriteFlag” if
there is change in NVL data even in one bit position. If “ECC Enable” bit in NVL (bit 3 of
byte 4 (last NVL byte)) has been changed from its previous value, “eccEnableChanged” flag is
set. If this flag has been set, a port acquire sequence (repeat of Step 1, Step 2) is done
again after completing NVL write operation. This is required for the new ECC settings to take
effect during subsequent Flash Programming, Read operations.*/

ByteRead = 0 /* Count of number of bytes read for comparison */

/*This flag determines whether the NV latch will be programmed or not. Flag is set when new
data needs to be written; otherwise reset */
byte WriteFlag=0

/* This flag, if set, indicates “ECC Enable” bit in User NVL in hex file
is different from what is already programmed in target device */
byte eccEnableChanged = 0

while (ByteRead < 0x04)
{

// Replace XX in below line with data at address (0x90000000 + ByteRead) of .hex file
if(Data_Array[ByteRead] != XX)
{

WriteFlag=1 //Set the flag if NV latch needs to be programmed

 /* Set the “eccEnableChanged” flag if “ECC_Enable” bit(bit 3 of NVL
 byte-4 is ECC_Enable bit) in User NVL is different between hex file and the
 target device. */
 if (ByteRead == 0x03)

{
 /* Replace XX in below line with data at address (0x90000000 + ByteRead) of
 .hex file */

 eccEnableChanged = (((XX ^ Data_Array [3]) & 0x08) == 0x08);
}

}
ByteRead = ByteRead + 1

}

//Check if the WriteFlag is set before programming User NVL

if (WriteFlag == 1)
{

/* When writing the NV Latches, ensure that the GPIO/XRES pin P1[2] is configured to
pull-up drive mode when writing ‘1’ to XRES NVL bit. */

/* Replace hexNvlByte2 in the following line with data at address 0x90000002 of the hex
file. If the XRESMEN bit (msb) is set in that byte, check if the chip is already in
resistive pull-up drive mode by checking the NVL data read from the device
(Data_Array[0]). If it is not, configure the chip in resistive pull-up drive mode before
performing a NVL write. */

pullupEnable = ((hexNvlByte2 & 0x80) == 0x80) && ((Data_Array[0] & 0x0C) != 0x08)
48 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
/* Pull-up is disabled on P1[2] now. Configure P1[2] for resistive pull-up drive mode,
output high state */
if (pullupEnable == 1)
{
 byte PinState
 APACC ADDR WRITE [0x0000 500A] // Address of PRT1_PC2 register
 byte dummy = APACC DATA READ //Dummy SWD Read
 PinState = APACC DATA READ // Store the current pin configuration

 /* Configure the pin for resistive pull up mode, data high */
 PinState = (PinState & 0xF0) | (0x05)

 /* Write the modified value to the register */
 APACC DATA WRITE [PinState]
}
byte AddrCount = 0
while (AddrCount < 4)
{
 APACC ADDR Write [0x0000 4720]// Write to command data register
 APACC DATA Write [0x0000 00B6]// First initiation key

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00D3] // Second initiation key: 0xD3 + 0x00

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0000]// LOAD_BYTE opcode

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0080]// Array ID of “Device Config NVL”

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [AddrCount]// Current address: 0 – 3

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00XX] // Replace XX with data located in

 // (0x90000000 + AddrCount) of .hex file

time_elapsed = 0
APACC ADDR Write [0x0000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
do // Poll status register
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT // Check if command execution time < 1 second

 AddrCount = AddrCount + 1 //Increment to load the next NVL byte
}

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] // Call WRITE_USER_NVL command

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00D9]// Second initiation key: 0xD3 + 0x06
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 49

SWD and JTAG Vectors for Programming
APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0006]// WRITE_USER_NVL opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0080]// Array ID: Device Config NVL

time_elapsed = 0
APACC ADDR Write [0x0000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
do // Poll status register
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT// Check if command execution time < 1 second

/* If “ECC Enable” bit changed from its previous value, do a Test mode entry again by
repeating all of “Step 1: Enter Programming mode ”, “Step 2: Configure Target Device ”.
This is necessary for the new ECC settings to take effect which in turn will be used in
subsequent Flash Program, Read operations. */

 if (eccEnableChanged)
 {
 /* Repeat “Step 1: Enter Programming mode ” */
 /* Repeat “Step 2: Configure Target Device” */
 }

} /* End of “WriteFlag ==1” loop */
50 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
5.6 Step 6: Program Flash

The data for this section is located in address 0x00000000 and 0x80000000 of the hex file. See “Step 6: Program Flash” on
page 32 for details on definition of the parameters ‘L’ and ‘N’ used in code as follows. N is the number of flash rows and L is
the number of bytes per row.)

/*Get the die temperature and store it in “Sign, Magnitude” bytes.
Note that when this command is called the first time after device comes out of reset
(which is in this step), it should be called twice. This is because the “Get Temp” command
returns accurate value only from the second time it is called after device comes out of
reset.*/

/**/

//Start of “Get_Temp” routine to get Die temperature

byte Temp_Sign, Temp_Magnitude; //Die temperature - used in the PROGRAM_ROW
 //instruction

byte loop = 0; //This variable is used to do the Get_Temp routine twice.
 byte StatusReg //To store SPC_SR status register value

while (loop <= 1)
{

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] //SPC_KEY1

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00E1] //SPC_KEY2 + SPC_GET_TEMP (0xD3+0x0E)

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 000E] //SPC_ GET_TEMP opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0003] //Number of samples, valid values [1..5]

//Wait until Temperature data is ready
APACC ADDR Write [0x0000 4722]
byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x0000 4720]
byte dummy = APACC DATA Read // Dummy SWD read
Temp_Sign =(byte) APACC DATA Read // First byte read is sign of temperature
Temp_Magnitude =(byte) APACC DATA Read // Second byte read is magnitude of temperature

//Wait for IDLE - just in case. Must be in idle state once data byte is read.
APACC ADDR Write [0x0000 4722]// Poll status register

 byte dummy = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 51

SWD and JTAG Vectors for Programming
do
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

loop++;
}

/* End of “Get_Temp” routine to get Die temperature. The temperature value received
During second time of above loop is stored in Temp_Magnitude, Temp_Sign, and used in below
programming step */
/***/

/* Setting DP configuration register for four-byte access to SRAM. */
DPACC DP CONFIG Write [0x0000 0004]

//Program Rows
int Row_Count = 0 //Variable to keep track of Row being programmed
int Byte_Count = 0 //Variable to keep track of byte number in a row

while (Row_Count < N)// See “Step 6:Program Flash” section for ‘N’
{

 //-------------Programming EVEN ROW ----------------------

 //"B6" - SPC_KEY1, "D5" - SPC_KEY2, "02" - LOAD_ROW opcode, "00" - Flash ArrayID
 APACC ADDR Write [0x0000 0000]// SRAM address- 32’h00
 APACC DATA Write [0x0002 D5B6]// 4 byte data

 Byte_Count = 0

 //Send Row data to SRAM from HEX
 while (Byte_Count < L) // Define L according to ECC settings
 {
 APACC ADDR Write [Byte_Count + 0x4]

 /* 4-bytes (d3d2d1d0) are from hex file starting at address (address of d0):
 i.) if Byte_Count < 256: Address of do = (0x00000000 + (Row_Count * 256) +

 Byte_Count)
 ii.) if 256 <= Byte_Count < 288: Address of do = (0x80000000 + (Row_Count*32) +
 (Byte_Count – 256))

 The ii) address will be needed only if ECC is disabled.
 ECC data is 32 bytes per row.*/
 APACC DATA Write [d3d2d1d0]
 Byte_Count = Byte_Count + 4
 }

 //"00","00","00" - 3 NOPs for short delay, "B6" - SPC_KEY1
 APACC ADDR Write [(L - 1) + 0x05]
 APACC DATA Write [0xB600 0000]

 //"DA" - SPC_KEY1+SPC_PRG_ROW, "07" - SPC_PRG_ROW, "00" - Flash Array ID
 //”00” - High Byte of RowCount

 APACC ADDR Write [(L - 1) + 0x09]
 APACC DATA Write [0x0000 07DA]

52 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
 //Low byte of row number, Temperature data
 APACC ADDR Write [(L - 1) + 0xD]

 APACC DATA Write [(0x00 << 24) | (Temp_Magnitude << 16) | (Temp_Sign << 8) |
 (RowCount & 0xFF)]
 //DMA operations

 APACC ADDR Write [0x0000 7018]// PHUB_CH0_STATUS Register
 APACC DATA Write [0x0000 0000]// Disable chain event, use TDMEM1_ORIG_TD0

 APACC ADDR Write [0x0000 7010]// PHUB_CH0_BASIC_CFG register
 APACC DATA Write [0x0000 0021] // Enable DMA CH 0

 APACC ADDR Write [0x0000 7600]// PHUB_CFGMEM0_CFG0 register
 APACC DATA Write [0x0000 0080]// DMA request is required for each burst

 APACC ADDR Write [0x0000 7604]// PHUB_CFGMEM0_CFG1 register
 APACC DATA Write [0x0000 0000] // Sets upper 16-bit address of destination/source

 APACC ADDR Write [0x0000 7800] //PHUB_TDMEM0_ORIG_TD0 register
 APACC DATA Write [(0x01FF 0000) + L + 15] // Set TD transfer counts

 APACC ADDR Write [0x0000 7804] // PHUB_TDMEM0_ORIG_TD1 register
 APACC DATA Write [0x4720 0000] // Set lower 16-bit address of the destination/source

 //Wait until SPC has done previous request

 APACC ADDR Write [0x0000 4722]// Poll status register
 dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 time_elapsed = 0
 do
 {
 StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)
 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x0000 7014]// PHUB_CH0_ACTION register
 APACC DATA Write [0x0000 0001]// This creates a direct DMA request for channel ‘0’

 // DMA will transfer data from SRAM, and call LOAD_ROW and then WRITE_ROW

 //When the DMA is transferring data using Channel ‘0’, configure Channel ‘1’ to speed up
 //programming time

 //-------------Programming ODD ROW ----------------------

 Row_Count = Row_Count + 1// Increment row count and repeat process for the next row

 //"B6" - SPC_KEY1, "D5" - SPC_KEY2, "02" - LOAD_ROW opcode, "00" - ArrayID
 APACC ADDR Write [0x0000 0200]// SRAM address 32’h200
 APACC DATA Write [0x0002 D5B6]// 4-byte data as commented above

 //Send Row to SRAM from HEX

 Byte_Count = 0
 while (Byte_Count < L)//Define L according to ECC settings
 {
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 53

SWD and JTAG Vectors for Programming
 APACC ADDR Write [Byte_Count + 0x204]

 /* 4-bytes (d3d2d1d0) are from hex file starting at address (address of d0):
 i.) if Byte_Count < 256: Address of do = (0x00000000 + (Row_Count * 256) +

 Byte_Count)
 ii.) if 256 <= Byte_Count < 288: Address of do = (0x80000000 + (Row_Count*32) +
 (Byte_Count – 256))

 The ii) address will be needed only if ECC is disabled.
 ECC data is 32 bytes per row.*/

 APACC DATA Write [d3d2d1d0] // Write 4 bytes at a time, 4-bytes are from hex file
 Byte_Count = Byte_Count + 4
 }

 //"00","00","00" - 3 NOPs for short delay, "B6" - SPC_KEY1
 APACC ADDR Write [(L - 1) + 0x205]
 APACC DATA Write [0xB600 0000]

 //"DA" - SPC_KEY1+SPC_PRG_ROW, "07" - SPC_PRG_ROW, "00" - Flash Array ID
 //”00” - High Byte of RowCount

 APACC ADDR Write [(L - 1) + 0x209]
 APACC DATA Write [0x0000 07DA]// 0xDA = 0xD3 + 0x07 (“WRITE_ROW” opcode)

 //Low byte of row number, Temperature data
 APACC ADDR Write [(L - 1) + 0x20D]

 APACC DATA Write [(0x00 << 24) | (Temp_Magnitude << 16) | (Temp_Sign << 8) |
 (RowCount & 0xFF)]

 //DMA operations

 APACC ADDR Write [0x0000 7028]// PHUB_CH1_STATUS Register
 APACC DATA Write [0x0000 0100] // Disable chain event, use TDMEM1_ORIG_TD1

 APACC ADDR Write [0x0000 7020]// PHUB_CH1_BASIC_CFG register
 APACC DATA Write [0x0000 0021]// Enable DMA CH 0

 APACC ADDR Write [0x0000 7608]// PHUB_CFGMEM1_CFG0 register
 APACC DATA Write [0x0000 0080]// DMA request is required for each burst

 APACC ADDR Write [0x0000 760C]// PHUB_CFGMEM1_CFG1 register
 APACC DATA Write [0x0000 0000]// Sets upper 16-bit address of destination/source

 APACC ADDR Write [0x0000 7808]//PHUB_TDMEM0_ORIG_TD0 register
 APACC DATA Write [(0x01FF 0000) + L + 15] // Set TD transfer counts

 APACC ADDR Write [0x0000 780C] // PHUB_TDMEM1_ORIG_TD1 register
 APACC DATA Write [0x4720 0200] // Set lower 16-bit address of the destination/source

 //Wait until SPC has done previous request
 APACC ADDR Write [0x0000 4722]
 dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 time_elapsed = 0
 do // Poll status register
 {
 StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)
54 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x0000 7024] // PHUB_CH1_ACTION register
 APACC DATA Write [0x0000 0001] // This creates a direct DMA request Channel ‘1’

 // DMA will transfer data from SRAM, and call LOAD_ROW and then WRITE_ROW

 Row_Count = Row_Count + 1
}

//Make sure that last SPC request is completed
APACC ADDR Write [0x0000 4722]
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct
time_elapsed = 0
do // Poll status register
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

// Resetting DP configuration register for one-byte access after Flash programming
DPACC DP CONFIG Write [0x0000 0000]

5.7 Step 7: Verify Flash (Optional)

See “Step 6: Program Flash” on page 32 for details on definition of the parameters ‘L’ and ‘N’ used in the following code. N is
the number of flash rows and L is the number of bytes per row.

int RowCount = 0 //Variable to keep track of flash rows that have been read
int byte_index = 0 //Variable to keep track of number of bytes read in a Flash row
byte StatusReg //To store SPC_SR status register value
byte Data_Array[L] //Array of size ‘L’ bytes to store one row of data read from device
int32 address
// Iterate through all rows of flash
while (RowCount < N)
{

 address = RowCount * 256 //Starting address of Flash row

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00B6]//First initiation key

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00D7]//0xD7= (0xD3 + READ_MULTI_BYTE opcode)

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0004] // READ_MULTI_BYTE opcode

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0000]// Array ID

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [(address >> 16) & 0xFF]//MSB byte2 of 3-byte address

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [(address >> 8) & 0xFF]//Byte1 of 3-byte address
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 55

SWD and JTAG Vectors for Programming
 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [(address >> 0) & 0xFF]//LSB Byte0 of 3-byte address

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00FF]// Number of bytes to be read minus one

 //Wait until Data is ready

 APACC ADDR Write [0x0000 4722]
 dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 time_elapsed = 0
 do
 {
 StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x0000 4720]
 dummyByte = APACC DATA Read // Dummy SWD read

 // Read 256 bytes of row data in to Data_Array
 int ByteRead = 0
 while (ByteRead <= 0x0000 00FF)
 {
 Data_Array[byte_index] = APACC DATA Read// Save read data in to array
 ByteRead = ByteRead + 1
 byte_index = byte_index + 1
 }

 // If ECC is disabled, row size is 288
 If (L = 288)
 {

 // Configuration(ECC) data is addressed as following. MSB bit is ‘1’ to
 //specify that addressed memory is ECC (config) memory
 address = (RowCount * 32) | 0x00800000;

 // Call READ_MULTI_BYTE to read configuration data in ECC memory space

APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00B6] //First initiation key

 APACC ADDR Write [0x00004720]
 APACC DATA Write [0x0000 00D7] //0xD7= (0xD3 + READ_MULTI_BYTE opcode)

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0004] // READ_MULTI_BYTE opcode

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0000] // Array ID

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [(address >> 16) & 0xFF] //MSB Byte 2 of 3-byte address;

 APACC ADDR Write [0x0000 4720]
56 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
 APACC DATA Write [(address >> 8) & 0xFF] //Byte 1 of 3-byte address

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [(address >> 0) & 0xFF] //LSB Byte 0 of 3-byte address

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 001F] //Each row has 32 ECC bytes to be read

 //Wait until Data is ready
 APACC ADDR Write [0x0000 4722]
 dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 time_elapsed = 0
 do
 {
 StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT

 APACC ADDR Write [0x0000 4720]
 dummyByte = APACC DATA Read // Dummy SWD read

 ByteRead = 0
 /* Number of ECC bytes per row is 32 */
 while (ByteRead <= 0x000 0001F)
 {
 Data_Array[byte_index] = APACC DATA Read// Save configuration data
 ByteRead = ByteRead + 1
 byte_index = byte_index + 1
 }
 }

 /* Now, the array Data_Array contains a row of Flash data (+ECC data if applicable).
 Compare it with data in hex file to check if the correct data has been programmed in
 to Flash row. If there is data mismatch, Abort the Programming operation and retry
 again. Repeat for all Flash rows. */

RowCount = RowCount + 1; // Next Flash row

}

5.8 Step 8: Program Write Once Nonvolatile Latch

Warning: Programming the device with correct security key is an irreversible process; perform this step only if all prior steps
passed without errors. This 4-byte data is located in address 0x90100000 of the hex file.

/* The NV Latches have a lesser endurance, and hence written only when the data has changed.
First read the Write Once NVL bytes from target device and dump in to an array, Data_Array.
Compare the bytes read from the silicon to the NVL bytes in hex file at address 0x90100000.
Perform write operation only if there is a byte mismatch */

byte ByteRead = 0 //Variable to track number of bytes that are read
byte StatusReg //To store SPC_SR status register value
byte Data_Array[4] //4-byte array to store the NVL data read from device
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 57

SWD and JTAG Vectors for Programming
while (ByteRead < 0x0000 0004)
{

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00D6] // Second key:00D6(0xD3 + 0x03); 0x03 is Read Byte opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0003] //0x03 is Read Byte opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00F8] //Write Once NVL array ID

APACC ADDR Write [0x0000 4720]
APACC DATA Write [ByteRead] //Byte number of Write Once NVL to be read

 // Poll status register bit till data is ready
APACC ADDR Write [0x0000 4722]

 dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 do
 {

 StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT // Check if command execution time < 1 second

APACC ADDR Write [0x0000 4720]
dummyByte = APACC DATA Read //Dummy SWD read, first byte read is garbage
Data_Array[ByteRead] = APACC DATA Read //Store the data read from device in to array

ByteRead = ByteRead + 1

//Check if SPC Idle bit is high
time_elapsed = 0
APACC ADDR Write [0x0000 4722]// SPC status register address
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status

do
{
 StatusReg = (byte) APACC DATA Read// Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)
if (time_elapsed > 1 sec) then FAIL_EXIT

}

//Compare the NVL bytes read from target device with those in hex file at address 0x90100000

ByteRead = 0
byte WriteFlag=0 /* This flag determines whether the NV latch will be programmed or not.
 Flag is set when new data needs to be written; otherwise reset */

while (ByteRead < 0x00000004)
{

// Replace XX in the following line with data at address (0x90100000 + ByteRead) of .hex
file
if(Data_Array[ByteRead] != XX)
{

58 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
WriteFlag=1 //Set the flag if NV latch needs to be programmed
}
ByteRead = ByteRead + 1

}

//Check if the WriteFlag is set before programming Write Once NVL

if (WriteFlag == 1)
{

byte AddrCount = 0
while (AddrCount < 4)
{
 APACC ADDR Write [0x0000 4720]// Write to command data register
 APACC DATA Write [0x0000 00B6]// First initiation key

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00D3] // Second initiation key: 0xD3 + 0x00

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0000]// LOAD_BYTE opcode

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00F8]// Array ID of “Write Once NVL”

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [AddrCount]// Byte index in “Write Once NVL”

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00XX] /* Replace XX with data located in
 (0x90100000 + AddrCount) of .hex file */

 time_elapsed = 0
 APACC ADDR Write [0x0000 4722]
 dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
 do // Poll status register
 {
 StatusReg = (byte) APACC DATA Read // Save status register value
 } while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

 if (time_elapsed > 1 sec) then FAIL_EXIT //Check if command execution time < 1 sec

 AddrCount = AddrCount + 1 //Increment to load the next NVL byte
}

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] // SPC_KEY1

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00D9]// SPC_KEY2 + SPC_USER_NVL

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0006]// SPC_WRITE_USER_NVL opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00F8]//Array ID of “Write Once NVL”

time_elapsed = 0
APACC ADDR Write [0x0000 4722]
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 59

SWD and JTAG Vectors for Programming
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
do // Poll status register
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT// Check if command execution time < 1 second
}

5.9 Step 9: Program Flash Protection Data

Flash protection data is located in address 32’h9040 0000 in the hex file. See “Step 6: Program Flash” on page 32 for details
on definition of the parameters ‘L’ and ‘N’ used in the following code. N is the number of flash rows and L is the number of
bytes per row.

byte protectionSize = N/4 //Each Flash protection byte stores protection data of 4 Flash rows

byte StatusReg //To store SPC_SR status register value

//Get the die temperature and store it in “Sign, Magnitude” bytes
/**/

byte Temp_Sign, Temp_Magnitude; //Die temperature -used in the PROGRAM_PROTECT_ROW
 //instruction

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] //SPC_KEY1

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00E1] //SPC_KEY2 + SPC_GET_TEMP (0xD3+0x0E)

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 000E] //SPC_ GET_TEMP opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0003] //Number of samples, valid values [1..5]

//Wait until Temperature data is ready
APACC ADDR Write [0x0000 4722]
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{

StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x0000 4720]
dummyByte = APACC DATA Read // Dummy SWD read
Temp_Sign =(byte) APACC DATA Read // First byte read is sign of temperature
Temp_Magnitude =(byte) APACC DATA Read // Second byte read is magnitude of temperature

//Wait for IDLE - just in case. Must be in idle state once data byte is read.
APACC ADDR Write [0x0000 4722]// Poll status register
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
60 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
do
{

StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

//End of “Get_Temp” routine to get Die temperature
/***/

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00D5] // Second initiation key: 0xD3 + 0x02

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0002] // LOAD_ROW opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000]//Flash Array ID

int ByteCount = 0
while (ByteCount < L)
{
 APACC ADDR Write [0x0000 4720]

 if (ByteCount < protectionSize)
 {

APACC DATA Write [0x0000 00XX]//Data at address (32’h90400000 + ByteCount) of HEX file
 }
 else
 {
 APACC DATA Write [0x0000 0000]//Fill bytes greater than protection size with zero
 }

 ByteCount = ByteCount + 1
}

// After loading the protection data, program it in to the Flash hidden rows
//using PROGRAM_PROTECT_ROW command
APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] // First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00DE] // Second initiation key: 0xD3 + 0x0B

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 000B]// PROGRAM_PROTECT_ROW opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000] //Flash array ID

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000] //Row select value is always zero for protection data
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 61

SWD and JTAG Vectors for Programming
APACC ADDR Write [0x0000 4720]
APACC DATA Write [Temp_Sign] //Send Sign byte of die temperature

APACC ADDR Write [0x0000 4720]
APACC DATA Write [Temp_Magnitude] //Send Magnitude byte of die temperature

APACC ADDR Write [0x0000 4722]
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do // Poll status register
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

5.10 Step 10: Verify Flash Protection Data (Optional)

See “Step 6: Program Flash” on page 32 for details on definition of the parameter ‘N’ used in the following code. N is the num-
ber of rows in a flash array. PSoC 3 has only one flash array.

byte NumberOfProtectionBytes = N/4; //Each protection byte corresponds to 4 Flash rows
int byte_index = 0 //Variable to keep track of number of bytes read

/* Array to store the protection bytes read from PSoC3. Even though the maximum number of
protection bytes is only 64 for a 64 KB Flash memory, it is still required to read all the
256 bytes in Flash protection row to ensure that the SPC returns back to the idle state. Even
if ECC is disabled, only 256 bytes need to be read in case of reading protection rows */
byte Data_Array[256];
byte StatusReg; //Variable to store the SPC status register value

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6]//First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00DD]//0xDD= (0xD3 + READ_HIDDEN_ROW opcode)

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 000A]// READ_HIDDEN_ROW opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000]// Flash Array ID

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000]// RowID of Protection bytes row

//Wait until Data is ready, and also the command status code is success
APACC ADDR Write [0x0000 4722]
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do
{

StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

APACC ADDR Write [0x0000 4720]
62 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
dummyByte = APACC DATA Read // Dummy SWD read

/* Read 256 bytes of row data in to Data_Array. Even though the maximum number of protection
bytes is only 64 for a 64 KB flash memory, it is still required to read all the 256 bytes in
Flash protection row to ensure that the SPC returns back to the idle state. Even if ECC is
disabled, only 256 bytes need to be read in case of reading protection rows */
byte_index = 0
while (byte_index < 256)
{

Data_Array[byte_index] = APACC DATA Read// Save data in to the array
byte_index = byte_index + 1

}

/* Now, the array Data_Array contains a row of Flash protection data (256 bytes) read from
the device. Compare the first “NumberOfProtectionBytes” in the array with the protection
data in the hex file. In the hex file, the Flash protection bytes are present starting from
the address 32’h90400000 of the hex file. */

byte_index = 0
while (byte_index < NumberOfProtectionBytes)
{

/* hexData[i] is from address (32’h90400000 + i) of hex file */
if (Data_Array[byte_index] != hexData[i])
{
 FAIL_EXIT /* Byte mismatch. Verify operation for Protection bytes failed. Abort
 Operation, Exit */
}
byte_index = byte_index + 1

}
/* Verify operation for Protection bytes passed. Go to next step */

5.11 Step 11: Validate Checksum

The data for this section is located in address 0x90300000 of the hex file. Only the lower two bytes of checksum are stored in
the hex file. The MSB byte is stored at address 0x90300000 and the LSB byte is stored at address 0x90300001.

byte StatusReg; //Variable to store the SPC status register value
byte b1, b2, b3, b4; //Variables to store the Checksum read from the device

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6] //First initiation key

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00DF] //0xDF = 0xD3 + 0x0C

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 000C] // GET_CHECKSUM opcode

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000] //Flash array ID

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000] //Starting row number (lower byte)

APACC ADDR Write [0x0000 4720]
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 63

SWD and JTAG Vectors for Programming
APACC DATA Write [0x0000 0000] //Starting row number (higher byte)

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0000] //Number of rows (higher byte)

APACC ADDR Write [0x0000 4720]
APACC DATA Write [N - 1] //Number of rows (lower byte) minus one

APACC ADDR Write [0x0000 4722]
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do // Poll status register
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x0000 4720]
dummyByte = APACC DATA Read// Dummy SWD read
b4 = (byte) APACC DATA Read // Checksum byte 4 (MSB byte)
b3 = (byte) APACC DATA Read // Checksum byte 3
b2 = (byte) APACC DATA Read // Checksum byte 2
b1 = (byte) APACC DATA Read // Checksum byte 1 (LSB byte)
read_checksum = [0xb2b1]// Save lower 2 bytes of checksum to a local variable

APACC ADDR Write [0x0000 4722]
dummyByte = APACC DATA Read //Dummy SWD Read, Next Read gives correct status
time_elapsed = 0
do // Poll status register till SPC is IDLE
{
 StatusReg = (byte) APACC DATA Read // Save status register value
} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

/* Compare with 2-byte checksum value in hex file (big endian format) at address 0x9030 0000.
Only the lower two bytes of checksum are stored in the hex file. The MSB byte is stored at
address 0x90300000, and the LSB byte is stored at address 0x90300001. */
if (read_checksum != hexfile_checksum) then FAIL_EXIT

5.12 Step 12: Program EEPROM (Optional)

The data for this section is located in address 0x90200000 of the hex file.

/* Get the number of rows, sectors in EEPROM based on the EEPROM memory size information in
the device datasheet. Each row has 16 bytes, and each sector can have a maximum of 64 rows */

byte NumofRows, NumofSectors

/* EEPROM_SIZE_IN_BYTES is given in the device datasheet */
NumofRows = EEPROM_SIZE_IN_BYTES / 16

if(NumofRows % 64 == 0)
{

NumofSectors = NumofRows/64
}

64 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
else
{

NumofSectors = (NumofRows/64) + 1
}

/* Power the EEPROM memory before doing any operations */
APACC ADDR Write [0x0000 43AC]
APACC DATA Write [0x0000 0011]

/* Erase the entire EEPROM before doing a program operation by using sector erase commands on
each sector */

byte SectorCount = 0

while(SectorCount < NumofSectors)
{

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6]/* First SPC Key */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00DB]/* Second SPC Key = 0xD3 + 0x08 */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0008]/* Erase Sector Opcode */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0040]/* EEPROM Array ID */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [SectorCount]/* EEPROM Sector Number */

/* Read SPC status register to check the status of SPC command. If “Command Success”
status is not received within 1 second, then exit the programming operation */

APACC ADDR Write [0x0000 4722]/* SPC status register address */

/* Dummy SWD Read, Next Read gives correct status */
byte dummy = APACC DATA Read

byte StatusReg/* To store SPC_SR status register value */

time_elapsed = 0

do
{

StatusReg = (byte) APACC DATA Read /* Save status register value */

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

SectorCount = SectorCount + 1/* Next Sector */

}

/* Start of “Get_Temp” routine to get Die temperature. Used for EEPROM programming */

byte Temp_Sign, Temp_Magnitude /* To store the temperature data */

byte StatusReg/* To store SPC_SR status register value */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6]/* SPC_KEY1 */

APACC ADDR Write [0x0000 4720]
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 65

SWD and JTAG Vectors for Programming
APACC DATA Write [0x0000 00E1]/* SPC_KEY2 + SPC_GET_TEMP (0xD3+0x0E) */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 000E]/* SPC_ GET_TEMP opcode */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0003]/* Number of samples, valid values [1..5] */

/* Wait until Temperature data is ready */

APACC ADDR Write [0x0000 4722]

byte dummy = APACC DATA Read/*Dummy SWD Read, Next Read gives correct status */

time_elapsed = 0

do
{
 StatusReg = (byte) APACC DATA Read/* Save status register value */

}while ((StatusReg != [0x01]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x0000 4720]

byte dummy = APACC DATA Read/* Dummy SWD read */

Temp_Sign =(byte) APACC DATA Read/* First byte read is sign of temperature */

Temp_Magnitude =(byte) APACC DATA Read /* Second byte is magnitude of temperature */

/* Wait for IDLE - just in case. Must be in idle state once data byte is read */

APACC ADDR Write [0x0000 4722]/* Poll status register */

byte dummy = APACC DATA Read/* Dummy SWD Read, Next Read gives correct status */

time_elapsed = 0

do
{

 StatusReg = (byte) APACC DATA Read/* Save status register value */

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

/* End of “Get_Temp” routine to get Die temperature. The temperature value received
is stored in Temp_Magnitude, Temp_Sign, and used in below programming step */

/* Program EEPROM row one by one */

byte Row_Count = 0/* Variable to keep track of current row number */

byte Byte_Count = 0/* Variable to keep track of byte number in a row */

while(RowCount < NumOfRows)
{

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6]/* First SPC Key */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00D5]/* Second SPC Key = 0xD3 + 0x02 */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0002] /* Load Row Opcode */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 0040] /* EEPROM Array ID */
66 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
/* Load the 16 bytes of EEPROM row one by one by reading from the hex file */

for(ByteCount = 0; ByteCount < 16; ByteCount++)
{

/* EEPROMByteData is located in the hexfile at address (0x90200000 +
(RowCount * 16) + ByteCount) */
APACC ADDR Write [0x0000 4720]
APACC DATA Write [EEPROMByteData]

}

/* Read SPC status register to check the status of SPC command. If “Command Success”
statusis not received within 1 second, then exit the programming operation */

APACC ADDR Write [0x0000 4722]/* SPC status register address */

byte dummy = APACC DATA Read/* Dummy SWD Read */

byte StatusReg/* To store SPC_SR status register value */

time_elapsed = 0

do
{

StatusReg = (byte) APACC DATA Read /* Save status register value */

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

APACC ADDR Write [0x0000 4720]
APACC DATA Write [0x0000 00B6]/* First SPC Key */

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 00DA]/* Second SPC Key = 0xD3 + 0x07 */

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0007]/* Program Row Opcode */

 APACC ADDR Write [0x0000 4720]
 APACC DATA Write [0x0000 0040]/* EEPROM Array ID */

APACC ADDR Write [0x0000 4720]
/* MSB byte of the 2-byte row number. Always zero for EEPROM since maximum number of
rows can only be 128 */
APACC DATA Write [0x0000 0000]

APACC ADDR Write [0x0000 4720]
APACC DATA Write [RowCount]/* LSB byte of the 2-byte row number */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [Temp_Sign] /* Temperature Sign byte */

APACC ADDR Write [0x0000 4720]
APACC DATA Write [Temperature_Magnitude]/* Temperature Magnitude byte */

/* Read SPC status register to check the status of SPC command. If “Command Success”
status is not received within 1 second, then exit the programming operation */

APACC ADDR Write [0x0000 4722]/* SPC status register address */

byte dummy = APACC DATA Read/* Dummy SWD Read */

byte StatusReg/* To store SPC_SR status register value */

time_elapsed = 0
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 67

SWD and JTAG Vectors for Programming
do
{

StatusReg = (byte) APACC DATA Read/*Save status register */

} while ((StatusReg != [0x02]) AND time_elapsed < 1 sec)

if (time_elapsed > 1 sec) then FAIL_EXIT

RowCount = RowCount + 1 /* Next EEPROM row to be programmed */

}

5.13 Step 13: Verify EEPROM (Optional)

/* Get the number of rows in EEPROM based on the EEPROM memory size information in the device
datasheet. Each row has 16 bytes */

byte NumofRows

/* EEPROM_SIZE_IN_BYTES is given in the device datasheet */
NumofRows = EEPROM_SIZE_IN_BYTES / 16

int read_address/* Location of EEPROM address to be read */

int read_data /* 4-byte data read from EEPROM */

byte ByteRead = 0 /* Variable to track number of bytes that have been read */

byte Data_Array[16] /* Array to store the EEPROM row data read from the device */

/* Configure DAP for 4-byte access for faster verification */
DPACC DP CONFIG Write [0x0000 0004]

/* Verify the data programmed in to EEPROM, one row at a time */
while(RowCount < NumOfRows)
{

ByteRead = 0

/* Read the EEPROM row data from the device in 4-byte chunks and store in the array */
while(ByteRead < 16)
{

/* Address of EEPROM in PSoC 3. 0x00008000 is EEPROM base address */
read_address = 0x00008000 + (RowCount * 16) + ByteRead

APACC ADDR Write [read_address]

dummyByte = APACC DATA Read/* Dummy SWD read */

read_data = APACC DATA Read/* Actual 4-byte EEPROM data */

/* Store the 4-byte data in the array */
Data_Array[ByteRead] = (byte) (read_data)
Data_Array[ByteRead + 1] = (byte) (read_data >> 8)
Data_Array[ByteRead + 2] = (byte) (read_data >> 16)
Data_Array[ByteRead + 3] = (byte) (read_data >> 24)

ByteRead = ByteRead + 4 /* Read the next 4-bytes */

}

/* Verify the row data read from the device against the hex file data */
for(ByteRead = 0; ByteRead < 16; ByteRead++)
{

68 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

SWD and JTAG Vectors for Programming
 /* Replace XX below with byte data from the hex file at address
(0x90200000 + (RowCount * 16) + ByteRead). Verify operation is a failure
 if there is a byte mismatch */

 if(Data_Array[ByteRead] != XX) then FAIL_EXIT

}

RowCount = RowCount + 1 /* Next row */

}

/* Resetting DP configuration register for one-byte access after verify operation */
DPACC DP CONFIG Write [0x0000 0000]
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 69

SWD and JTAG Vectors for Programming
70 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

A. Appendix
A.1 Intel Hex File Format

Intel hex file records are a text representation of hexadecimal coded binary data. Only ASCII characters are used; the format
is portable across most computer platforms.

Each line (record) of the Intel hex file consists of six parts, as shown in Figure A-1.

Figure A-1. Hex File Record Structure

Start code

(Colon character)

Byte count

(1 byte)

Address

(2 bytes)

Record type

(1 byte)

Data

(N bytes)

Checksum

(1 byte)

 Start code: one character - an ASCII colon ':'

 Byte count: two hex digits (1 byte) - specifies the number of bytes in the data field

 Address: four hex digits (2 bytes) - a 16-bit address at the beginning of the memory position for the data

 Record type: two hex digits (00 to 05) - defines the type of data field. The record types used in the hex file generated by
PSoC Creator are:

 00 - Data record, which contains data and 16-bit address

 01 - End of file record, which is a file termination record and has no data. This must be the last line of the file; only one
is allowed for every file

 04 - Extended linear address record, which allows full 32-bit addressing. The address field is 0000, the byte count is
02. The two data bytes represent the upper 16 bits of the 32 bit address, when combined with the lower 16-bit address
of the 00 type record

 Data: a sequence of ‘n’ bytes of the data, represented by 2n hex digits

 Checksum: two hex digits (1 byte), which is the least significant byte of the two's complement of the sum of the values of
all fields except fields 1 and 6 (Start code ‘:’ byte and two hex digits of the Checksum)

Examples for different record types used in the hex file generated by PSoC Creator are as follows.

Consider that these three records are placed in consecutive lines of the hex file.

:0200000490006A

:0420000000000005F7

:00000001FF

The first record (:0200000490006A) is an extended linear address record as indicated by the value in the Record Type field
(04). The address field is 0000, the byte count is 02. This means that there are two data bytes in this record. These data bytes
(9000) specify the upper 16-bits address of the 32-bit address of data bytes. In this case, all the data records that follow this
record are assumed to have their upper 16-bit address as 0x9000 (in other words, the base address is 0x90000000). 6A is
the checksum byte for this record.

The next record (:0420000000000005F7) is a data record, as indicated by the value in the Record Type field (00). The byte
count is 04 indicating that there are four data bytes in this record (00000005). The 32-bit starting address for these data bytes
is at address 90002000. The upper 16-bit address (9000) is derived from the extended linear address record in the first line;
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 71

http://en.wikipedia.org/wiki/ASCII

the lower 16-bit address is specified in the address field of
this record as 2000. F7 is the checksum byte for this record.

The last record (:00000001FF) is the end of file record, as
indicated by the value in the Record Type field (01). This is
the last record of the hex file.

Note The data records of the following multi-bytes region in
the hex file are in big-endian format (MSB in lower address):
Checksum data at address 0x9030 0000 of hex file; meta-
data at address 0x9050 0000. The data records of the rest of
the multi-byte regions in hex file are all in little-endian format
(LSB in lower address).

A.1.1 Organization of Hex File Data

The hex file generated by PSoC Creator contains different
types of data, which includes the flash code data, flash con-
figuration data, EEPROM data, flash protection data, cus-
tomer nonvolatile latch, and write once latch data. Apart
from this, the hex file also contains metadata. Metadata is
information that is not used for programming the device
memory. It is used to maintain data integrity of the hex file
and store silicon revision and device ID information. All infor-
mation including metadata are stored at specific addresses.
This allows the programmer to identify which data is meant
for what purpose. The address map is explained here and
summarized in Figure A-2.

0x0000 0000 – Flash Code Region Data: The flash code
data starts at address 0x0000 0000 of the hex file. Each
record in the hex file contains 64 bytes of actual data;
arrange these into rows of 256 bytes. This is because each
flash row of device is of length 256 code bytes (not including
the 32 configuration bytes, which are stored in another
region). The last address of this section depends on the
flash memory size of the device for which the hex file is
intended. As an example, for a device with a flash memory
capacity of 256 KB, the end address is 0x0003FFFF. See
the respective device data sheet or the Device Selector
menu in PSoC Creator to know the flash memory size of dif-
ferent part numbers.

0x8000 0000 – Flash Configuration Data: PSoC 3 devices
have an error correcting code (ECC) feature, which is used
to correct and detect bit error in main flash data. There is
one ECC byte for every eight bytes of flash data. Thus, there
are 32-bytes of ECC data for each row of flash. There is an
option to use the ECC memory to store configuration data if
you do not want the error correcting feature. The ECC
enable bit in the device configuration NV latch (bit 3 of byte
3) can be checked to confirm if the ECC is enabled. This NV
latch data byte is present at address 0x90000003. PSoC
Creator generates this section of the hex file only if the ECC
option is disabled. If this section is present in the hex file, the

data needs to be appended with the flash code data during
the flash programming step. For every 256 bytes in the code
region of flash, 32 bytes from this section are appended.
The last address of this section depends on the device flash
memory capacity. A device with 64 KB flash memory has
8 KB of configuration memory. In this case, the last address
is 0x80001FFF.

0x9000 0000 – Device Configuration NV Latch Data: A 4-
byte device configuration nonvolatile latch is used to config-
ure the device even before the reset is released. These four
bytes are stored in the addresses starting from 0x90000000.
One important bit in this NV latch data is the ECC enable bit
(bit 3 of byte 3 located at address 0x90000003). This bit
determines the number of bytes to be written during a flash
row write process. See “Nonvolatile Memory Organization in
PSoC 3” on page 74 for details of these four NVL bytes.

0x9010 0000 – Secured Device Mode Configuration
Data: This section contains four bytes of the write-once non-
volatile latch data that is used to enable device security.
Warning: Programming the WO NVL with the correct 32-bit
key locks the device; perform this step only if all previous
steps are passed without errors. PSoC Creator generates all
four bytes as zero if the device security feature has not been
enabled to ensure that there is no accidental programming
of the latch with correct key. Failure analysis support may be
lost on units after this step is performed with correct key.
Refer to Appendix B of the PSoC 3 Architecture TRM for
details on this device security feature.

0x9020 0000 – EEPROM: PSoC 3 devices have on-chip
EEPROM memory and the data to be programmed into the
EEPROM is stored in this region. EEPROM is programmed
row wise where each row contains 16 bytes. Because each
record in the EEPROM region of the hex file contains 64
bytes of data, each record has the data corresponding to
four contiguous EEPROM rows.

0x9030 0000 – Checksum Data: This 2-byte checksum
data is the checksum computed from the entire flash mem-
ory of the device (main code and configuration data). This 2-
byte checksum is compared with the checksum value read
from the device to check if correct data has been pro-
grammed. Though the CHECKSUM command sent to the
device returns a 4-byte value, only the lower two bytes of the
returned value are compared with the checksum data in the
hex file. The 2-byte checksum in the data record is in Big-
endian format (MSB byte is first byte).

0x9040 0000 – Flash Protection Data: This section con-
tains data to be programmed to configure the protection set-
tings of flash memory. Arrange data in this section in a single
row to match the internal flash memory architecture.
Because there are two bits of protection data for each main
72 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

http://www.cypress.com/?id=2232&rtID=117

flash row, a 64 KB flash (with 256 rows) has 64 bytes of pro-
tection data.

0x9050 0000 – Metadata: The data in this section of the hex
file is not programmed into the target device. It is used to
check the data integrity of hex file, silicon revision for which
the hex file is intended, and so on. The different data in this
section is tabulated as follows.

Table A-1. Metadata Organization in Hex FIle

Starting Address Data Type Number of Bytes

0x9050 0000 Hex file version 2 (big-endian)

0x9050 0002 JTAG ID 4(big-endian)

0x9050 0006 Silicon revision 1

0x9050 0007 Debug Enable 1

0x9050 0008 Internal use 4

Hex File Version: This 2-byte data (big-endian format) is
used to differentiate between different hex file versions. For
example, if new metadata information or EEPROM data is
added to the hex file generated by PSoC Creator, you
should distinguish between the different versions of hex
files. By reading these two bytes you can ascertain which
version of the hex file is going to be programmed. At pres-
ent, PSoC Creator generates only one type of hex file and
this field always has a constant value of 0x0001. The only
value that this field accepts is 0x0001 because there is only
one version of the hex file.

JTAG ID: This field has the 4-byte JTAG ID (big-endian for-
mat), which is unique to each part number. Compare the
JTAG ID read from the device with the JTAG ID present in
this field to make sure the correct device for which the hex
file is intended is programmed. See the device data sheet
for information on the JTAG IDs of different part numbers.

Silicon Revision: This 1-byte value is for the different revi-
sions of the silicon. For the same manufacturing part num-
ber, there are different revisions of the silicon such as ES1,
ES2, and ES3. Production PSoC 3 devices also have the
same revision number as ES3. For PSoC 3, the revision IDs
are as follows:

0 - ES1; 1 - ES2; 2 and above - ES3

Debug Enable: This 1-byte data stores a Boolean value
indicating if debugging is enabled for the program code.
This is also not used in programming. The possible values
for this byte are:

0 – Debugging Disabled, 1 – Debugging Enabled

Internal Use: The 4-byte data is used internally by the
PSoC Programmer software. It is not related to actual
device programming and need not be used by programmers
of third-party vendors.

Figure A-2. PSoC 3 Hex File Address Map
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 73

A.2 Nonvolatile Memory
Organization in PSoC 3

PSoC 3 devices have three types of nonvolatile memory:
flash, electronically erasable programmable read-only mem-
ory (EEPROM), and nonvolatile latch (NVL). This section
gives a quick overview of the interface used to program the
nonvolatile memory. It also discusses nonvolatile memory
organization. Note that programming EEPROM using exter-
nal programmer is not defined in this document. Refer to the
“Memory” section of the PSoC 3 Architecture TRM for
detailed information on these topics.

A.2.1 Nonvolatile Memory Programming

All nonvolatile memory programming operations are done
through a simple command/status register interface
summarized in Table A-2.

Table A-2. SPC Command and Status Registers

Commands and data are sent as a series of bytes to either
SPC_CPU_DATA or SPC_DMA_DATA, depending on the
source of the command. The programming procedure in this
document always uses the SPC_CPU_DATA register.
Response data is read via the same register to which the
command is sent. The status register, SPC_SR, indicates

whether a new command can be accepted, when data is
available for the most recent command, and a success/fail-
ure response for the most recent command.

A.2.2 Commands

Before sending a command to the SPC_CPU_DATA or
SPC_DMA_DATA register, the SPC_Idle bit in SPC_SR[1]
must be ‘1’. SPC_Idle will go to ‘0’ when the first byte of a
command (0xB6) is written to a data register, and go back to
‘1’ when command execution is complete or an error is
detected. Commands sent to either data register while
SPC_Idle is ‘0’ are ignored. All commands must adhere to
the following format:

 Key byte #1 – always 0xB6

 Key byte #2 – 0xD3 plus the command code (ignore
overflow)

 Command code byte

 Command parameter bytes

 Command data bytes

Refer to the “Nonvolatile Memory Programming” chapter in
the PSoC 3 Architecture TRM for a list of command codes
and the explanation, parameters, and return values for each
command.

A.2.3 Command Status

The status register, SPC_SR, indicates whether a new com-
mand can be accepted, when data is available for the most
recent command, and a success/failure response for the
most recent command. The bit-field definitions of the
SPC_SR register is given in Figure A-3.

Figure A-3. SPC_SR Status Register Bit Field Definitions

Data_Ready bit: This bit (Bit [0] of SPC_SR) indicates
whether the SPC has data that is ready to be read from the
SPC CPU or DMA Data Register.

SPC_Idle bit: This bit (Bit [1] of SPC_SR) indicates whether
the SPC is currently executing an instruction. The bit transi-
tions low as soon as the first byte of the 2-byte command
key (0xB6) is written into the SPC CPU or DMA Data Regis-
ter. The bit transitions high as soon as an instruction com-
pletes or if the second byte of the command key is invalid.

Status_code (5-bit status code): The Status Code (Bits
[7:2] of SPC_SR) represents the exit status of the last exe-

cuted SPC instruction. The values of this field are given in
Table A-3.
74 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

http://www.cypress.com/?id=2232&rtID=117
http://www.cypress.com/?id=2232&rtID=117

Table A-3.

SPC Status Code (Bits[7:2]
in SPC_SR register)

Meaning

0x00 Operation successful

0x01 Invalid array ID for given command

0x02 Invalid 2-byte key

0x03 Addressed nonvolatile memory array is asleep

0x04 External access failure (SPC is not in external access mode)

0x05 Invalid ‘N’ value for given command

0x06 Test mode failure (SPC is not in programming mode)

0x07 Smart Write Algorithm checksum failure

0x08 Smart Write Parameter checksum failure

0x09
Protection check failure: Flash protection settings are in a state that prevents the given
command from executing

0x0A Invalid address parameter for the given command

0x0B Invalid command code

0x0C Invalid row ID parameter for given command

0x0D Invalid input value for Get Temp and Get ADC commands

0x0E Tempsensor Vbe is currently driven to an external device

0x0F Invalid SPC state

0x10 – 0x3F Smart Write return codes (only when using Smart Write algorithm)

0x20
PEP program failure (only when using PEP algorithm): data verification failure (row latch
checksum != programmed row checksum)

Status Codes for an SPC Command

A.2.4 Nonvolatile Memory Organization

A.2.4.1 Flash Program Memory

PSoC 3 flash memory has the following features:

 Organized in rows, where each row contains 256 code bytes plus 32 bytes for either error correcting codes (ECC) or con-
figuration data storage. Flash memory can be programmed in resolution of rows.

 Organized as one block (Array) of 64, 128, or 256 rows depending on flash size. For a 64 KB flash memory size, the max-
imum number of rows in PSoC 3 is 256. Flash memory size refers only to the code space and not the configuration region
size (ECC region used as configuration data).

 For each flash row, protection bits control whether the flash can be read or written by external debug devices and whether
it can be reprogrammed by a boot loader. For each flash array, flash protection bits are stored in a hidden row in that
array. In the hidden row, two protection bits per row are packed into a byte, so each byte in the hidden row has protection
settings for four flash rows. PSoC 3 has a maximum of 64 protection bytes because the maximum flash memory size is
64 KB (64 KB = 256 rows).

A.2.4.2 EEPROM

PSoC 3 EEPROM has the following features:

 Organized in rows, where each row contains 16 bytes.

 Organized as one block (array) of 32, 64, or 128 rows, depending on the size of EEPROM memory.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 75

A.2.4.3 Device Configuration NVLs

PSoC 3 has a 4-byte array of device configuration NVLs that are used to configure the device at reset. The NVL register map
is shown in Table A-4.

Table A-4. Device Configuration NVL Register Map

User NVL byte 7 6 5 4 3 2 1 0

0x00 PRT3RDM[1:0] PRT2RDM[1:0] PRT1RDM[1:0] PRT0RDM[1:0]

0x01 PRT12RDM[1:0] PRT6RDM[1:0] PRT5RDM[1:0] PRT4RDM[1:0]

0x02 XRESMEN DEBUG_EN PRT15RDM[1:0]

0x03 DIG_PHS_DLY[3:0] ECCEN DPS[1:0] CFGSPEED

Note The DEBUG_EN and DPS[1:0] are highlighted in blue to emphasize their importance for the programming interface.

Table A-5 shows the details for individual fields and their factory default settings that are relevant to device programming.
Refer to the "Nonvolatile Latch" chapter of the PSoC 3 Architecture TRM for more details

Table A-5. Device Configuration NVL Register Description, Default Values

Field Description Settings

XRESMEN
Controls whether pin P1[2] is configured as a
GPIO pin or as an XRES pin.

0 (default value for devices with dedicated XRES) - GPIO pin

1 (default value for devices without dedicated XRES) - XRES
pin

DEBUG_EN
For external programmer it defines if access to
Debug subsystem (DoC) is enabled or disabled.

0 – disabled

1 – enabled (default)

DPS[1:0]
Controls the usage of various Port 1 pins as a
debug/Programming port.

00b - 5-wire JTAG

01b (default) - 4-wire JTAG

10b - SWD

11b - debug ports disabled.

ECCEN
Controls whether ECC flash is used for ECC or
for general configuration and data storage.

0 (default) - ECC disabled

1- ECC enabled

.

PSoC Creator enables modifying the device configuration NVLs. However, the number of NVL erase/write cycles is limited.
See the PSoC 3 device data sheet for NVL specifications.

There are four settings in NVL that are relevant to the programming flow.

 Debug Port Select (DPS) setting: This 2-bit value determines the default protocol that is used to program or debug the
device through the Port 1 pins without sending the Port Acquire key. Entering programming mode through JTAG interface
is dependent on DPS setting.

Note The DPS setting is relevant only for JTAG interface programming. The only recommended DPS settings for JTAG
programming are 4-wire JTAG and 5-wire JTAG. Though not recommended, JTAG programming will work even if the DPS
setting is SWD. Programmers that support JTAG interface programming should not allow a hex file with "Debug Ports Dis-
abled" setting to be programmed to the device, as this prevents further programming of the device through the JTAG inter-
face.

 Debug Enable setting: This bit is only available in the PSoC 3 devices of revision 5 or later. Its value is crucial for com-
patibility with third-party tools and compliance with the JTAG standard. If it is set, then the external programmer can
access all I/O registers of the silicon and thus execute the programming algorithm. In addition, ensure that DPS is set to
SWD or JTAG; if not, access to the Debug Port will not be available and the Debug Enable setting will not have any effect.

 XRESMEN setting: P1[2] pin may be configured either as an external reset (XRES_N) pin or as a GPIO pin. The configu-
ration of that pin is controlled with this NVL bit.

 0 - P1[2] is a GPIO pin. This is the default factory setting for non 48-pin devices that already have a dedicated XRES
pin.
76 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

http://www.cypress.com/?id=2232&rtID=117
http://www.cypress.com/?id=2232&rtID=107

 P1[2] is configured as a XRES_N. This is the default factory setting for 48-pin devices that do not have a dedicated
XRES pin.

To program 48-pin devices, which do not have a dedicated XRES pin, the P1[2] pin can be used as an XRES. To facilitate
this, 48-pin devices that come out of the factory have default value of XRESMEN = 1. Take care not to program the device
with NVL setting of "XRESMEN = 0". Otherwise, It is not possible to program the device further using XRES pin as P1[2]
is now configured as a GPIO pin. Power cycle mode programming is the only available option if P1[2] is disabled as XRES
pin for 48-pin devices.

To program non 48-pin devices, which have a dedicated XRES pin, the P1[2] pin cannot be directly used as an XRES pin.
This is because the devices with dedicated XRES pin that come out of the factory have default value of XRESMEN = 0.
The reason for this feature is that there is a dedicated XRES pin already available; only in rare cases P1[2] is also used as
an XRES pin.

 ECCEN setting: Flash memory in PSoC 3 is organized in rows, where each row contains 256 code bytes plus 32 bytes
for either error correcting codes (ECC) or configuration data storage. The ECCEN bit determines whether these 32 bytes
are used for error correction or data storage.

 0 (default) - ECC feature is disabled

 1 - ECC feature is enabled

If the ECC feature is disabled, then during the Programming Flash step, 288 (255 + 32) bytes need to be loaded while pro-
gramming each flash row. If ECC is enabled, only 256 bytes need to be loaded.

A.2.4.4 Write Once Nonvolatile Latches (WO NVL)

You can write the key in WOL to lock out external access only if no flash protection is set. In the programming flow, program-
ming of WOL is done before the flash protection bytes.

Note that when the WO NVL is programmed with the correct 32-bit key (0x50536F43) and the device is reset after program-
ming, the part cannot be programmed further, and becomes an OTP (One Time Programmable) device. The WO NVL locks
the part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. This
step should be exercised with extreme caution considering these effects.
PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L 77

A.3 Example Schematic

The following figure shows an example reference schematic for the 100-pin TQFP part with the power connections. This can
also be used for the other PSoC 3 packages; however, the pinout will vary for each package. See the PSoC 3 device data
sheet for information on specific package pinout and for specifications on power supply pins. Note that Figure A-4 does not
show the programming connections between the host programmer and PSoC 3. This is illustrated in Figure 1-1 on page 6.

Figure A-4 shows that:

 The two pins labeled VDDD must be connected together.

 The two pins labeled VCCD must be connected together, with capacitance added. The trace between the two VCCD pins
should be as short as possible.

 The two pins labeled VSSD must be connected together.

Figure A-4. 100-pin TQFP Part with Power Connections

Note The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recom-
mended.
78 PSoC 3 Device Programming Specifications, Document # 001-62391 Rev. *L

http://www.cypress.com/?id=2232&rtID=107
http://www.cypress.com/?id=2232&rtID=107

	PSoC 3 Programming Specifications
	Contents
	1. Introduction
	1.1 Host Programmer
	1.2 Hardware Connections
	1.2.1 SWD Interface
	1.2.2 JTAG Interface

	Document Revision History

	2. PSoC 3 Programming Interface
	2.1 Test Controller Block
	2.1.1 Debug Port/Access Port (DP/AP) Access Register
	2.1.1.1 Write to DP/AP Access Register
	2.1.1.2 Read from DP/AP Access Register

	2.1.2 Debug Port/Access Port (DP/AP) Registers

	2.2 SWD Interface
	2.2.1 Register Access Using SWD Interface

	2.3 JTAG Interface
	2.3.1 Register Access Using JTAG Interface

	2.4 Switching between JTAG and SWD Interfaces
	2.4.1 SWD to JTAG Switching
	2.4.2 JTAG to SWD Switching

	3. PSoC 3 Programming Flow
	3.1 Step1: Enter Programming Mode
	3.1.1 Enter Programming Mode through SWD Interface
	3.1.1.1 SWD Programming using XRES Pin
	3.1.1.2 SWD Programming using Power Cycle Mode:
	3.1.1.3 SWD Programming using Bit Banging Host Programmers:
	3.1.1.4 Determine fSWDCK_BITBANG:

	3.1.2 Enter Programming Mode through JTAG Interface
	3.1.2.1 JTAG Acquisition Sequence
	3.1.2.2 JTAG Compliant Entry in Programming Mode

	3.2 Step 2: Configure Target Device
	3.3 Step 3: Verify JTAG ID
	3.4 Step 4: Erase Flash
	3.5 Step 5: Program Device Configuration NVL
	3.6 Step 6: Program Flash
	3.7 Step 7: Verify Flash (Optional)
	3.8 Step 8: Program WO NVL
	3.9 Step 9: Program Flash Protection
	3.10 Step 10: Verify Flash Protection (Optional)
	3.11 Step 11: Validate Checksum
	3.12 Step 12: Program EEPROM (Optional)
	3.13 Step 13: Verify EEPROM (Optional)

	4. Programming Specifications
	4.1 SWD Interface Timing and Specifications
	4.2 JTAG Interface Timing and Specifications
	4.3 Programming Mode Entry Specifications

	5. SWD and JTAG Vectors for Programming
	5.1 Step 1: Enter Programming Mode
	5.1.1 Method A
	5.1.2 Method B
	5.1.3 Method C
	5.1.4 Method D

	5.2 Step 2: Configure Target Device
	5.3 Step 3: Verify JTAG ID
	5.4 Step 4: Erase All (Entire Flash memory)
	5.5 Step 5: Program Device Configuration Nonvolatile Latch
	5.6 Step 6: Program Flash
	5.7 Step 7: Verify Flash (Optional)
	5.8 Step 8: Program Write Once Nonvolatile Latch
	5.9 Step 9: Program Flash Protection Data
	5.10 Step 10: Verify Flash Protection Data (Optional)
	5.11 Step 11: Validate Checksum
	5.12 Step 12: Program EEPROM (Optional)
	5.13 Step 13: Verify EEPROM (Optional)

	A. Appendix
	A.1 Intel Hex File Format
	A.1.1 Organization of Hex File Data

	A.2 Nonvolatile Memory Organization in PSoC 3
	A.2.1 Nonvolatile Memory Programming
	A.2.2 Commands
	A.2.3 Command Status
	A.2.4 Nonvolatile Memory Organization
	A.2.4.1 Flash Program Memory
	A.2.4.2 EEPROM
	A.2.4.3 Device Configuration NVLs
	A.2.4.4 Write Once Nonvolatile Latches (WO NVL)

	A.3 Example Schematic

