(infineon

SPI1 3.0 handler/driver user guide

TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and use of the serial peripheral interface (SPI)
handler/driver. This document explains the functionality of the driver and provides a reference to the driver’s
API.

The installation, build process, and general information on the use of the EB tresos are not within the scope of
this document.

Intended audience

This document is intended for anyone who uses the SPI handler/driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the SPI handler/driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the SPI handler/driver details the steps on how to use the SPI handler/driver in your
application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the SPI
handler/driver.

Chapter 4 EB tresos Studio configuration interface describes the driver’s configuration.
Chapter 5 Functional description gives a functional description of all services offered by the SPI handler/driver.
Chapter 6 Hardware resources gives a description of all hardware resources used.

The Appendix A and Appendix B provides a complete API reference and access register table.
Abbreviations and definitions

Table 1 Abbreviation

Abbreviation Description

API Application Programming Interface

ASClI American Standard Code for Information Interchange

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

Basic Software Standardized part of software which does not fulfill a vehicle

functional job.

DEM Diagnostic Event Manager

DET Default Error Tracer

GCE Generic Configuration Editor
User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-30203 Rev. *H

www.infineon.com 2024-07-22

http://www.infineon.com/

o _.
SPI1 3.0 handler/driver user guide < In f| neon

About this document

Abbreviation Description

EB tresos Studio Elektrobit Automotive configuration framework

ISR Interrupt Service Routine

uc Microcontroller

MCAL Microcontroller Abstraction Layer

MPU Memory Protection Unit

PCLK Peripheral Clock

SPI Serial Peripheral Interface

SCB Serial Communication Block

UTF-8 8-Bit Universal Character Set Transformation Format

Related documents

AUTOSAR requirements and specifications

Bibliography

[1]
[2]
[3]
[4]
[5]

General specification of basic software modules, AUTOSAR release 4.2.2.
Specification of SPI handler/driver, AUTOSAR release 4.2,2.
Specification of standard types, AUTOSAR release 4.2.2.

Specification of default error tracer, AUTOSAR release 4.2.2.

Specification of memory mapping, AUTOSAR release 4.2.2

Elektrobit automotive documentation

Bibliography

[6]

EB tresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[7]

Layered software architecture, AUTOSAR release 4.2.2.

User guide 2 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

Table of contents

Table of contents

About this dOCUMENT....ccciiiiiiiiiiiiiriiiiiiiriiiriiiseiirsisrsestseisrssssessssssrssssesss 1
Table Of CONtENES....ciuuiiiiiiiiiiriiiiiiitiiiraitiitteiitaitseieseisraesnsessssssassrsss 3
1 GENEral OVEIVIEW c.cvuuireuirnnirnirneirseisracraessseisrssrsssnss 7
1.1 INtroduction tO the SPINANALEr/ATIVET ...ttt bae e e ssbae e e ssbareesnns 7
1.2 (U ESY =T o o 71 TSRS 7
1.3 Embedding in the AUTOSAR €NVIFONMENT.....c.iiiiiietietetieeeteseetesteeeetesteeeesseseessesseessessesssessessesssenns 8
1.4 SUPPOIEA NANAWAIEeeieieciecieeseeeteete ettt e te et e et e e s e e s te s te s be s beessaeesaessseesseesseesseessnesseesnsanns 9
15 DeVelopmMENTt ENVIFONMENT.......cccveciieieierteetecte et etee e et estesteseesseetessesseesessesssessassesssessesssessesssessessessenns 9
1.6 Character Set and ENCOAINGcouiiiiriiieieteete ettt ettt et s et e bt et e sbe st et e sae et e sbesatentens 9
1.7 Y LUl oo T =B U] o] o Yo TSP 9
1.7.1 YT Tl T =N 1] o =TT 9
1.7.1.1 Single core only (MUILICOTE tYPE 1) vouveiiiririrerierieieteteeeesesese ettt s sa e e e saesnas 9
1.7.1.2 Core dependent instances (MUILICOre tyPe) c.eivueeieeieeeeeereeeeeeee et enens 10
1.7.1.3 Coreindependent instances (MUlticore type 1) c..oveceeeeceerieeeeceeeeceece ettt 10
1.7.2 VIrtUQL COME SUPPOIT ettt ettt ettt s te e e te e te s be e s e e s st e et e ebeebe e baesseesraesatasnsaesassseenseennes 11
2 Using the SPI handler/driVer.....ccciiviiuciiiiniieciniiicceeiiniieectesisicsesissisccsssssscsessssssscssssssssssssssssssssss 12
2.1 INStallation aNd Prer@QUISITES....cviriieeecieriete ettt e e et e e e se e e e et e sre s e e s e sreessassesssenseensenses 12
2.2 CONFIGUINNG ThE SPLANIVET .c.viiiiiieteiete ettt st sttt a et sb st e b et e saeteaeneenesnnesas 12
2.2.1 ArCNITECTUIE SPECITICS ceuuiiiiieietereee ettt e e e e e s s e e s e tesseessesseessessneseenses 12
2.3 Adapting YOUTr @PPLICATION .couiiuiriiierteieteteteee ettt sttt et et a e s bt sbe st e e se s s ee 13
2.4 STaArting the DUl PrOCESS....c.iiiiiiiete ettt ettt st s et e be st st esae e 14
2.5 Measuring StaCk CONSUMPLIONccueiririrertertertetete ettt ettt ettt sesresbesbessenaeseenaeseenessens 14
2.6 MEMOIY MAPPINE c.eeeiuiieeeeieeieerttest et ete et et e st e s te s et s st esstesatesatesabe s beebt e st esatesasesaseenstensaesseesasessenas 14
2.6.1 MemOory alloCation KEYWOIocuieiiiiieiieceecteee ettt et te e be e be e beesreesrae s teste e reessaesnteenes 14
2.6.2 Memory allocation and CONSTIAINTS.......ccuieeriereeieceseeee et sa e e e sesneenes 15
3 Structure aNd dePENUENCIES....cuceieiieiiniiececeiiatteteecestssssssecascssssssscsscsssssssssscsssssssssscsssassssssssssass 18
3.1 SEALIC ILES wevitereteiet ettt et b st ettt bt e et b e e r e b et et et et et eneeneeaeens 18
3.2 CONFIGUIAION FIlES .ttt ettt ettt s a s bbb e st et e e e e enesaeenes 18
33 GENEIALEA FIlES vttt ettt st b e s bbbttt s b s bbbt et et neenesaeenes 18
34 D 1=YoT<T oo [T Vol 1L USSP 19
34.1 PORT IV ittt ettt sttt ettt et ettt st a s bt s b et et et et e st ebesbe b esbebensententeneenesannas 19
3.4.2 MU AFIVET cntiieteeteteetet ettt et et e st et e s te st et sa e e be s st et e besatessesseest e sesssensesaesnsansesasensensesnsensesnsenses 19
343 DIO AFIVET cuietiieieeteieetetestt ettt ettt e st e st e st e sa e et e s et et e besat e s esbe e st e besssenbesaesnsanbesasensensesnsensesnsenses 19
3.4.4 AUTOSAR OS...oiieieieteiteteeeiesteste st ettt sst bt sbesbe st et et et e st sseebesbessensestententesesseesessesensensenteneesessens 19
345 BSW SCREAUIET ...ttt sttt ettt et ettt e sae st et e sanebessaestensesnsensas 19
3.4.6 DET ettt ettt ettt sttt ettt ettt et e b e s bbbttt a e bbb e b e b et et et e Rt e a e e R e e b e be st et et et et et eneeaeenes 19
3.4.7 DEM ettt ettt e e e e e sttt e e e s e s st bt e e e e s e s s s b at e e e e s se s nraaaaeeeees s nraaaeeeeses s nrrnaaeeeesesnnrn 19
3.4.8 Error CallOUt NaNAIEr.....covieieieeee ettt ettt a st a e s s s b e sae s e enees 20
3.4.9 DIMA ettt ettt st ettt ettt et b e s bbbttt e h e bbb e b et et et et e at e R b e b et et et et et et eneeaeeaes 20
4 EB tresos Studio configuration interface.....ccccceiiuiiieiiniinciiiiniineiiiinciienieiiseiiisseiessccsssescsecse 21
4.1 GeNEral CONFIGUIATION ...ueiiiiiiieteece ettt ettt st b e bt n et saeenes 21
4.2 SPIArIVEr CONFIGUIATION ..ottt ettt st sb e bt nes 21
42.1 Channel CONFIGUIAtION ...couivuiriirieiiieietete ettt ettt ettt sb e st st be bt e e e bene 21
4.2.2 JOD CONFIGUIAION ...ttt ettt sttt s e e s s et esae st e besanessenseeneenns 22
4.2.3 External device CONfigUIration........coceirieirininiceee ettt sttt 23
4.2.4 SeQUENCE CONFIGUIATION....couitiiititeieteteteert ettt ettt et sb s bbb et et seee 26
4.2.5 SPIDEM event parameter refErENCES.....couvviririrciereeteertetese ettt ettt ae e 27
User guide 3 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

Table of contents

4.2.6 SPI published iINfOrMatioNccuecieeeeee ettt s a e re e e 27
4.2.7 SPIMULLICOIE 1.ttt ettt te et e st e st e st e s b e e e et e sse e st essesseesseeseessasesseessesseensansesseassensesssenes 27
4.2.8 SPICOrECONTIGUIALION ..cvvieieieeieteteeeeteeee ettt e et e te s e ae e e e s e s e e e e s e sse et assesseansassesssenes 27
4.3 Vendor and driver-Specific PArameEters ... ccceeeeiiceeeseee et ettt te e e e e besreeaens 28
43.1 CONtAINET SPIGENEIAL..ccuviceieiiiieieceeeeeeee ettt e re et e st e et eae e e et e s s e s e e saesseessessesseassesseessenes 28
43.1.1 SPIErTOrCalloOUTFUNCHION ... ciiiiiiictcctcctecte ettt sre s be e te s e st e e te s beesbeesbaesrnesnaesneaens 28
43.1.2 SPINCIUAEFILE. ... ettt ettt e s s e et e s se e s esbesseesesseessesseensensesseensans 28
4.4 OthEr MOAULES ...ttt ettt st b e bbb ettt be s bt e bbb e s et e e eneenesaenes 28
441 0T e [Y= RO P 28
4.4.2 DT ettt ettt ettt st e s e e s e s et e s e et e s e n et e s e et e s e Rene s e R e ne s e s nenee e e nreee e e nenes 28
443 AUTOSAR DSttt eeett e ettt e s sett e e s satte e sssste e e ssssteessssasesssstaessssaaesssssaeesssssesesssssesesssnsanenns 28
444 BSW SCREAULET ...ttt ettt e te et e e te e s e e et e e be e be e be e baesseesreesstesntasssaesaenseennes 29
5 FUNCtional descriplion........ceeeeueniirirmnniininnnniiiniinniiieinnuiisseennissesnssssssssassssssssssssssssssssssssssasses 30
5.1 Channels, jODS, aNd SEQUENCES.......c.veciiririecieeeeieeeetete st e re e s te e ereeses e s s essesseessessesssessassnessessesssenes 30
5.1.1 (01 0 F= YoV =] £ OO USSP 30
51.1.1 GNEIAL ceetitiietetete ettt ettt ettt ettt et ettt et sh e b e b b et et et e at e bt s bt be b et et et et eneeneeaees 30
5.1.1.2 Internally buffered ChannElsovoeeieecee e 31
5.1.1.3 Externally buffered ChannelS.........ceeieeiececieeeceee ettt e eas 31
51.1.4 DAta DUFFEIS ..ttt ettt st b ettt ne e 32
5.1.2 o] o 1 OO PSR 32
5.1.3 SEUUENCES .eeetreeieitteeeeeiteeeeeirteeeeestteeseessteeesesteessastaessassraessssssaessssseeesssssteesssssseesssssseesssssseesssssseesssns 32
5.1.4 SCNEAULING ettt sttt et ettt sb et et et et e e st s s be s b e sbenbe st et eneenesaeesenne 33
5.2 [N CLUSTON 1ottt ettt st e te e e et e e st e e st e e st e e rte e be e baesbeesraesatesstaasbeaasaesssessseasseansaessnesseesntensanns 33
53 INTEIALIZATION ettt ettt sttt ettt ettt b e s bbb e b e ae e ne et nenaeas 33
5.4 D VIV =] 1= 14 Lo o USRI 33
5.5 RUNTIME r€CONTIGUIATION . etiteieteeeeeeeeer ettt e st st sb et e saeaesnesaenesseas 33
5.6 AP PArameter ChECKINGccueiririietirtetetete ettt sttt ettt et st sb st b et e e et e e eneeseee 33
5.6.1 AUTOSAR specified deVeloOpmMENT @ITOrS......c.eicuieuieiecreeeecteseecteee ettt re v te et e eae e aaennes 34
5.6.2 Vendor-specific deVElOPMENT EITOIS......vicieieeeeeeereeee e e e nes 34
5.7 PrOTUCTION EITOIS ..ttt ettt ettt ettt sae bbb e st et et e st e s s seebesbesbebensensenaeneeseesassens 35
5.8 REENEIANCY ittt ettt e e e e e st e e e e s s e s e nsae e e e e e s se s nnsrbaaaesssesennsanaaaaeeesesnnnnns 35
5.9 RS 1T T 0 0o e [TR 36
5.10 DEDUGEING SUPPOI...cueiiieieiieieeiteteetete sttt sttt ettt s et esae et esse st e ssessaesbessesntessesasensasesssensesssenses 36
5.11 Execution time dePeNAENCIESccvieiecieriete ettt te et se et e s re s s et e sree s e seesnenseesnenes 36
5.12 DeVIation froM AUTOSARcoueiiieieteeeteerte ettt ettt s s bbb e st et et et e s s seebesbesbenbensensensensentesessens 36
5.13 CAVEALS ettt et s et e e st e e s e bt e e e s bt e e e e bt e e e s b aee e e ab e e e e e aaeeee e baeeeesraeeessnraes 36
5.14 Functions available without core dependencyc.coecvereeieceeeccceeeee et 37
6 HardWare FE@SOUNCES c..cvueireeiirncrasrsesesesrssrsessssssssssrss 38
6.1 POFES QN0 PINS..iiiiiiiiiiiiiiiiieire ettt ssesse s e e s e e s sessaessaeesseesseesreesssesssasbessseesssessseessessseessnesseesssesssenns 38
6.2 TN ettt ettt ettt s e st s bt e bt e s bt e s at e s a b e st e e b e e bt e e at e st e e b e et e e b e e s Ra e s Rt e st e e b e e be e saesatenane 38
6.3 NI UPTS ceeeeteeeeeete ettt ettt ettt e e ettt e e s ettt e e s s bt e e seasr e e e s s seeeessnssaeesansseeessssseaesasssaaessnsanessssanesassnnenns 38
6.4 DM A ettt ettt et e e s et e e e s s s r bt e e e e e e e s b bt e e e e e e e s e araaeeeese s nn bt aaeeeeeess s nnrnaaaeeesessnnne 39
7 APPENAIX A — APl refereNCe . cuiiuiiieiieiiitcaiieiietiecsetaitesietsecasssstessesssssssssessessssssssssesssssssssssssesssns 40
7.1 INCIUAE FILES.. ittt ettt et e s et st et e st e s e e saessesseestessesasessansesssenseensenses 40
7.2 D = N 0 L= LSOO OO SO SO OTTSPPTRTPTPP 40
7.2.1 S S ATUSTYPE ettt ettt st st st e st e et esat e st e st st e s s e e se e raesaeesatesabesaraeas 40
7.2.2 SPI_JODRESUILTYPE ettt s e s re s s te s be e sbaessaesraesssessaesssnessnessnesanesssesssanns 40
7.2.3 S SEORESUILTYPE ettt sttt et et sre e s e e sre s tessbassbaesbaessaesssesssesssasssaessaesseesssesssesssanns 40
7.2.4 S DatABU I TY PO ettt ettt st et st be et s e e s e st et e sae et e be st e sesaaeneenns 41
User guide 4 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

Table of contents

7.2.5 SPI_NUMDEIOTDAtATYPE. .. eecieetieiecieeeeteee ettt et e et e e s e et e ste s e eae e e e tesbe e s estesseessesaessensessaessenes 41
7.2.6 R I 01 - T U= N 5] o L= TSP 41
7.2.7 Ry oI Lo o) Y] o1 TSRS 41
7.2.8 S SEQUENCETYPE ceeiiteiiteeeiteerteestte sttt es e e s ttess bt e s sbaesssteessbeesssbeessbaessssaesssaesssseesssasessaessssaesssseenns 41
7.2.9 SPI_HWUNIETYPE ceteuieiieeieeiertetest sttt et e st e sae e st e ste s bessba s baessaesssesssesssesssasssesssessseessnesssesssenns 42
7.2.10 SPI_ASYNCMOAETYPE ..eeiiiieieeieecteete et rte e se e eeste e s ae s e s te s ba s beessaessaesstesssesssassseessaesseesnsesssessasns 42
7.2.11 S EX D EVICETY P eieeieeieeiteterte sttt ettt s e st e st e s be s ba s baessaesasesssesssesssasssaessaesssesasessesssanns 42
7.2.12 SPI_OVSVAIUETYPE ettt te st te e st et e sae s e et e sse et e ssesseasseese e st e seesaessesssensansesssansensesssenns 42
7.3 CONSTANTS ..eteiiecteee ettt ettt e ettt e s et e e e s bteessnste e s s sstee s s sstaesssseasessssaaeesssstasessssnesessseessssnseeesnsrsees 43
7.3.1 EITOT COARS ..ttt ettt ettt sttt e et et e e b s b e b e st e b e s et enteneenesannes 43
7.3.2 V<o T g oY=t ol I Tolt =Yg o o oo T [=T-3 USRS 43
7.3.3 Version INFOIMAtION ..ccueciiiiciceceece ettt e e e et e e e e s be e st e besreenseeseensesseenaansas 44
7.3.4 MOAULE INFOIMATION ..ttt ettt ettt b s b s b st e e e b et e e e e saeenes 44
7.35 AP SEIVICE IDS oeeeviieiieiiieeetteectte st e st esste e s te e e saeessve e s baeessba e s aaesssseessbaeesssassssaesnssessssasensaesssseessaen 44
7.3.6 VeNdOr-SPECIfiC APl SEIVICE IDS...ccuiicieeeeeiecieeeeriee e e seetesresee e e s s e sessaessesseessessesssessessesnsensesssenses 45
7.3.7 INVALIA COTE ID VALUE ..cevietieetecteceee ettt sttt te et s e e et e e be e be e beesbaesbeesaaesntesntaessaessaesseennes 45
7.4 FUNCEIONS 1ttt et e e e e s s ta e e s be e s bt e e s bee s saeessbaeessaesasseesssseesssasessaesasseesssaeenns 45
7.4.1 Y o1 1 1 SO OO OO OO OO UPRUPRRPRRPPPRO 45
7.4.2 SPI_DEINIT ettt s et e st e et e e et e e sebe e et e e e rae e et ae e rae e e bae e baeeebaeenraeens 46
7.4.3 SPI_WIITEIB ..o ettt sttt et e s sre e st e st e st e s ba s baesbaesseesssesssasssaessaensaesseessnesssesssanns 47
7.4.4 SPI_ASYNCTIANSIMIT .oeuiiiiiisiiietietintestessresseeseeseeseeseesseessesssasssaessaesssesssesssessseessasssaesseesssesssasssasns 48
7.4.5 SPI_REAAIB ..ttt re et s e s te s e s te s be e be e et e e e s e e ert e et e e be e be e baesreeereeenteenraans 49
7.4.6 SPI_SETUPEBttt sttt et e st e st e s e st e st e s ba s ba e sba e s s e e sss e s s s e e beessa e saesaeesreesaresaraens 50
7.4.7 S GEES ATUS. .. ettt et e et e e s be e et e e s e e e e bae e rae e e bae e baeeebae e raeens 51
7.4.8 Ry oI =y o] o] 2L U TR 52
7.4.9 SPi_GEtSEUENCERESUILeeeveteeeieieeeetee ettt ettt re s e et e ste s e e ae e e et e se s e et e sreessensesseessessesseenes 53
7.4.10 SPI_GELVEISIONINTO ..ottt ettt ettt et e be e e ae e e e b e be e e ebesssenbesbeesaensenseensenns 54
7.4.11 SPI_SYNCTIANSIMIT c.eteiieiieicteeterteere sttt et e se e sre e s e e sre s tessbassbaesbaessnesssesssessseessaessnessnesseessesssanns 55
7.4.12 SPI_GEEHWUNIESTATUS ..eeeiiieecite ettt sttt ssre e e ste e s ae e s te e s sare e e bee s baeesabae s seeesnseesnsananns 56
7.4.13 Y o -] =] USSP 57
7.4.14 SPI_SELASYNCMOUE...... ettt ettt et e re e et e st e e e sbesre e seere e e e sessaessesseessansesssassessasssenes 58
7.4.15 SPI_GEtBUTTEISTAtUS cuvetieiieciecticieeeeectee ettt ettt ettt et be e e e ae e e et e be e s e besseensesbeesaensenseensenns 59
7.4.16 Y T =1 4011 0 =L (T OO OO O PP PUPRTPRRPPPRO 60
7.4.17 SPI_ChangEOVSSELIING ...coteeieriirieieeeeteeee ettt ettt st st sbe st e ae s et e s e st e tesse et esbe st ensessaessenes 61
7.5 SCHEAUIE FUNCLIONS ...viteceeteeeetee ettt ettt s et et e be et e e be et e beesa et e sreensebesssensenseensanes 62
7.5.1 SPi_MainFUNCEION_HANAUNG c.cveriiieieieieieereeeeee sttt sr et 62
7.6 Required Callback FUNCLIONScceivieieececeeeece ettt ettt bt et s et e reeaeeseeanennas 63
7.6.1 SPINOtIfiCation FUNCLIONS .c..ovviiiiiieieie ettt sttt 63
7.6.1.1 SPi_JOBENANOLIfICAtION ...eereiieiceceeeeeeee ettt et e e se e e e rnenaens 63
7.6.1.2 SPi_SeQENANOLIfICAtION ..eoiiiieieieeieeee ettt ettt s e s ae e e be s e enaens 64
7.6.2 DET ettt ettt et s et st ettt ettt e b e s bbbttt a e h e b s b e b e b et et et et e a e e R e s b e b et et et et et et eneeaeeas 64
7.6.2.1 (D<) i (=T o Yo] 1 =1 o] PP P PP PP PP 64
7.6.3 DEM ettt ettt ettt ettt et st sttt ettt e h e bbb et et et e e et e at ek b e b et et et et et et eneeaeeaes 65
7.6.3.1 DEM_REPOIEITOISTATUS ..eeiieiiiieieitee ettt ettt e sree e e sree e s sree e s sareeessseeeessnsaessssnseaesssnses 65
7.6.4 CallOUL FUNCHIONS ..ttt ettt s et e sbe st e se s st e s e s e et e sae st asassnensensesnsenns 65
7.6.4.1 Error CAllOUT AP ...ttt ettt ettt et sat et b e et e b e et e b e sae et enees 65
7.6.5 (O8] |V TU T {0 o Tt To o -3 USRS 66
8 Appendix B - Access register table.....ccciiiiiiiiiciiiiinciininiineiiiiaiinesieiiseinesissisesiesssssesssssssssssasanss 67
8.1 Y 1 TP PR 67
8.2 DWW ettt ettt ettt et et s bbbttt e bbb h et ettt e a e st e bt s h e ke be b et et et e Rt e R e e he ke s b et e be b et et et e st enenaeas 76
User guide 5 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

Table of contents

REVISION NISTOrY..cuiiuiiiiiiiiiiiniineiiiiniiieiiiineieniniieecseiisecsesiestsccsestsscsessssssssssssssssssssssssssssssssssssnsssesanss 79
[0 1T o =TT T PP 80
User guide 6 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

1 General overview

1 General overview

1.1 Introduction to the SPI handler/driver

The SPI handler/driver is a set of software routines, which enables you to support SPI communication on
special output pins of the CPU.

The SPI handler/driver provides services for reading from and writing to devices connected via SPI buses. The
SPI handler/driver provides access to SPI communication for multiple users (e.g., EEPROM, watchdog, and I/O
ASICs). Only SPI Master mode and full-duplex operation are supported.

The SPI handler/driver provides three levels of scalable functionality as specified in the AUTOSAR Specification
of SPI handler/driver [2]:

e Level0is asimple synchronous SPI handler/driver using a FIFO policy for multiple accesses.
e Levellisabasicasynchronous SPI handler/driver supporting interruptible sequences and priority-based
scheduling.

e Level2isanenhanced SPI handler/driver supporting one hardware peripheral using synchronous transfers
as well as asynchronous transfers for the other peripherals.

The SPI handler/driver is not responsible for initializing or configuring hardware ports. This is done by the PORT
driver.

The SPI handler/driver conforms to the AUTOSAR standard and is implemented according to the AUTOSAR
Specification of SPI handler/driver [2].

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

e Embedded systems

e Cprogramming language

e AUTOSAR standard

e Target hardware architecture

User guide 7 002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

infineon

1 General overview

1.3

Embedding in the AUTOSAR environment

Application 1

System
Services

Onboard
Device
Abstraction

Operation System

WUC Driver

Application 2

Application 3

Runtime Environment

Memory
Services

Memory
Hardware
Abstraction

Memory Driver

Microcontroller

Communication
Services

Communication
Hardware
Abstraction

COM Driver

Type

Application n

I/0 Hardware
Abstraction

1/O Driver

Application

Application
Abstraction
Layer

Service
Layer

ECU

Abstraction
Layer

Microcontroller
Abstraction
Layer

Figure 1

Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The SPI handler/driver (Figure 2) is part of the
microcontroller abstraction layer (MCAL), the lowest layer of basic software in the AUTOSAR environment.

For an exact overview of the AUTOSAR layered software architecture, see layered software architecture [T7].

Microcontroller Drivers

GPT Driver
Watchdog Driver
MCU Driver
Core Test

Memory Drivers

Flash Test
RAM Test
Internal Flash Driver

Communication Drivers

Internal EEPROM Driver
SPI Handler Driver
LIN Driver
CAN Driver
FlexRay Driver
Ethernet Driver

Microcontroller

OCU Driver

ICU Driver

I/O Drivers

ADC Driver
DIO Driver
PORT Driver

PWM Driver

Figure 2

User guide

SPI handler/driver in MCAL layer

002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

1 General overview

14 Supported hardware

This version of the SPI handler/driver supports the TRAVEO™ T2G family. No special external hardware devices
are required.

The supported derivatives are listed in the release notes.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules Base, Dio, Make, Mcu, Port
and Resource are needed for proper functionality of the SPI handler/driver.

1.6 Character set and encoding

All source code files of the SPI driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

1.7 Multicore support

The SPI driver supports multicore type Il. The driver also supports multicore type Ill for some APIs (for example,
read-only APl or atomic-write API). For each multicore type, see the following sections.

Note: If multicore type Ill is desired, the section including data related to read-only APl or atomic write AP/
must be allocated to the memory which can be read from any cores.

1.7.1 Multicore type

In the following section, type I, type I, and type Il are defined as multicore characteristics.

1.7.1.1 Single core only (multicore type)
For this multicore type, the driver is available only on a single core. This type is referred as “Multicore Type I”.
Multicore type | has the following characteristic:

e The peripheral channels are accessed by only one core.

Corel
MCAL
Service API

Module-Kernel

Peripheral channels

Figure3 Overview of the multicore type |

User guide 9 002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

1 General overview

1.7.1.2 Core dependent instances (multicore type Il)

(infineon

For this multicore type, the driver has the core-dependent instances with individually allocable hardware. This

type is referred as “Multicore Type I1”.
Multicore type Il has the following characteristics:

e Thedriver code is shared among all cores:
- A common binary is used for all cores.
- Aconfiguration is common for all cores.
e Each core runs an instance of the driver.

e Peripheral channels and their data can be individually allocated to cores, but cannot be shared among

cores.

e One core will be the master, and the master core is needed to be initialized first:

— Cores other than the master core are called satellite cores.

Corel Core 2
MCAL c MCAL
ommon code,

Service API distinct data Service API
and status

Module-Kernel

Same IPs, but
different channels

Peripheral channels Peripheral channels

Figure4 Overview of the multicore type Il

1.7.1.3 Core independent instances (multicore type lIll)

For this multicore type, the driver has the core independent instances with globally available hardware. This

type is referred as “Multicore Type IlI”.
Multicore type Il has the following characteristics:

e The code of the driver is shared among all cores:
- Acommon binary is used for all cores.
- Aconfiguration is common for all cores.
e Each core runs an instance of the driver.
e Peripheral channels are globally available for all cores.

User guide 10

002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide I Nn f| neon

1 General overview

Core 1 Core 2

MCAL MCAL

Common code

Service API Service API

Module-Kernel

Peripheral channels

f

Same IPs, and
same channels

Figure5 Overview of the multicore typellll

1.7.2 Virtual core support
The SPI driver supports a number of cores. The configured cores need not be equal to the physical cores.

The SPI driver asks a configurable callout function (SpiGetCoreIdFunction) to know the core that is
currently executing the code. This function can be implemented in the integration scope. The function can be
written such that it does not return the physical core, but instead returns the SW partition ID, OS application ID,
or any attribute/parameter. By interpreting these as the core, the SPI driver can support multiple SW partitions
on a single physical core.

User guide 11 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

2 Using the SPI handler/driver

2 Using the SPI handler/driver

This chapter describes all necessary steps to incorporate the SPI handler/driver into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user’s guide [6]. You can find

the required basic information about the installation procedure of EB tresos AUTOSAR
components and the use of the EB tresos and the EB tresos AUTOSAR build environment. You will
also find information on how to set up and integrate your own application within the EB tresos
AUTOSAR build environment there.

The installation of the SPI handler/driver corresponds with the general installation procedure for EB tresos
AUTOSAR components given in the documents mentioned above.

This document assumes that you have set up your project using the application template. This template
provides the necessary folder structure, project, and makefiles needed to configure and compile your
application within the build environment. You must be familiar with the use of the command shell.

2.2 Configuring the SPI driver

The SPI handler/driver can be configured with any AUTOSAR-compliant GCE tool. Save the configurationin a
separate file, for example, Spi.epc. For more information about the SPI handler/driver configuration, see EB
tresos Studio configuration interface.

2.2.1 Architecture specifics

e SpiSetupDelay: Specifies the timing to start transmission after chip select is activated.
e SpiHoldDelay: Specifies the timing of chip select to be inactive after a transmission is finished.
e SpiDeselect: Specifies the timing of chip select to be active again after being inactive.
e SpiUseDma: Enables or disables the DMA channel for communication.

e SpiUseFifo: Enables or disables the transmission using the FIFO functionality.

e SpiDmaChannelRx: Specifies the DMA channel to be used for receiving data.

e SpiDmaChannelTx: Specifies the DMA channel to be used for sending data.

e SpiForceOverwrite: Enables or disables forced overwrite of the control register.

e SpiClockRref: Specifies the frequency for the specific transmission unit.

e SpiErrorCalloutFunction: Specifiesthe error callout function.

e SpiIncludeFile: Specifies afile that must be included by Spi_Externalinclude.h.

e SpiCoreAssignment: Specifies the reference to a container of spiCoreConfiguration to selectan
assignment core for a channel and an external device.

e SpiCoreConsistencyCheckEnable: Enables or disables the core consistency check during runtime.
e SpiGetCoreIdFunction: Specifies the API to be called to get the core ID.

e SpiMasterCoreReference: Specifies the reference to a container of SpiCoreConfiguration to select
the master core configuration.

e SpiCoreConfigurationTd: Specifies alogical number of the core ID

e SpiCorelId: Specifiesthe corelD. ThisID isreturned from the configured SpiGetCoreIdFunction to
identify the executing core.

User guide 12 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

2 Using the SPI handler/driver

2.3 Adapting your application

To use the SPI handler/driver in your application, include the header files of SPI and PORT driver by adding the
following lines of code in your source file:

#include "Mcu.h" /* AUTOSAR MCU Driver */

#include "Port.h"™ /* AUTOSAR PORT Driver */

#include "Spi.h" /* AUTOSAR SPI Handler/Driver */

This publishes all required function and data prototypes and symbolic names of the configuration into the
application.

To use the SPI handler/driver, the appropriate port pins, SCB clock setting and SPI interrupts must be
configured in PORT driver, MCU driver and OS. For detailed information, see Hardware resources.

Initialization of MCU, PORT, and SPI handler/driver needs to be done in the following order:

For the master core:

Mcu_ Init (&Mcu Configl[0]);
Port Init(&Port Config[0]);
Spi Init (NULL_PTR);

For the satellite core:

Mcu Init (&Mcu Configl[0]);
Spi Init (NULL PTR);

The function Port Init () is called with a pointer to a structure of type Port ConfigType, whichis
published by the PORT driver itself. This function must be called on the master core only.

The master core must be initialized prior to the satellite core. All cores must be initialized with the same
configuration.

If level 1 or level 2 functionality is used, an interrupt service routine must be configured in the AUTOSAR OS for
each asynchronous SPI peripheral as described in Interrupts.

When using level 2 functionality and the “polling” asynchronous mode, you must call the

Spi_MainFunction Handling function cyclically. This can either be done by configuring the BSW scheduler
accordingly or by calling the Spi MainFunction Handling function from any other cyclic task. Note that the
“polling” mode is the default mode after initialization of the SPI handler/driver when using level 2 functionality.
To set “interrupt” mode instead, use the spi SetaAsyncMode APl function as described in Spi_SetAsyncMode.

All required input clocks for the configured hardware units (SCB) must be activated prior to initialization of the
SPI handler/driver. See MCU driver.

Your application must provide the notification functions and its declarations that you configured. The file
containing the declarations must be included using the SpiDriverConfiguration/SpiIncludeFile or
SpiDriverConfiguration/SpiUserCallbackHeaderFile parameter. The SpiJobEndNotification
function and the SpiSegEndNotification function take no parameters and have void return type:

void MyNotificationFunction (void)

{

/* Insert your code here */

}

User guide 13 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

2 Using the SPI handler/driver

The notification function is called from an interrupt or polling context and synchronous transmission process.

2.4 Starting the build process

Do the following to build your application.
Note: For a clean build, you must use the build command with target ciean a1l before (make clean_all).

1. Onthe command shell, type the following command. This will generate the necessary configuration-
dependent files. See Generated files.
> make generate
2. Type the following command to resolve required file dependencies:
> make depend
3. Compile and link the application with the following command:

> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file which can be downloaded to the
target CPU cores.

2.5 Measuring stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The executable
file built in this step must be used for stack consumption measurement only.

1. Add the following compiler option to the Makefile to enable stack consumption measurement.

-DSTACK ANALYSIS ENABLE

2. Type the following command to clean library files:

make clean 1lib

3. Follow the build process described in Starting the build process.
4. Measure the stack consumption by following the instructions given in the release notes.

2.6 Memory mapping

The Spi_MemMap.h file in the S(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0IORO/include directory is a
sample. This file is replaced by the file generated by MEMMAP module. Input to MEMMAP module is generated
as Spi_Bswmd.arxml in the S(PROJECT_ROOT)/ output/generate_swcd/swcd directory of your project folder.

2.6.1 Memory allocation keyword

e SPI START SEC_CODE ASIL B/SPI STOP SEC CODE ASIL B
The memory section type is CODE. All executable code is allocated in this section.

e SPI START SEC CONST ASIL B UNSPECIFIED/SPI STOP SEC CONST ASIL B UNSPECIFIED
The memory section type is CONST. All configuration data is allocated in this section.

e SPI CORE[SpiCoreConfigurationId] START SEC VAR CLEARED ASIL B LOCAL UNSPECIFIED /
SPI_CORE[SpiCoreConfigurationId] STOP SEC VAR CLEARED ASIL B LOCAL UNSPECIFIED

User guide 14 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

2 Using the SPI handler/driver

The memory section type is VAR. All non-initialized variables with non-alignment are allocated in this
section.

SPI_CORE[SpiCoreConfigurationId] START SEC_ VAR CLEARED ASIL B GLOBAL UNSPECIFIED /
SPI_CORE[SpiCoreConfigurationId] STOP SEC VAR CLEARED ASIL B GLOBAL UNSPECIFIED

The memory section type is VAR. All non-initialized variables with non-alignment are allocated in this
section.

SPI_CORE[SpiCoreConfigurationId] START SEC_ VAR CLEARED ASIL B LOCAL 32 /
SPI_CORE[SpiCoreConfigurationId] STOP SEC VAR CLEARED ASIL B LOCAL 32

The memory section type is VAR. The variable for internal buffers of transmission with 4 bytes alignment are
allocated in this section.

SPI_CORE[SpiCoreConfigurationId] START SEC VAR CLEARED ASIL B DMA READBUFF 32 /
SPI_CORE[SpiCoreConfigurationId] STOP SEC VAR CLEARED ASIL B DMA READBUFF 32

The memory section type is VAR. The variable for internal buffers of transmission with 4 bytes alignment are
allocated in this section.

SPI_CORE[SpiCoreConfigurationId] START SEC_VAR CLEARED ASIL B DMA WRITEBUFF 32 /
SPI_CORE[SpiCoreConfigurationId] STOP SEC_ VAR CLEARED ASIL B DMA WRITEBUFF 32

The memory section type is VAR. The variable for internal buffers of transmission with 4 bytes alignment are
allocated in this section.

SPI_CORE[SpiCoreConfigurationId] START SEC_VAR INIT ASIL B LOCAL UNSPECIFIED /
SPI_CORE[SpiCoreConfigurationId] STOP_SEC VAR INIT ASIL B LOCAL UNSPECIFIED

The memory section type is VAR. All initialized variables with non-alignment are allocated in this section.

SPI_CORE[SpiCoreConfigurationId] START SEC_VAR INIT ASIL B GLOBAL UNSPECIFIED /
SPI_CORE[SpiCoreConfigurationId] STOP_SEC VAR INIT ASIL B GLOBAL UNSPECIFIED

The memory section type is VAR. All initialized variables with non-alignment are allocated in this section.

2.6.2 Memory allocation and constraints

All memory sections that store init or uninit status must be zero-initialized before any driver function is
executed on any core. If core consistency checks are disabled, inconsistent parameters would be detected and
reported by PPU and SMPU.

SPI_CORE[SpiCoreConfigurationId] START VAR [INIT POLICY] ASIL B LOCAL [ALIGNMENT]

/ SPI_CORE[SpiCoreConfigurationId] STOP VAR [INIT POLICY] ASIL B LOCAL [ALIGNMENT]

This section is read/write accessed only from the core represented by SpiCoreConfigurationId.
Therefore, this section can be allocated to any RAM region. It is recommended to allocate the section to
cache-able SRAM, not TCRAM.

SPI_CORE[SpiCoreConfigurationId] START VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT]
/

SPI_CORE[SpiCoreConfigurationId] STOP VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT]
This section is read/write accessed from the core represented by SpiCoreConfigurationIdand read
accessed from the other cores. Therefore, this section must not be allocated to TCRAM. For the core
represented by spiCoreConfigurationTd, this section must be allocated to either non-cache-able or
write-through cache-able SRAM area. For performance, it is recommended to allocate the section to write-
through cache-able SRAM. For the other cores, this section must be allocated to non-cache-able SRAM area.

SPI_CORE[SpiCoreConfigurationId] START VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT]

/
SPI_CORE[SpiCoreConfigurationId] STOP VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT]

User guide 15 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

2 Using the SPI handler/driver

For multicore type lll, this section is read accessed from other cores. So, this section must not be allocated
to TCRAM. For the core represented by SpiCoreConfigurationId, this section must be allocated to either
non-cache-able or write-through cache-able SRAM area. For performance, it is recommended to allocate the
section to non-cache-able SRAM. For the other cores, this section must be allocated to non-cache-able SRAM
area.

e SPI CORE[SpiCoreConfigurationId] START VAR [INIT POLICY] ASIL B DMA READBUFF [ALIG
NMENT] /
SPI_CéRE[SpiCoreConfigurationId]_STOP_VAR_[INIT_POLICY]_ASIL_B_DMA_READBUFF_[ALIGN
MENT]

- When using DMA:
The section is allocated to a user-specific memory region configured by the CPU's memory protection
unit (MPU) as non-cache-able.

- When not using DMA:
There is no restriction.

e SPI CORE[SpiCoreConfigurationId] START VAR [INIT POLICY] ASIL B DMA WRITEBUFF [ALI
GNMENT] /

e SPI CORE[SpiCoreConfigurationId] STOP VAR [INIT POLICY] ASIL B DMA WRITEBUFF [ALIG
NMENT]

- When using DMA:
For the core represented by SpiCoreConfigurationId,the section is allocated to a user-specific
memory region configured by the MPU as write-through cache-able or non-cache-able. For performance,
itis recommended to allocate the section to non-cache-able SRAM. For the other cores, there is no
restriction.
- When not using DMA:
There is no restriction.
e The section that contains external buffers (EB) used for RX:
- When using DMA:
The section is allocated to a user-specific memory region configured by the MPU as non-cache-able.
- When not using DMA:
There is no restriction.
e The section that contains EB used for TX:

- When using DMA:
For the core which access the EB, the section is allocated to a user-specific memory region configured by
the MPU as write-through cache-able or non-cache-able. For performance, it is recommended to allocate
the section to non-cache-able SRAM. For the other cores, there is no restriction.

- When not using DMA:
There is no restriction.

e STACK section:

TCRAM has dedicated memory for each core at the same address, and because of its performance it is
recommended to allocate STACK to TCRAM.

Note: The CPU has an individual cache that is not shared with the DMA bus master. Therefore, ensure that
data related to DMA is in specific region where it can be accessed by the DMA. Besides some
sections need to be allocated in specific memory regions. This driver does not support the use of
data related to DMA placed in CPU’s tightly coupled memories (TCMs) and internal video RAM
(VRAM).

User guide 16 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

2 Using the SPI handler/driver

Note: This restriction is applied only to Arm® Cortex®-M7 devices because they include TCMs, VRAM and inner
cache. There is no restriction when using Cortex®-M4 devices.

Note: All buffers accessed by DMA require 4-byte alignment.

For details of INIT POLICY and ALIGNMENT, see the Specification of memory mapping [5].

User guide 17 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

3 Structure and dependencies

3 Structure and dependencies

The SPI handler/driver consists of static, configuration, and generated files.

3.1 Static files

e S(PLUGIN_PATH)=S(TRESOS_BASE)/plugins/Spi_TS_* is the path to the SPI handler/driver plugin.

e S(PLUGIN_PATH)/lib_src contains all static source files of the SPI handler/driver. These files contain the
functionality of the driver that does not depend on the current configuration. The files are grouped into a
static library.

e S(PLUGIN_PATH)/src comprises configuration-dependent source files or special derivate files. Each file will
be rebuilt when the configuration is changed.

All necessary source files will automatically be compiled and linked during the build process and all include
paths will be set if the SPI handler/driver is enabled.

e S(PLUGIN_PATH)/include is the basic public include directory needed by the user to include Spi.h.

e S(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,
architecture and derivative-specific adaptations to create a correct matching parameter configuration for
the SPI handler/driver.

3.2 Configuration files

The configuration of the SPI handler/driver is done via EB tresos Studio. The file containing the SPI
handler/driver’s configuration is named Spi.xdm and is in the directory S(PROJECT_ROOT)/config. This file
serves as the input for the generation of the configuration-dependent source and header files during the build
process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description. They
are in the output/generated sub folder of your project folder.

e include/Spi_Cfg.h

e include/Spi_Cfg_Der.h

e include/Spi_Externalinclude.h

e src¢/Spi_PBCfg.c

e src¢/Spi_PBCfg_Der.c

e src/Spi_lrg.c

e src/Spi_MainFunction_Handling.c

Note: Generated source files need not to be added to your application make file. These files will be compiled
and linked automatically during the build process.

e swcd/Spi_Bswnd.arxml

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,
follow the menu path Project > Build Project and click generate_swcd.

User guide 18 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

3 Structure and dependencies

3.4 Dependencies

3.4.1 PORT driver

Although the SPI handler/driver can be successfully compiled and linked without an AUTOSAR-compliant PORT
driver, the latter is required to configure and initialize all ports. Otherwise, the SPI handler/driver will show
undefined behavior. The PORT driver needs to be initialized before the SPI handler/driver is initialized.

3.4.2 MCU driver

The MCU driver needs to be initialized and all MCU clock reference points referenced by the hardware units
(SCB) via the configuration parameter spiClockRef must have been activated (via calls of MCU API functions)
before initializing the SPI handler/driver. Mcu_GetCoreID can optionally be set to the configuration parameter
SpiGetCoreIdFunction. See the MCU driver’s user guide for details.

Note that the clock, prescaler, or PLL settings are controlled by the MCU driver. There are no shared resources
with the SPI handler/driver. Depending on the configuration, changes in the clock settings may affect the
operation of the SPI handler/driver.

3.4.3 DIO driver

The SPI handler/driver allows you to optionally control chip select by the software using a GPIO pin. This can be
configured by setting the spiCsselection parameter of an external deviceto cS_vVIA GPIO.In this case, the
SPI handler/driver uses the multicore DIO driver to control the DIO channel configured in the
SpiCsIdentifier parameter for chip select operation. This cannot be used single core DIO.

3.4.4 AUTOSAR 0OS

The AUTOSAR operating system handles the interrupts used by the SPI handler/driver. GetCoreID can
optionally be set to the configuration parameter SpiGetCoreIdFunction. See Interrupts for more
information.

3.4.5 BSW scheduler

The BSW scheduler handles the critical sections that are used by the SPI handler/driver.

3.4.6 DET

If default error detection is enabled in the SPI handler/driver configuration, the DET needs to be installed,
configured, and integrated into the application as well.

This driver reports DET error codes as instance 0.

3.4.7 DEM

If the DEM event report is enabled in the SPI module configuration, the DEM needs to be installed, configured,
and integrated into the application as well.

To enable DEM support in the SPI handler/driver, the SPT_E HARDWARE ERROR production error needs to be
defined in the DEM configuration in the SpiDemEventParameterRefs container.

User guide 19 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

3 Structure and dependencies

3.4.8 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It is
configured via the configuration parameter SpiErrorCalloutFunction.

3.4.9 DMA

DMA is supported for some hardware instances (see the datasheet of the subderivative for details). If a
hardware instance does not support DMA and it is configured to use DMA, an error will be generated.

The SPI module does not modify the global status of the DMA hardware. You must ensure that DMA is globally
enabled before using the DMA feature of the SPI.

User guide 20 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see EB tresos Studio for ACG8 user’s guide [6].

4.1 General configuration

The module comes preconfigured with default settings. You must adapt these to your environment when
necessary.

e SpiDmaErrorHandlingPolling specifies the DMA error handling mode. When enabled in the interrupt
mode, the DMA error is handled by the polling mode.

e SpiCancelApi enables ordisables the cancel API function.
e SpiChannelBuffersAllowed isthe allowed buffers type to be used.
- 0:Internal buffers only
- 1:External buffers only
- 2:Both buffers
e SpiDevErrorDetect enables or disables the DET functionality for the SPI handler/driver.
e SpiHwStatusApi enablesordisables the hardware status API function.
e SpilInterruptibleSegAllowed enablesordisables the interruptible sequences.
If sSpiLevelDeliveredissetto'l' or'2', this parameter is editable.
e SpilLevelDeliveredisthe level of driver to be used.
- 0:Level 0 simple synchronous mode
- 1:Level 1 basic asynchronous mode
- 2:Level 2 enhanced mode

e SpiSupportConcurrentSyncTransmit specifies whether concurrent Spi SyncTransmit calls for
different sequences is supported.

e SpiUserCallbackHeaderFile specifies the header file names that will be included by the SPI driver.
e SpiVersionInfoapi specifies whether the APl function Spi GetVersionInfo isavailable.
4.2 SPI driver configuration

e SpiMaxChannel is notused. Itis calculated and generated by the generator automatically.
e SpiMaxJob is notused. Itis calculated and generated by the generator automatically.
e SpiMaxSequence is not used. Itis calculated and generated by the generator automatically.

4.2.1 Channel configuration
Note that the channel name and ID of a channel must be unique.

e SpiChannelIdisthe ID forthe channel. Itis used as a parameter for API functions.

Note: Channel IDs must be zero-based and consecutive.

e SpiCoreAssignment specifies the reference to SpiCoreConfiguration forthe channel core assignment.
Note: SpiCoreAssignment must have the target’s SpiCoreConfiguration setting.

e SpiChannelType isthe type of buffering to be used for this channel.
- 1B:Internal buffering

User guide 21 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

- EB: External buffering
Note: A selectable value depends on the SpiChannelBuffersAllowed setting.
e SpiDataWidth isthe data width setting for transmission in bits.
Note: List of values available for configuration depends on the subderivative.

Note: If SpiDataWidth=8-bit and the total data is more than 32 bytes, the data is divided into several
portions; the SPI driver sends each data portion to FIFO. So, if the SPI interrupt is blocked by
another interrupt or the main function is not being called frequently, FIFO empty occurs and CS
will be de-asserted. To avoid this situation, do one of the following:

- Set the SPI interrupt as a high-priority interrupt
- Call Spi_MainFunction_Handling frequently

- Set the SPI baudrate low

- Use SpiDataWidth=16-bit/32-bit.

- Use DMA (SpiUseDmay)

e SpiDefaultData isthe default value setting for transmission.
Note: The configured value must be within the range configured by SpiDataWidth.
Note: If spiDefaultDatais disabled, the default value setting is 0.

e SpiEbMaxLength is the maximum size of a data buffer (Range: 1 to 65535); type Spi NumberOfDataType.

If EB is selected as SpiChannelType and 1 or 2 is selected as SpiChannelBuffersAllowed, this
parameter is editable.

e SpiAlignedBuffer requires a data-width-aligned external buffer

If a data-width-aligned buffer is required, spi Setupks will check the assigned data buffer. The required 1-,
2-, or 4-byte alignment depends on the declared data width.

The alignment is required to allow DMA-supported transmission of the channel.
e SpiIbNBuffers isthe size of the data buffers (Range: 1 to 65535; type Spi NumberOfDataType.

If IBis selected as SpiChannelType and 0 or 2 is selected as SpiChannelBuffersAllowed is, this
parameter is editable.

Note: Maximum size differs according to spibatawidth. Maximum size is 65535 if SpiDatawidth is 8 bits
or less. Maximum size is 32767 if SpiDatawidthis 9 bits to 16 bits. Maximum size is 16383 if
SpiDataWidthis 17 bits or more.

e SpiTransfersStart isthe bit ordering for transmission.
- LSB: Least significant bit first
- MSB: Most significant bit first

4.2.2 Job configuration
Note that the name and ID of a Job must be unique.

e SpiHwUnitSynchronous is the job setting for synchronous or asynchronous transmission.
- SYNCHRONOUS: Synchronous
- ASYNCHRONOUS: Asynchronous

User guide 22 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

Note: If the parameter is not set, SpiJob uses the driver also in an asynchronous way.

Note: All spiJob parameters that belong to the same external device specified by
SpiDeviceAssignment Will have the same SpiHwUnitSynchronous setting.

e SpiJobEndNotification specifies the function that will be called by the driver on completion of the job.
This function is to be implemented by the user.
If spiJgobEndNotification is blank, the function is not called.
If spiJobEndNotification is disabled, the functionis not called.
e SpiJobIdisthe ID of the job. This value will be assigned to the following symbolic names:
- The symbolic name derived from the SpiJob container short name.

- The symbolic name derived from the SpiJob container short name prefixed with “spi_”.
- The symbolic name derived from the SpiJob container short name prefixed with “spiConf SpiJob ”.

Note: Job IDs must be zero-based and consecutive.

e SpiJobPriority isthe priority for the job; priorities lie in the range of 0 to 3, 0 being the lowest.
e SpiDeviceAssignment specifies the external device to be used for the job.
e SpiChannellist referencesto SPI, the channels, and their order within the job.

- SpiChannelIndex: specifies the order of channels within the job.

Note: SpiChannelIndex must have the same value as the index of the actual entry in SpiChannelList.
- SpiChannelAssignment: specifies a list of channels associated with this Job.

Note: The spibatawidth for each channel that is assigned in one job must have the same width when
using the peripheral chip select (SpiEnableCs =enabled and SpiCsSelection=CS_VIA_
PERIPHERAL_ENGINE).

Note: SpiTransferStart for each channel that is assigned in one job must have the same first starting
bit.

Note: The total size of all channels' data buffers (SpiEbMaxLength and SpiIbNBuffers) must not exceed
65535 bytes.

Note: The bytes may be a multiple of units depending on the spibatawidth entry.

If SspiDeviceAssignment selects an external device with DMA support, the channels of the job
must allow buffer alignment even if the data width declared is 8 bits or less.

4.2.3 External device configuration

e SpiForceOverwrite enablesor disables forced overwrite of the control register. When this parameter is
enabled, control information in the control register is overwritten even if the transfer is to the same external
device.

e SpiClockRef isthe reference to the clock source configuration, which is set in the MCU driver
configuration.

Note: During configuration, an applicable clock will be selected. The runtime system is responsible for
activating the selected configuration before using the external device.

User guide 23 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

e SpiCoreAssignment specifies the referenceto SpiCoreConfiguration forthe external device core
assignment.

Note: SpiCoreAssignment must have the target’s SpiCoreConfiguration setting.
The same SCB channel cannot be allocated to multiple cores.

e SpiBaudrate isthe communication baud rate. This parameter allows using a range of values, from the
point of view of the configuration tools, from Hz up to MHz. The value is in Hz.

Note: The hardware supports discrete baud rates in a range depending on the frequency of source clock as

follows:
(SpiClockRef.McuClockReferencePointFrequency / (0OVSValue+l)),
OovSvValue=3,4,5,..,15

Note: You can enter any baud rate value in this range, without respecting the hardware support of the
concrete baud rates. The code generator will automatically select the next lower allowed baud
rate without reporting a warning.

The tresos system supports checking and selecting the real baud rate. After entering the expected
baud rate, you can let the system calculate its exact value. If the given baud rate cannot be
supported, the calculation makes a weighted selection between the next higher or lower baud
rates. This weighting prefers four times more deviation for the lower baud rate selection than the
higher one. The configuration will support this calculated baud rate.

Before calculation, the clock reference point must be selected and correctly configured. The
calculation also works well if the given baud rate is outside the accepted range. In this case, the
highest or lowest accepted baud rate will be selected.

e SpiEnableCs enables ordisables the chip select handling functions. If this parameter is enabled,
SpiCsSelection provides further details of the type of chip select control; if disabled, spiCsSelection
isignored.

Note: Even if this parameter is set to disable, the SCB hardware function internally outputs SPI SELECTO.
Make sure SPI_SELECTO is not output to the outside in the Port driver.

e SpiCsSelection specifies if the chip select is handled automatically by the SCB hardware function or via
general-purpose 1/0.
- CS_VIA GPI0:Handled via general-purpose I/O by the SPI driver.
- CS_VIA PERIPHERAL ENGINE:Handled automatically by the SCB hardware function. The parameters
SpiSetupDelay, SpiHoldDelay, and SpiDeselect take effect on the chip select signal only in this
mode.

Note: When cs via Gprrois selected for this parameter, the SCB unit internally outputs SPI_SELECTO.
Make sure sPI_SELECTO is not output to the outside in the Port driver.

Note: If DMA is not used for SCB, the chip select might be de-asserted during a job transmission. To avoid
this situation, do either of the following;
- Use CS_VIA_GPIO (SpiCsSelection)
- Use DMA (SpiUseDma)
- Use data, which is 32 elements or less, for a job

e SpiCsTdentifier specifies the chip select pin allocated to this Job. Available pins depend on the setting
of SpiCsSelection:

User guide 24 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

4 EB tresos Studio configuration interface

- cs_vIa Gp10:all configured Dio channels are listed
- CS_VIA PERIPHERAL ENGINE:SP/_SELECTO...SPI_SELECT3, dependingon the configured SCB
If spiEnableCs is enabled, this parameter is editable.

e SpiHwUnit isthe hardware unit to be used for this external device.

SCB0: SCB Channel 0

SCB1:SCB Channel 1

SCBn: SCB Channel n

Note: Selectable hardware units depend on the subderivative.
Note: If the same spiHwUn1it is set to multiple SpiExternalDevice containers, note the settings of the
following parameters.

The chip select pin must be set to each SpiCsIdentifier.

If multiple SpiExternalDevice share the same SCB, the same value must be set for the following
parameters:

- SpiCsSelection

- SpiEnableCs

- SpiDmaChannelRx

- SpiDmaChannelTx

If multiple SpiExternalDevice share the same SCB and SpiCsldentifier, the same value must be set
for the following parameters:

- SpiDataShiftEdge

- SpiShiftClockldleLevel

- SpiCsPolarity

- SpiSetupDelay

- SpiHoldDelay

e SpiCsPolarity specifies the active polarity of the chip select.
If spiEnableCs is enabled, this parameter is editable.
- 1LowW: Low level
- HIGH: High level
e SpiDataShiftEdge specifies the data shift edge.
- LEADING: Leading edge
- TRAILING: Trailing edge
If SpiDataShiftEdge is set to LEADING, the spiSetupbDelay must be configured such that the sampling of
the first bit takes place after the chip select pin becomes active.
e SpiShiftClockIdleLevel specifiesthe shift clockidle level.
- LowW: Low level
- HIGH: High level

e SpiTimeClk2Cs allows using arange of values from 0 up to 100 microseconds. This parameter is not used
and not editable.

e SpiSetupDelay specifies the time in SPI serial clock count to start the transmission after chip select is
activated.
This parameter is only enabled, if SpiEnableCs is enabled. The parameter is editable and effective on the
signal only if a hardware-controlled chip select, i.e., if SpiCsSelectionis set to
CS VIA PERIPHERAL ENGINE.

User guide 25 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

Note: This parameter will be selected from the selection list.
Allowed value depends on SpiDataShiftEdge

e SpiHoldDelay specifies the time the SPI serial clock count of chip select takes to become inactive after the
transmission is completed.

This parameter is only enabled, if spiEnableCs is enabled. It is only editable and effective on the signal if a
hardware-controlled chip select, i.e., if SpiCsSelectionissetto CS VIA PERIPHERAL ENGINE.

Note: This parameter will be selected from the selection list.
Allowed value is depend on SpibDataShiftEdge

e SpiDeselect specifies the time chip select takes to become active again after it is inactive. This parameter
is not used and is not editable.

e SpiUseFifo enablesordisables the transmission using the FIFO functionality. This parameter is fixed to
enable and not editable.

Note: FIFO transferable max entries depend on the subderivative. It is Max/4 entries.

e SpiUseDma determines whether the DMA controlleris used to handle transfers for the specified peripheral.

If DMA is used for a peripheral, the two configuration parameters, SpibmaChannelskx and
SpibmaChannelTx, must be set to specify the DMA channel for Rx and Tx:

Note: The DMA controller is used only for asynchronous transmission.

Note: DMA operation is not supported for all hardware instances. The configurator will report an error if
SpiUseDma is enabled and the selected hardware instance does not support DMA transfer.

- SpiDmaChannelRx specifies the DMA channel to be used to handle specified peripheral reception.
- SpiDmaChannelTx specifies the DMA channel to be used to handle specified peripheral transmission.

4.2.4 Sequence configuration
Note that the name and ID of a sequence must be unique.

e SpiInterruptibleSequence specifies whetherthe sequence can be interrupted, i.e., jobs from another
sequence may run before the jobs for this sequence depending on the job priorities set.

e IfspiInterruptibleSeqgAllowed is checked, this parameter is editable.

e SpiSegEndNotification specifiesthe function that will be called by the driver on completion of the
sequence. You need to implement this function.

e IfspiSegEndNotification isblank,the functionis not called. If SpiSeqEndNotification is disabled,
the function is not called.

e SpiSequencelIdisthe ID for the sequence to be used as a parameter for APl functions.

Note: Sequence IDs must be zero-based and consecutive.

e SpiJobAssignment specifies a list of jobs associated with this sequence.
Note: Jobs must be ordered in the descending order of their priorities.

Note: The SPI sequence must not mix synchronous and asynchronous jobs.

User guide 26 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

Note: The priorities of a job can only be between 0 (lowest) and 3 (highest); therefore, it is not possible to
have more than four jobs in a sequence with differing (decreasing) values. Jobs with equal priority
will be processed in the order of configuration in the sequence.

4.2.5 SPI DEM event parameter references

This is the container holding the references to DemEventParameter elements that are invoked using the
Dem ReportErrorStatus APlif the corresponding error (SPI_E HARDWARE ERROR) OCCUTS.

e SPI _E HARDWARE ERROR s the reference to the DemEventParameter which will be issued when the
hardware error has occurred.

4.2.6 SPI published information

This is container holding all SPI-specific published information parameters.

e SpiMaxHwUnit specifies the maximum number of different SPI hardware microcontroller serial peripherals
(units/buses) available and handled by this SPI handler/driver module. This value is dummy. See the
hardware data sheet for the actual number of units.

4.2.7 SpiMulticore

SpiMulticore defines the multicore functional configuration of the SPI handler/driver.

e SpiCoreConsistencyCheckEnable enables core consistency check during runtime. If enabled, SPI
function checks if the provided parameters are allowed on the current core.

Note: Development error detect is enabled in SPI driver to enable this parameter.

e SpiGetCoreIdFunction specifiesthe APIto be called to get the core ID. e.g., GetCoreId ()
Note: SpiGetCoreIdFunction mustbe avalid C function name.

e SpiMasterCoreReference specifies the reference to the master core configuration.

Note: SpiMasterCoreReference must have the target’s SpiCoreConfiguration setting.
4.2.8 SpiCoreConfiguration

SpiCoreConfiguration defines the core configuration of the SPI driver.

e SpiCoreConfigurationTdisazero-based, consecutive integervalue. Thisis used as a logical core ID.
Note: SpiCoreConfigurationIdmustbe unique across SpiCoreConfiguration.

e SpiCoreIdisthe corelD assigned to channels and external devices. This ID is returned from the configured
SpiGetCoreIdFunction execution to identify the executing core.

Note: SpiCoreIdmustbe unique across SpiCoreConfiguration.
The combination of SpiCoreConfigurationIdand SpiCoreIdmustbe unique across
SpiCoreConfiguration.

User guide 27 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

4 EB tresos Studio configuration interface

4.3 Vendor and driver-specific parameters
4.3.1 Container SpiGeneral

4.3.1.1 SpiErrorCalloutFunction
Description

Error callout function. Syntax:

void ErrorCalloutHandler

(
uintl6 ModulelId,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)

The error callout function is called on every error. The ASIL level of this function limits the ASIL level of the SPI
handler/driver.

Type

FunctionNameParamDef

4.3.1.2 SpilncludeFile

Description

A list of file names that will be included within the driver. Any application-specific symbol that is used by the SPI
configuration (e.g., error callout function) should be included by configuring this parameter.

Type
StringParamDef

4.4 Other modules

4.4.1 PORT driver

The pins given in Ports and pins must be configured in the PORT driver.

The trigger multiplexer given in DMA and trigger multiplexer must be configured in the PORT driver.

4.4.2 DET

DET must be configured, if default error detection is activated.
4.4.3 AUTOSAR OS
The SPI handler/driver’s interrupts (listed in Interrupts) must be configured in the AUTOSAR operating system.

Note: The AUTOSAR OS must only configure those interrupts that are used by the SPI handler/driver.

User guide 28 002-30203 Rev. *H
2024-07-22

o~ _.
SPI1 3.0 handler/driver user guide In f| neon

4 EB tresos Studio configuration interface

4.4.4 BSW scheduler

The SPI handler/driver uses the following services of the BSW scheduler (SchM) to enter and leave critical
sections

e SchM Enter Spi SPI EXCLUSIVE AREA [SpiCoreConfigurationId] (void)
e SchM Exit Spi SPI_EXCLUSIVE AREA [SpiCoreConfigurationId] (void)

You must ensure that the BSW scheduler is properly configured and initialized before using the SPI services.

The exclusive area must prevent all tasks or interrupts from calling any SPI API function or SPI interrupt service
routine.

User guide 29 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

5 Functional description

5 Functional description

The SPI handler/driver may be used with three different levels of functionality; level 0 offers basic synchronous
transmission, level 1 offers asynchronous transmission with job scheduling between multiple sequences, and
level 2 offers enhanced features handling both synchronous and asynchronous transmissions. The basic
operation of the driver is based on the configuration of channels, Jobs, and sequences. These are described in
more detail in this chapter

5.1 Channels, jobs, and sequences

The SPI handler/driver supports one or more channels, Jobs, and sequences to drive different kinds of
hardware devices. Data transmission depends on the configuration of these.

Figure 6 shows the correlation between channel, Job, and sequence.

Sequence a > Sequence b >
| linkage linkage
——Joon— Job m bk ——— Job |
4 Chan x—#4—— Chan y —* 4 Chanz — i [«—Chan w—se——Chan v —! Chan u
(L QU0
[olefoofofole]o]o]e] pjopfofo]o
clclclcloeeolo]e] NEIEIEIEIE
csn |
csm
T MR
plofofeloloeole]o] plofofelofo
plofofefofpfeo]o]e] olofofofolo
Sk
csl r

Figure6 Correlation between sequences, jobs, and channels

5.1.1 Channels

5.1.1.1 General

A channel defines a data channel that can be used to send data to a hardware device. Each channel has a
unique identifier. It is possible to have more than one channel set up for one hardware device.

For instance, the following are the channels for an EEPROM device on SPI:

e Channel for command
e Channel for address
e Channel for data

User guide 30 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

5 Functional description

Buffers for the different channels set up can have different sizes and can be located internally in the driver or
externally in your application. These are referred to as internally buffered (IB) or externally buffered (EB)
channels.

5.1.1.2 Internally buffered channels

Internal buffers (IB) are used for small data transfer devices and daisy chain implementations. The maximum
size is defined by Spi_NumberOfDataType. The actual size of the IB to be used must be set in the configuration.
This is then fixed for all transmissions using this channel.

The SPI handler/driver provides a transmit buffer for each IB channel. Before starting of a transmission, data
needs to be written to the buffer by using the spi_wWriteIB function. After that, a synchronous or
asynchronous transmission can be started by using Spi SyncTransmit or Spi AsyncTransmit respectively.

Note that the SPI handler/driver is not able to ensure integrity of the data residing in the buffer during
transmission. In addition, each request of Spi_wWriteIBonachannel will overwrite the previous contentin its
transmit buffer, regardless of whether a transmission has been performed with this data.

The SPI handler/driver provides a receive buffer for the IB channel with the same size as the transmit buffer.
The buffer is overwritten with new data at each transmission on that channel. Therefore, make sure that the
received data is read before a new transmission on that channel is initiated.

Reading of data from the receive buffer is done by using the spi Read1B function, which should only be called
after completion of a transmission.

5.1.1.3 Externally buffered channels

Externally buffered (EB) channels can be used to transmit large streams for communication: for EEPROM data
read and write, or for controlling complex hardware chips. The maximum size, defined by
Spi_NumberOfDataType, must be set in the configuration, but the buffer is in the users’ application. Before
transmission, you must provide the addresses of source and destination buffers together with their length by
using the APl function Spi SetupEB.

For EB channels, you must the buffer. You must ensure the consistency of the buffered data. You also provide
the pointers to the buffers for reception and transmission as well as the size of those buffers. The size should
not exceed the maximum size configured.

A transmission is initiated in the same way as for IB channels, by calling either Spi SyncTransmit or
Spi AsyncTransmit operation.

Note: Before using the channel for transmit and receive operations, an application must call Spi SetupEB
at least once to configure the channel’s parameters such as channel length, transmit, and receive
buffer pointers. If data is sent without calling the function Spi SetupEB, the single default data is
transmitted. The default data is set by the configuration parameter SpiDefaultData and the
width is set by the configuration parameter spibDataWidth. If the channel’s length or the
transmit and receive buffer’s location has changed in the application, it is mandatory to
reconfigure the channel’s parameters with spi_SetupEB before using the channel. If the
channel’s length, transmit and receive buffer’s location are not changed, it is not necessary to call
Spi_SetupEB. While updating the channels parameters, the application must make sure that the
channel is not currently being used by driver.

The channel’s status can be identified by the status of SpiJob from Spi GetJobResult. All
SpidJobs that share the channel must be checked. spi SetupEBcan be called if each JobResult
is either SPI_JOB_OK or SPI_JOB_FAILED.

User guide 31 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

5 Functional description

5.1.1.4 Data buffers

The TX buffer that is passed to a channel (using Spi_WriteIBoOrSpi SetupEB)mustcontainthe dataina
certain manner, depending on the setting of spiDatawidth. The RX buffer is filled the same way during
transmission.

e SpiDataWidth<=8

e One byte (B0) of the buffer represents one data element (e.g., d0..d7) consisting of not more than 8 bits
each.

e 8<SpibataWidth<=16

e Two bytes (B0, B1) of the buffer represent one data element (e.g., d0..d15) consisting of more than 8 and not

more than 16 bits each. The lower byte (B0) must be filled with the lower bits of the data element (d0..d7).
The higher byte (B1) must be filled with the remaining bits (d8..d15), starting at the lowest bit of B1.

e 16<SpiDataWidth<=32

e Four bytes (B0, B1, B2, B3) of the buffer represent one data element (e.g., d0..d31) consisting of more than
16 and not more than 32 bits each. The lowest byte (BO) must be filled with the lowest bits of the data
element (d0..d7). The next byte (B1) must be filled with the next bits (d8..d15), and so on. If spiDataWidth
<= 24, the data in fourth byte (B3) is ignored (TX case) or filled with zero (RX case). All 4 bytes (B0, B1, B2, B3)
are allocated even if SpiDataWidth <= 24,

The addresses of the TX and RX buffers must be integer multiples of the data element size, i.e.,:

e SpiDataWidth <=8:any address
e 8<gpibataWidth<=16:address mod 2 mustbe0
e 16<SpiDataWidth <=32:address mod 4 mustbe 0

5.1.2 Jobs

A Job is composed of one or several channels with the same chip select (is not released during the processing
of the Job). A Job is considered atomic and therefore cannot be interrupted by another Job. A Job has an
assigned priority.

A Job contains at least one channel. It can contain more than one channel. These channels are configuredin a
list for that Job. A Job has a priority that can be from 0 up to 3, where 0 is the lowest priority. A Job can belong
to more than one sequence.

A chip select is attached to a Job definition. The chip select is set at the beginning of the Job transmission and
released at the end of the Job.

At the end of the Job, a ‘Spi JobEndNotification’is called, if configured.

5.1.3 Sequences

A sequence is a number of consecutively transmitted Jobs. Jobs configured for a sequence must be in the order
of priority starting with the highest priority first.

If a level 1 or level 2 driver is configured, sequences may be configured as either interruptible or non-
interruptible. If a sequence is interruptible and asynchronously transmitted, Jobs from another sequence may
run depending on priority.

If a sequence is configured as non-interruptible, a new sequence is scheduled after the transmitting sequence,
if the sequences are using the same hardware unit. If different hardware units are used, more than one
sequence can be transmitted at the same time.

User guide 32 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

5 Functional description

Note that while sequences may be configured to have shared Jobs, sequences that have shared Jobs may not
be transmitted at the same time, i.e., the driver will reject a request to transmit a sequence if it has Jobs that
are configured as part of a sequence already in transmission.

At the end of the sequence, a ‘spiSegEndNotification’is called, if configured.

5.1.4 Scheduling

Jobs have assigned priorities. They will have decreasing priorities if they are linked in a sequence, i.e., the first
Job will have the highest priority.

If an interruptible sequence is configured, the system will check for another pending sequence at the end of a
Job transmission. If there is a Job for the same hardware with a higher priority, this Job will be transmitted
next.

When using interruptible sequences, note that the same channels should not be configured in those sequences,
as otherwise the data of the channels may be overwritten by a Job with a higher priority before you have read
the data. You must make sure of the consistent use of channels.

5.2 Inclusion

The file Spi.h includes all necessary external identifiers. Thus, your application only needs to include Spi.h to
make all APl functions and data types available.

5.3 Initialization

The SPI handler/driver must be initialized on each core before use by calling the API function spi_Init.The
module PORT must also be initialized in a similar way.

Note: Spi_Init () mustbe called on the master core before any other cores are initialized. If Spi_Init ()
is called on the satellite core, the master core must be already initialized. If no SCB channel is
assigned to the satellite core, Spi_Init () is notrequired on that core.

5.4 De-initialization

The SPI handler/driver can be de-initialized once on each core after use. De-Initialization of the SPI
handler/driver is made by calling Spi DeInit().

Note: Spi_DeInit () mustbe called on the master core after all satellite cores are de-initialized. If
Spi DeInit () iscalled on the satellite core, the master core must be already initialized. The
integrated system must prevent other cores from calling the SPI APl while Spi DeInit () is being
called.

5.5 Runtime reconfiguration

All configuration parameters can be not changed at runtime.

5.6 APl parameter checking
The driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via SpiErrorCalloutFunction)is called and the
error code, service ID, module ID, and instance ID are passed as parameters.

User guide 33 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

5 Functional description

If default error detection is enabled, all errors are also reported to DET, a central error hook function within the
AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The AUTOSAR specified development error and vendor-specific development error checks are performed by
the services of the SPI handler/driver.

See Functions for a description of API functions and associated error codes.

5.6.1 AUTOSAR specified development errors

Any APl function - except Spi Initand Spi GetVersionInfo - called with the driverin uninitialized state
reports the error code SPI_E UNINIT.

If spi Initis called onthe master core when any cores are already initialized, the error code
SPI_E ALREADY INITIALIZED isreported.

If the function spi Init is called on the satellite core when the satellite core is already initialized, the error
code SPI_E ALREADY INITIALIZED isreported.

If the functions Spi WriteIB,Spi ReadIBoOrSpi SetupkB are called with anincorrect channel parameter,
the error code SPI_E PARAM CHANNEL is reported.

If the function spi GetJobResult is called with the wrong Job parameter, the error code SPT E PARAM JOB
is reported.

If the function Spi_GetSequenceResult,Spi AsyncTransmit, Spi SyncTransmit, and Spi_Cancel are
called with the wrong parameter sequence, the error code SPT_E PARAM SEQis reported.

If the function spi_setupEB is called with the wrong parameter length, the error code SPI_E PARAM LENGTH
is reported.

If the function spi GetHWUnitStatus is called with the wrong parameter HwUnit, the error code
SPI_E PARAM UNIT isreported.

If the function Spi_GetVersionInfo iscalled with a NULL pointer, the error code SPT_E PARAM POINTER is
reported.

If one of the functions Spi Init,Spi Delnit,Spi SetAsyncMode, Spi_ GetStatus or
Spi MainFunction Handlingis called and the core D isinvalid, the error code SPT E INVALID COREis
reported.

If one of the functions Spi WriteIB, Spi ReadIB, Spi SetupEB, Spi SyncTransmit,

Spi AsyncTransmit,Spi Cancel, Spi Terminate, Spi ChangeOvsSetting ortheinterrupthandlersis
called from unexpected core, the function is executed on unexpected core, the error code

SPI_E INVALID CORE isreported.

If the function spi DeInit is called from master core when not all cores are uninitialized, the error code
SPI_E BUSYisreported.

5.6.2 Vendor-specific development errors

The error code SPI_E_INVALID_HW is reported if the Spi SyncTransmit function is called for a sequence
having Jobs for asynchronous hardware units or the Spi AsyncTransmit function is called for a sequence
having Jobs for the synchronous hardware unit.

User guide 34 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

5 Functional description

If the spi_setupEB function is called with buffer pointers that are not aligned and the buffer alignment
required (SpiAlignedBuffer is checked), the error code SPI_E_PARAM_POINTER is reported. A buffer pointer
isaligned if <buffer address> mod <required bytes per data unit> = 0.The number of required
bytes per data unit depends on Spibatawidth (see the section called data buffers).

If the function spi_SetAsyncMode is called with an undefined parameter value buffer, the error code
SPI_E PARAM BAD MODE is reported.

If the function spi_ReadIBis called with the parameter DataBufferPointer as NULL pointer, the error code
SPI_E PARAM POINTER isreported.

The vendor-specific function Spi GetBufferStatus reports SPI_E UNINIT if the driveris notin the
initialized state, SPT_E PARAM CHANNEL if aninvalid channel parameter,and sPI E PARAM POINTERIif NULL
has been passed to one or more of its remaining parameters.

If the Spi AsyncTransmit function is called with the parameter sequence using the same HwUnit while
transmitting with the Spi SyncTransmit function, the error code SPT_E SEQ PENDING is reported.

If the, sSpi_SyncTransmit functionis called with the parameter sequence using the same HwUnit while
transmitting with the Spi AsyncTransmit function, the error code SPT E SEQ IN PROCESS is reported.

Inthe spi Init function is called with aninvalid driver configuration set parameter the error code
SPI_E PARAM CONFIG isreported.

When an interrupt from an unconfigured SCB or DMA is detected, SPI’s ISR reports SPT_E PARAM CONFIG.

The vendor-specific, Spi Terminate function reports SPT_E UNINIT if the driveris notininitialized state and
reports SPI_E PARAM SEQ in case of aninvalid sequence parameter.

The vendor-specific Spi_ChangeOvsSetting function reports:

e SPI E UNINIT ifthedriverisnotin initialized state
e SPI E PARAM OTHERIn case of aninvalid over sampling parameter (ScbOvsValue)
e SPI E PARAM UNIT in case of aninvalid external device id (ExtDev)

5.7 Production errors

If receive FIFO overflow is detected during asynchronous transfer (as used in levels 1 and 2), or if timeout error
is detected during synchronous transfer, or executed Spi Terminate APl during asynchronous transfer (as
usedin levels 1), SPT E HARDWARE ERROR is reported to the DEM - provided that its usage is enabled in the
configuration.

For synchronous transmission timeout detection is implemented as a loop cycle counter with constant counter
values. Transmission timeout counter is restarted after each channel data word that was successfully
transmitted. You must make sure that the expected transmission duration and chip select durations are within
timeout limits.

5.8 Reentrancy

All services except Spi_ Init,Spi DeInit, Spi_ SetAsyncMode and Spi MainFunction Handling are
reentrant.

User guide 35 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

5 Functional description

5.9 Sleep mode

The SPI handler/driver and the hardware controlled by the SPI handler/driver do not provide a dedicated Sleep
mode.

Note: All SPI sequences must be completed or stopped before entering the DeepSleep mode.
SPI operation in DeepSleep mode is not guaranteed.

5.10 Debugging support
The SPI handler/driver does not support debugging.

5.11 Execution time dependencies

The execution of the API function is dependent on certain factors. Table 2 lists these dependencies.

Table 2 Execution time dependencies
Affected function Dependency
Spi_Init() Runtime depends on the number of configured hardware units, Jobs,
sequences, and channels.
Spi_Delnit () Runtime depends on the number of configured hardware units.
Spi MainFunction Handling ()
Spi_AsyncTransmit () Runtime depends on the number of Jobs configured for the requested
sequence and the total number of configured channels.
Spi_SyncTransmit () Runtime depends on the number of Jobs configured for the requested
sequence.
5.12 Deviation from AUTOSAR

By AUTOSAR standard, level 2 functionality will allow only one dedicated hardware instance for synchronous
transmission. All other instances may be used for asynchronous transmission. The operation of synchronous
and asynchronous transmission on the same hardware instance is not specified.

This SPI handler/driver allows synchronous transmission on multiple hardware instances (i.e., SCB units).
Furthermore, it is possible to operate synchronous and asynchronous transmissions on the same hardware
instance, provided they do not overlap in time.

5.13 Caveats
This section provides a non-exhaustive list of items that are responsible for your application:

e [SWS_Spi_00052] [SWS_SPI_00053] [SWS_SPI_00049] [SWS_SPI_00084]: The application will take care of
the consistency of data in the external buffers and internal buffers during transmission. The application will
ensure that any SPI channel is not used by more than one hardware channel at a time. The application will
notcall Spi SetupEB, Spi WriteIB,or Spi ReadIB forchannels thatare currently in transmission.

e [SWS_SPI_00037]: The SPI handler/driver’s environment will call the Spi SetupEB function once for each
SPI channel with EB declared before the SPI handler/driver’s environment calls a transmit method on them.

e [SWS_SPI_00173]: The SPI handler/driver’s environment will call the Spi AsyncTransmit function aftera
function call of spi setupEB for EB channels or a function call of spi writeIB forIB channels but before
the function call Spi ReadIB.

User guide 36 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

5 Functional description

e [SWS_SPI_00027]: The SPI handler/driver’s environment will call the Spi Read1B function after a transmit
method call to have relevant data within IB channel.

e [SWS_SPI_00257]: The SPI handler/driver’s environment will not call spi_WriteIBorSpi ReadIB for
channels that are currently in transmission because the SPI driver cannot prevent overwriting of the IB
channel buffer.

e [SWS_SPI_00038] [SWS_SPI_00042] [SWS_SPI_00287]: The SPI handler/driver’s environment will call the
function to inquire the job status or the sequence status or the SPI hardware status (that is,
Spi_GetJobResult,Spi_GetSequenceResult,OrSpi_GetHWUnitStatus)

Your application must prevent synchronous and asynchronous transmissions on the same SCB from running
concurrent transmission (asynchronous/synchronous or synchronous/asynchronous) when it transmits
synchronously. This includes the case when a sequence is cancelled and one job is still in transmission. The
transmission end can be checked by a sequence end notification or Spi GetHWUnitStatus.

DMA usage for configured SCB, the corresponding TX, RX, or both interrupt service routines (ISRs) might not be
generated. In such cases, the unused interrupt channels must be disabled at the interrupt controller (OS
configuration); that is, they must not be mapped to an unhandled interrupt ISR.

Asynchronous mode (SPI_POLLING MODE/SPI INTERRUPT MODE)must not be changed during the execution
of Spi MainFunction Handling,thatis.Spi SetAsyncMode and Spi MainFunction Handling must
not be called concurrently.

Spi MainFunction Handling mustnotinterruptor pre-empt other SPI handler/driver functions
(interruption/pre-emption of the Spi MainFunction Handling by other SPI handler/driver functions is
permitted according to their corresponding permitted reentrancy). Spi MainFunction Handling will be
called from the lowest-priority task with reference to all other tasks and interrupts that call other SPI
handler/driver functions.

The spi_SyncTransmit function and the Spi AsyncTransmit function cannot be operated at the same time
using the same SpiHwUnit.

5.14 Functions available without core dependency

Some APIs can be called on any core regardless of resource assignment.

The following function is available on any core without any restriction:

e Spi GetVersionInfo(), Spi GetStatus()

The following functions are available on any cores with a specific section allocation described in the Note:

e Spi GetHWUnitStatus()

e Spi GetJobResult ()

e Spi GetSequenceResult ()
e Spi GetBufferStatus()

Note: The section VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT] must be allocated to the
memory. This can be read from any core to call these APIs on any cores.
For the details of INIT POLICY and ALIGNMENT, see the Specification of memory mapping [5].

User guide 37 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

6 Hardware resources

6 Hardware resources

6.1 Ports and pins

The SPI handler/driver uses the SCB instances of the TRAVEO™ T2G family microcontrollers. The pins listed in
Table 3 are used. Make sure that the pins are correctly set in the PORT driver’s configuration.

Table 3 Pins for SPI operation
Pin name Direction | Drive mode Description
SCB<n>_MISO Input high-Z SCB channel <n> serial data input pin
SCB<n>_MOSI Output | strong pulldown | strong | SCB channel <n> serial data output pin
pullup
SCB<n>_CLK Output | strong pull down | strong | SCB channel <n> clock I/0 pin
pull up
SCB<n>_ SELECT<m> | Qutput |strongpulldown |strong | Serial chip select <m>1/0O pin of SCB
pull up channel
6.2 Timer

The SPI handler/driver does not use any hardware timers.

6.3 Interrupts

The interrupt services listed in Table 4 must be configured correctly for peripherals used by the SPI
handler/driver. If a peripheral is not used, the corresponding interrupt service must not be present in the
configuration.

Table 4 IRQ vectors and ISR names
IRQ vector ISR name Catl ISR name Cat2
SCB<n> interrupt request Spi_Interrupt_SCB<n>_Catl Spi_Interrupt_SCB<n>_Cat2

DMA completion interrupt Spi_Interrupt_DMA_CH</>_lsr_Catl Spi_Interrupt_DMA_CH</>_lsr_Cat2
request ch.<i>for TX
DMA completion interrupt Spi_Interrupt_DMA_CH<j>_lIsr_Catl Spi_Interrupt_DMA_CH<j>_Isr_Cat2
request ch.<j>for RX

Note: The OS must be associated with the named ISRs with the corresponding SCB interrupt.
For example, if the hardware unit SCB ch.2 is configured, Spi Interrupt SCB2 Cat2 () must
be called from the (0S-)interrupt service routine of SCB ch.2 interrupt. In case of categoryl usage,
the address of Spi_Interrupt SCB2 Catl () mustbe the entry for SCB ch.2 interruptin the
(0S) interrupt vector table.

Note: DMA completion ISRs are only generated if the given DMA channel is used by an SCB instance for SPI
transmission.
If there is an SCB channel that uses DMA, the interrupt handlers for SCB is required.

User guide 38 002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

Infineon

6 Hardware resources

Table 5 Interrupt handler registration

Interrupt handler
registration

Used DMA

Unused DMA

DMA completion interrupt request ch.<j> for TX
DMA completion interrupt request ch.<j> for RX
SCB<n> interrupt request

- SCB<n> interrupt request

Note:

1. Nesting interrupts are not supported because they may cause unexpected behavior. Therefore, all interrupts of
the same SCB (including DMA channels) must be set to the same interrupt priority to avoid nesting interrupts
itself and if you are using different HwUni ts, it is possible to set different interrupt levels for each Hwuni t.

2. The same interrupt priority will not nest itself. However, it allows nesting of other interrupts.

Note: Onthe Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing
conditions in the integrated system with TRAVEQO™ T2G MCAL. For more details, see the following

errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:
“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at the
end of the interrupt function to avoid the priority inversion.

TRAVEQ™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.
Thus, if necessary, the DSB instruction should be added just before the end of the handler by the

integrator.

6.4 DMA

The SPI handler/driver uses DMA channels, which can be configured by the user and will be enabled/disabled
by the SPI handler/driver as required. The DMA hardware itself must be enabled globally by the user before the
SPI handler/driver can be used for DMA transfer.

When using DMA, ensure that one to one trigger multiplexer is correctly set in the PORT driver’s configuration.

User guide

39

002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

7 Appendix A - APl reference

7 Appendix A - API reference

7.1 Include files

The Spi.hfile is the only file that needs to be included to use functions from the SPI handler/driver.

7.2 Data types
7.2.1 Spi_StatusType
Type

typedef enum
{
SPI UNINIT,
SPI IDLE,
SPI BUSY
} Spi_StatusType;

Description

Spi_StatusType defines the range of specific status for the SPI handler/driver. This datatype holds the SPI
handler/driver status and can be obtained by calling the APl service Spi GetStatus.

7.2.2 Spi_JobResultType

Type

typedef enum

{
SPI_JOB OK,
SPI_JOB PENDING,
SPI JOB FAILED,
SPI_JOB QUEUED

} Spi JobResultType;

Description

Spi_JobResultType defines the range of a specific job’s status for the SPI handler/driver. This datatype
holds the SPI handler/driver Job status and can be obtained by calling the API service Spi GetJobResult
with the job ID.

7.2.3 Spi_SeqgResultType

Type

typedef enum

{
SPI_SEQ OK,
SPI_SEQ PENDING,
SPI_SEQ FAILED,
SPI SEQ CANCELED

} Spi_ SegResultType;

User guide 40 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

7 Appendix A - APl reference

Description

Spi_SegResultType defines the range of a specific sequence status for the SPI handler/driver. This datatype
holds the SPI handler/driver sequence status and can be obtained by calling the API service
Spi GetSequenceResult with the sequence ID.

7.2.4 Spi_DataBufferType
Type

uints8

Description

Spi_ DataBufferType defines the type of application data buffer elements.

7.2.5 Spi_NumberOfDataType
Type

uintlé6

Description

Spi_NumberOfDataType defines the number of data elements of the Spi DataType type used to send or
receive on a channel.

7.2.6 Spi_ChannelType

Type

uints8

Description

Spi ChannelType specifies the identification (ID) for a channel.

The type is numbered from 0 - <number of Channels-1>.

7.2.7 Spi_JobType
Type

uintl16

Description

The spi_JobType specifies the identification (ID) for Job. The type is numbered from 0 - <number of Jobs -1>.

7.2.8 Spi_SequenceType
Type

uint8

Description

The spi SsequenceType specifies the identification (ID) for a sequence of Jobs. The type is numbered from 0 -
<number of Sequences -1>.

User guide 41 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

7 Appendix A - APl reference

7.2.9 Spi_HWUnitType
Type

uints8

Description

The spi_ HwWUnitType specifies the identification (ID) for a SPI hardware peripheral unit.

7.2.10 Spi_AsyncModeType

Type

typedef enum
{

SPI POLLING MODE,

SPI INTERRUPT MODE
} Spi AsyncModeType;
Description

Spi_AsyncModeType specifies the asynchronous mechanism mode for SPI busses handled asynchronously in
level 2.

The type consists of the values SPT POLLING MODE and SPI INTERRUPT MODE

7.2.11 Spi_ExtDeviceType
Type

uints8

Description

Spi_ ExtDeviceType specifies the identification (ID) for a SPI external device.

7.2.12 Spi_OvsValueType
Type

uint8

Description

Spi_OvsValueType specifies the serial interface bit period oversampling factor.

User guide 42 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.3 Constants

7.3.1 Error codes

A service may return one of the error codes, listed in Table 6, if default error detection is enabled.

Table 6 Error codes

Name

Value | Description

SPI_E_PARAM CHANNEL

10 Channelis not configured

SPI_E_PARAM JOB

11 Job is not configured

SPI_E_PARAM SEQ

12 Sequence is not configured

SPI_E_PARAM LENGTH

13 Length is out of range

SPI_E_PARAM UNIT 14 Hardware unit is out of range

SPI_E_PARAM POINTER 16 versioninfo is NULL pointer

SPI_E _UNINIT 26 No spi_ Initdone

SPI_E_SEQ PENDING 42 Sequence is pending or shared job in pending sequence
SPI_E_SEQ IN_PROCESS 58 Sequence is on transmission and

SpiSupportConcurrentSyncTransmit is disabled or
another sequence is on transmission on the same bus

SPI _E ALREADY INITIALIZED

74 APl spi Init serviceis called while the SPI handler/driver has
already been initialized

SPI_E_INVALID CORE 20 Function called with a parameter which does not belong to this
core
SPI_E_DIFFERENT CONFIG 91 Intended config initialization of this core does not match with

the initialized config of other cores

SPI_E INIT FAILED

92 Spi_Init service was failed

7.3.2 Vendor-specific error codes

Besides the error codes given in Error codes, this SPI handler/driver defines the errors listed in Table 7.

Table 7 Vendor-specific error codes
Name Value | Description
SPI_E_INVALID HW 82 The transmit API function is called for a sequence containing Jobs for

an invalid hardware unit.

SPI_E_HW_ERROR 83

A hardware error occurred during transmission.

SPI_E PARAM BAD MODE |g4

Bad value for parameter mode supported.

SPI_E_BUSY 85 The specified channel is busy
SPI_E_PARAM OTHER 86 Bad value for the other parameter supported.
SPI_E_PARAM CONFIG 87 Incorrect value for the pointer of the configuration.
User guide 43 002-30203 Rev. *H

2024-07-22

SPI1 3.0 handler/driver user guide

Infineon

7 Appendix A - APl reference

7.3.3 Version information
Table 8 Version information
Name Value Description

SPI_SW_MAJOR VERSION

see release notes

Vendor-specific major version number

SPI_SW_MINOR VERSION

see release notes

Vendor-specific minor version number

SPI_SW_PATCH VERSION

see release notes

Vendor-specific patch version number

7.3.4 Module information

Table9 Module information
Name Value Description
SPI_MODULE_ID 83 Module ID (Spi)
SPI_VENDOR ID 66 Vendor ID

7.3.5 API service IDs

Table 10 lists the APl service IDs used when reporting errors via DET or via the error callout function.

Table 10 APl service IDs

Name Value APl name

SPI API INIT 0x0 Spi_ Init

SPI_API DEINIT ox1 Spi DelInit

SPI_API WRITEIB 0x2 Spi WriteIB

SPI _API ASYNCTRANSMIT 0x3 Spi AsyncTransmit

SPI_API READIB Ox4 Spi_ReadIB

SPI_API SETUPEB 0x5 Spi_SetupEB

SPI_API GETSTATUS 0x6 Spi GetStatus

SPI_API GETJOBRESULT Ox7 Spi GetJobResult

SPI API GETSEQUENCERESULT 0x8 Spi GetSequenceResult

SPI _API GETVERSIONINFO 0x9 Spi GetVersionInfo

SPI_API SYNCTRANSMIT OxA Spi SyncTransmit

SPI API GETHWUNITSTATUS 0xB Spi GetHWUnitStatus

SPI_API CANCEL 0xC Spi Cancel

SPI API SETASYNCMODE oxD Spi_SetAsyncMode

SPI_API MAINFUNCTION HANDLING 0x10 Spi_MainFunction Handling
User guide 44 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.3.6 Vendor-specific APl service IDs

The following API service IDs are used when reporting errors via the error callout function:

Table 11 Vendor-specific APl service IDs
Name Value Description
SPI_API ISR 0x40 This API ID is used to indicate that an error occurred in a
function that was called within an interrupt context.
SPI_API_GETBUFFERSTATUS 0x41 This is vendor-specific API ID for Spi_GetBufferStatus
SPI_API_HANDLER 0x42 This API ID is used to indicate that the hardware error
occurred in an internal function.
SPI_API TERMINATE 0x43 This is vendor-specific API ID for spi Terminate.
SPI_API_CHANGEOVSSETTING 0x44 This is vendor-specific API ID for.
Spi ChangeOvsSetting
7.3.7 Invalid core ID value
Table 12 Invalid core ID
Name Value Description
SPI_INVALID CORE OXFF Invalid core ID
7.4 Functions
7.4.1 Spi_Ilnit
Syntax

void Spi Init(
const Spi ConfigType* ConfigPtr
)

Service ID

0x0

Sync/Async
Sync
Reentrancy
Non-reentrant
Parameters (in)

e ConfigPtr - Specifies the pointer to a configuration. If NULL pointer is specified, the first element of the
configuration set array is used.

Parameters (out)

None

User guide 45 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

Return value

None

DET errors

SPI_E ALREADY INITIALIZED - The SPIhandler/driver has already been initialized.
SPI_E PARAM CONFIG - Theinvalid pointer is specified.

SPI_E INVALID CORE - The current core is not assigned.

SPI E INIT FAILED-Spi Init services failed.

SPI_E DIFFERENT CONFIG - Intended configinitialization of this core does not match with the initialized
config of other cores.

DEM errors

None

Description

This function initializes all local data for the configured channels, Jobs, and sequences. After initialization, the
driver state will be SPI_IDLE, all sequence results will be SPI_SEQ_OK, and all Job results will be SPI_JOB_OK.
This function will be called with NULL pointer. Only precompiled configuration parameters are used for
initialization.

7.4.2 Spi_Delnit

Syntax

Std ReturnType Spi Delnit(

)

void

Service ID

Ox1

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

E_OKorE_NOT_OK

DET errors

SPI_E UNINIT - Thedriveris uninitialized.

User guide 46 002-30203 Rev. *H

2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

e SPI _E INVALID CORE - The currentcoreisnotassigned.
e SPI_E BUSY - The specified channelis busy.

DEM errors

None

Description

This function sets the driver state to SPT_UNINIT and returnsE_OK.

Spi DelInitreturnsE NOT OK,ifthedriverisinthe SPI BUSY stateorinthe SPI UNINIT state.

7.4.3 Spi_WritelB

Syntax

Std ReturnType Spi WritelIB(

Spi ChannelType Channel,

const Spi DataBufferType* DataBufferPtr
)

Service ID

0x2

Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e Channel -Specifiesthe ID of the channel where data will be written.

e DataBufferPtr - Specifies the pointer to a data buffer containing data to be written. If DataBufferpPtris
NULL, the default transmit value will be transmitted.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI _E UNINIT - Thedriverisuninitialized.
e SPI_E PARAM CHANNEL - Undefined channelorincorrect channel type.

e SPI E INVALID CORE - Thecurrentcore and the resource assigned core are different. The current core is
not assigned.

DEM errors

None

User guide 47 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

Description

This service writes data to the internal buffer associated with the parameter channel. You must ensure that the
buffer given by DataBufferpPtr has the same size as the internal buffer. If successful, it returns E_ox.

7.4.4 Spi_AsyncTransmit

Syntax

Std ReturnType Spi AsyncTransmit (
Spi SequenceType Sequence

)

Service ID

0x3

Sync/Async

Async

Reentrancy
Reentrant
Parameters (in)

e Sequence - Specifies the ID of the sequence that is to be transmitted.
Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM SEQ - Undefined sequence

e SPI E SEQ PENDING - Sequence is pending or shares a job with a pending sequence or the sequence is
included in the job of the same hardware unit as the synchronous transferring hardware unit.

e SPI E INVALID HW-Sequence contains the jobs foraninvalid hardware unit.

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is
not assigned.

DEM errors

e SPI_E HARDWARE ERROR - Hardware error was detected. The error is reported after the job ends in the
context of an interrupt or the main function.

Description

This function is the asynchronous service to transmit data on the SPI bus. This service takes the given
parameter, initiates a transmission, sets the SPI handler/driver status to SPI_BUSY, sets the sequence result to
SPI_SEQ_PENDING, sets all Jobs result to SPI_JOB_QUEUED, and returns. If a sequence requested by this
hardware is pending, then the new sequence will be added to the transmit queue for this hardware unit;

User guide 48 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

otherwise, it will startimmediately and set the first job result to SpT_J0oB PENDING. Note that you cannot call
this function if a transmission is in progress on this channel. If successful, it returns £_0x.

7.4.5 Spi_ReadIB

Syntax

Std ReturnType Spi ReadIB(

Spi ChannelType Channel,

Spi DataBufferType* DataBufferPointer
)

Service ID

0x4

Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e Channel - Specifies the ID of the channel from which data will be read.
e DataBufferPointer - Specifies the pointer to a data buffer where the read data will be written.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM CHANNEL - Undefined channelorincorrect channel type
e SPI _E PARAM POINTER-ArgumentDataBufferPointer is NULL pointer

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is
not assigned.

DEM errors
None
Description

This function reads data from the internal buffer specified by the parameter channel and writes this data to the
area given by the DataBufferPointer. You must make sure that at least one transmission function has been
called before attempting to read the buffer. You must also ensure that the area given by the
DataBufferPointer is large enough to store the data from the internal buffer. Note that you must not call
this function if a transmission is in progress on this channel. If successful, it returns E_OK.

User guide 49 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.4.6 Spi_SetupEB

Syntax

Std ReturnType Spi_ SetupEB (
Spi ChannelType Channel,
const Spi DataBufferType* SrcDataBufferPtr,
Spi DataBufferType* DesDataBufferPtr,
Spi NumberOfDataType Length
)

Service ID

0x5

Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e Channel - Specifies the ID of the channel for which buffers are to be initialized
e SrcDataBufferPtr - Pointer to a data buffer that holds the transmit data
e DesDataBufferPtr - Pointer to a data buffer where incoming data is stored

e Length - Length of data to be transmitted/received; minimum length is 1 and the maximum length is set in
configuration.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM CHANNEL - Undefined channelorincorrect channel type
e SPI_E PARAM LENGTH - Length is out of range or does not match to data width

e SPI _E PARAM POINTER - At least one of the data buffers is not aligned according to the buffer alignment
required by the configuration.

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is
not assigned.

DEM errors
None
Description

This function sets up the buffers and the length of data for the external buffers (EB) of the SPI handler/driver for
the given channel. This function should be called for each channel that is configured with external buffers
before a transmission is attempted. If SrcDataBufferpPtr is NULL, the default data configured will be

User guide 50 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

transmitted. If DesDataBufferptr is NULL, the incoming data is ignored by the driver. Note that you cannot
call this function if a transmission is in progress on this channel. If successful, it returns E_OK.

7.4.7 Spi_GetStatus

Syntax

Spi StatusType Spi GetStatus (
void

)

Service ID

0x6

Sync/Async

Sync
Reentrancy
Reentrant
Parameters (in)
None
Parameters (out)
None

Return value

SPI UNINIT,SPI IDLE,Ofr SPI BUSY
DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E INVALID CORE - Thecurrentcoreisnotassigned.

DEM errors
None
Description

The function returns the SPI handler/driver status. It returns sSpT UNINIT if Spi Init hasnotyet been called.
It returns sp1_IDLE if there is no sequence in progress. It returns SpI_BUSY if at least one sequenceiisin
progress.

User guide 51 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.4.8 Spi_GetJobResult

Syntax

Spi JobResultType Spi GetJobResult (
Spi JobType Job

)

Service ID

0x7

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Job - ID of the Job.

Parameters (out)

None

Return value

SPI JOB OK,SPI JOB PENDING,SPI JOB FAILED,Of SPI JOB QUEUED

DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM JOB - Undefined Job ID

DEM errors
None
Description

The function returns the last transmission result of the specified job. If the SPI handler/driver has not been
initialized when this service is called, the return value is undefined. The function is used to verify if the Job
transmission succeeded (SpPI_JOB_OK), failed (sPI_JOB FAILED), executing (SPI_JOB PENDING), or queued
(SPI_JOB QUEUED).

User guide 52 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.4.9 Spi_GetSequenceResult

Syntax

Spi SegResultType Spi GetSequenceResult (
Spi SequenceType Sequence

)

Service ID

0x8

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Sequence - ID of the sequence.
Parameters (out)

None

Return value

SPI _SEQ OK,SPI SEQ PENDING,SPI SEQ FAILED,Or SPI SEQ CANCELED
DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM SEQ - Undefined sequence ID.

DEM errors
None
Description

The function returns the last transmission result of the specified sequence. This function is used to verify
whether the full sequence transmission succeeded (spI_SEQ OK), failed (SPI_SEQ FAILED), executing
(SPI_SEQ PENDING),orcanceled (SPI_SEQ CANCELED). If the service is called before the SPI handler/driver is
initialized, the return value will be undefined.

User guide 53 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.4.10 Spi_GetVersioninfo

Syntax

void Spi GetVersionInfo (
Std VersionInfoType* versioninfo

)

Service ID

0x9

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

e versioninfo - Pointer to the location where the version information will be written.
Return value

None

DET errors

e SPI_E_PARAM_POINTER - versioninfo is NULL pointer.
DEM errors

None

Description

This function returns the version information of this module. This includes module ID, vendor ID, and vendor-
specific version numbers.

User guide 54 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.4.11 Spi_SyncTransmit

Syntax

Std ReturnType Spi_ SyncTransmit (
Spi SequenceType Sequence

)

Service ID

0xA

Sync/Async

Async

Reentrancy
Reentrant
Parameters (in)

e Sequence - ID of the sequence.
Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI _E PARAM SEQ - Undefined sequence ID

e SPI E SEQ IN PROCESS - The functionis called at the wrong time or the sequence is included in the job
of the same hardware unit as the asynchronous transferring hardware unit.

e SPI E INVALID HW-Sequence contains the jobs foraninvalid hardware unit.
e SPI _E SEQ PENDING - Sequence is pendingor shares a job with a pending sequence.

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is
not assigned.

DEM errors
e SPI E HARDWARE ERROR - Timeouterror was detected.
Description

This function provides synchronous transmission of data. It sets the SPI handler/driver status to SpT_BUSY,
sets the sequence statusto SPT_SEQ PENDING, sets the first Job status to SPI_JOB PENDING, and performs
the transmission. The driver accepts concurrent Spi SyncTransmit () if the sequences to be transmitted use
a different bus and spisSupportConcurrentSyncTransmit is enabled. If successful, it returns £_ox. Job and
sequence results are updated accordingly.

User guide 55 002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

Infineon

7 Appendix A - APl reference

7.4.12 Spi_GetHWUnitStatus

Syntax

Spi StatusType Spi_ GetHWUnitStatus (
Spi HWUnitType HWUnit

)

Service ID

0xB

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e HWUnit - ID of the hardware unit.

Parameters (out)

None

Return value

SPI_UNINIT, SPI_IDLE or SPI_BUSY

DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM UNIT - Undefined hardware unit

DEM errors
None

Description

This function returns the status of the specified SPI hardware unit.

User guide 56

002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

Infineon

7 Appendix A - APl reference

7.4.13 Spi_Cancel

Syntax
void Spi Cancel (
Spi SequenceType Sequence
)
Service ID
0xC
Sync/Async
Async
Reentrancy

Reentrant

Parameters (in)

e Sequence - ID of the sequence to be canceled.

Parameters (out)
None

Return value
None

DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM SEQ - Undefined sequence ID

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is

not assigned.
DEM errors
None

Description

This function cancels an ongoing sequence transmission. The sequence will be canceled between jobs i.e., a
Job will not be canceled once started. The sequence status will be setto SPT_SEQ CANCELED.

User guide

57 002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

Infineon

7 Appendix A - APl reference

7.4.14 Spi_SetAsyncMode

Syntax

Std ReturnType Spi_ SetAsyncMode (
Spi AsyncModeType Mode
)

Service ID
0xD
Sync/Async
Sync
Reentrancy
Non-reentrant

Parameters (in)

e Mode - The mode to be used for asynchronous transmissions.

Parameters (out)
None

Return value
E_OKorE_NOT_OK

DET errors

e SPI E UNINIT - Thedriverisuninitialized.

e SPI E PARAM BAD MODE - Value for mode is not supported.
e SPI E INVALID CORE - Thecurrentcoreisnotassigned.

DEM errors
None

Description

This function sets the mode for handling asynchronous transmissions on SPI buses. This may be interrupt
mode (SPI_INTERRUPT MODE) or polling mode (SPI POLLING MODE). Spi SetAsyncMode must not be
called during the execution of Spi MainFunction Handling.

User guide

58 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

7.4.15 Spi_GetBufferStatus

Syntax

Std ReturnType Spi_ GetBufferStatus (
Spi ChannelType Channel,
const Spi DataBufferType** SrcDataBufferPtrPtr,
Spi DataBufferType** DesDataBufferPtrPtr,
Spi NumberOfDataType* SrcRemainingLengthPtr,
Spi NumberOfDataType* DesRemainingLengthPtr

)

Service ID

0x41

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Channel - Channel ID.
Parameters (out)

e SrcDataBufferPtrPtr - The pointer that will be filled with the pointer to source data buffer
e DesDataBufferPtrPtr - The pointer that will be filled with the pointer to destination data buffer

e SrcRemainingLengthPtr - Pointer to the variable that will be filled with the remaining length (number of
date elements) of the source data yet to be transmitted from the source data buffer

e DesRemainingLengthPtr - Pointer to the variable that will be filled with the remaining length (number of
date elements) of the destination data yet to be received to destination data buffer

Return value

E_OK: Output parameters have been filled with the buffer status.
E_NOT OK:Output parameters could not be filled with the buffer status.

DET errors

e SPI E UNINIT - Thedriverisuninitialized.
e SPI E PARAM CHANNEL - Undefined channel

e SPI E PARAM POINTER- NULL_PTRwas passed as the parameters SrcDataBufferPtrPtr,
DesDataBufferPtrPtr, SrcRemainingLengthPtr, Of DesRemainingLengthPtr

DEM errors
None
Description

Vendor-specific service to read back the buffer status and the remaining length of data for the SPI
handler/driver channel specified.

User guide 59 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

After the transmission starts started (including the case that it has already finished), Spi GetBufferStatus
returns the buffer position and the remaining length calculated from the values that will be used (or have been
used) for copying data.

Spi_GetBuffersStatus returns the buffer pointers (SrcDataBufferPtrPtr and DesDataBufferPtrPtr)
pointing to the position after the position in the buffer that was read/written the last time; that is, the pointer to
the “next” position is returned or the pointer to the position directly after the buffer is returned if it was
completely processed.

Depending on the configuration of the SCB, the update of the internal variables takes place in chunks orin a
single block. Therefore, during transmission, the returned values may not reflect the actual pointer and
remaining length. Instead, the returned values may relate to the buffer positions at an earlier point in time. The
returned buffer positions and remaining lengths are determined before the transmission starts and after the
transmission ends.

If channel TX data was set to NULL_PTR (i.e., default TX data) before transmission, then

Spi GetBufferStatus returns undetermined pointerin SrcDataBufferPtrPtr and undetermined length
in SrcRemainingLengthPtr during and after transmission. The returned values cannot be used for TX
plausibility checks.

If channel RX data was set to NULL_PTR (i.e., ignore RX data) before transmission, then

Spi GetBufferStatus returns undetermined DesDataBufferPtrPtr and undetermined length in
DesRemainingLengthPtr during and after transmission. The returned values cannot be used for RX
plausibility checks.

7.4.16 Spi_Terminate

Syntax

Std ReturnType Spi Terminate (
Spi SequenceType Sequence

)

Service ID

0x43

Sync/Async
Async
Reentrancy
Reentrant
Parameters (in)

e Sequence - Sequence ID of sequence to be terminated.
Parameters (out)
None

Return value

E_OKorE_NOT_OK

User guide 60 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

DET errors

e SPI_E UNINIT - Thedriverisuninitialized.
e SPI_E PARAM SEQ - Undefined sequence ID.

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is
not assigned.

DEM errors
None
Description

Vendor-specific service to terminate transmission on the SPI bus only for the ongoing sequence. If successful, it
returns E_OK. SPl hardware unit status is updated accordingly.

7.4.17 Spi_ChangeOvsSetting

Syntax

Std ReturnType Spi ChangeOvsSetting (
Spi ExtDeviceType ExtDev,

Spi OvsValueType ScbOvsValue
)

Service ID

0x44
Sync/Async
Async
Reentrancy
Non-reentrant
Parameters (in)

e ExtDev - External device ID of external device that to be changed baud rate.
e ScbOvsValue - Setting value of OVS bit in SCB CTRL register.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI _E UNINIT - Thedriverisuninitialized.
e SPI E PARAM UNIT - Undefined external device ID.
e SPI E PARAM OTHER-Invalid OVSvalue.

e SPI E INVALID CORE - The current core and the resource assigned core are different. The current core is
not assigned.

User guide 61 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

7 Appendix A - APl reference

DEM errors
None
Description

Vendor-specific service to change SPI over sampling setting for the changing clock. If successful, it returns
E_OK. The setvalue is reflected at the next transfer.

7.5 Scheduled functions

7.5.1 Spi_MainFunction_Handling

Syntax

void Spi MainFunction Handling(
void

)

Service ID

0x10

Sync/Async

Sync

Reentrancy
Non-reentrant
Parameters (in)
None
Parameters (out)
None

Return value
None

DET errors

None

DEM errors

e SPI E HARDWARE ERROR - Hardware error was detected
Description

You must call this function periodically when polling mode is used in the level 2 driver.

User guide 62 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

7 Appendix A - APl reference

7.6 Required callback functions

7.6.1 SPI notification functions

The SPI handler/driver uses the following callback routines to inform other software modules about certain
states or state changes. These other modules are required to provide the routines in the expected manner.

Callback notifications are statically configurable.
Implementation of all notification functions is required to be reentrant.

Notification functions are called if it is enabled in configuration, regardless of synchronous or asynchronous
transmission.

The following API functions may be called from the SPI handler/driver callback notifications:

e Spi ReadIB

e Spi WritelB

e Spi SetupEB

e Spi GetJobResult

e Spi GetSequenceResult
e Spi GetHWUnitStatus

e Spi Cancel

All other SPI handler/driver API calls are not allowed.

7.6.1.1 Spi_JobEndNotification

Syntax

void (*Spi JobEndNotification) (
void

)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

The spi JobEndNotification isa callback routine provided by the user for each job to notify the caller that
a job has been finished. If configured, it will be called at the end of a job transmission.

User guide 63 002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide < In f| neon

7 Appendix A - APl reference

7.6.1.2 Spi_SeqEndNotification

Syntax

void (*Spi SegEndNotification) (
void

)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

The spi SegEndNotificationisa callback routine provided by the user for each sequence to notify the
caller that a sequence has been finished. If configured, it will be called at the end of a sequence transmission.

7.6.2 DET

If default error detection is enabled, the SPI handler/driver uses the following callback function provided by
DET. If you do not use DET, you, must implement this function within your application.

7.6.2.1 Det_ReportError

Syntax

Std ReturnType Det ReportError
(

uintl6 ModuleId,

uint8 Instanceld,

uint8 ApilId,

uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module ID of the calling module

e Instanceld- SpiCoreConfigurationld of the core that calls this function or SPI_INVALID_CORE.
e ApiId-ID ofthe APl service that calls this function

e ErrorId- ID of the detected development error

Return value

Returns always E_OK.

User guide 64 002-30203 Rev. *H
2024-07-22

SPI1 3.0 handler/driver user guide

Infineon

7 Appendix A - APl reference

Description

Service for reporting development errors.

7.6.3 DEM

If DEM notifications are enabled, the SPI handler/driver uses the following callback function provided by DEM. If

you do not use DEM, you must implement this function within your application.

7.6.3.1 Dem_ReportErrorStatus

Syntax

void Dem ReportErrorStatus

(
Dem EventIdType EventId,
Dem EventStatusType EventStatus

)

Reentrancy
Reentrant
Parameters (in)

e EventId - Identification of an event by the assigned event ID
e EventStatus - Monitor test result of the given event

Return value
None
Description

Service for reporting diagnostic events.

7.6.4 Callout functions

7.6.4.1 Error callout API

The AUTOSAR SPI module requires an error callout handler. Each error is reported to this handler; error
checking cannot be switched OFF. The name of the function to be called can be configured by the parameter

SpiErrorCalloutFunction.

Syntax

void Error Handler Name
(
uintl6 Moduleld,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)
Reentrancy

Reentrant

User guide 65

002-30203 Rev. *H
2024-07-22

o _.
SPI1 3.0 handler/driver user guide In f| neon

7 Appendix A - APl reference

Parameters (in)

e ModuleId-Module ID of the calling module

e Instanceld- SpiCoreConfigurationId of the core that calls this function or SPI_INVALID_CORE.
e ApiId- ID of the API service that calls this function

e ErrorId- ID of the detected error

Return value
None
Description

Service for reporting errors.

7.6.5 Callout functions

Get core ID API

The AUTOSAR SPI module requires a function to get valid core ID. This function is being used to determine the
core from which the code is getting executed. The name of the function to be called can be configured by
SpiGetCoreIdFunction parameter.

Syntax

uint8 GetCoreID Function Name (void)
Reentrancy

Reentrant

Parameters (in)

None

Return value

e Coreld-ID ofthe currentcore.

Description

Service for getting valid core ID.

Note: This function returns the core ID configured in

SpiMulticore/SpiCoreConfiguration/SpiCorelId.
For example: Two cores are configured in the SpiCoreConfiguration.

Executing core SpiCoreConfigurationId SpiCoreld
CM7_0 0 15
CM7_1 1 16

- Upon calling this function from core CM7_0, it shall return 15.
- Upon calling this function from core CM7_1, it shall return 16.

User guide 66 002-30203 Rev. *H
2024-07-22

¢C-10-v20T

apIng Jasn

[}
g}

Hx 'A9Y €020€-200

8 Appendix B - Access register table
8.1 SCB
Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
CTRL 31:0 | Word 0x0100800F Initialize CTRL Initialize SPI 0x9303970F | 0x01000000
(32 bits) register driver
0x81008000 De-initialize CTRL De-initialize 0x9303D70F | 0x81000000
register SPI driver

0x0100000 | SCB Setup CTRL register | From transfer | 0x9303970F | 0x01000000
enable <<31 | over startto bit[31]:Set on transfer
sampling value transfer end stating/Clear on transfer ending
Depend on bit[3:0]:Depend on baud rate of
configuration transfer

SPI_CTRL 31:0 | Word 0x80000001 Initialize SPI_CTRL Initialize SPI 0x83014033 | 0x80000001

(32 bits) register driver
0x03000010 De-initialize De-initialize 0x8F017F3F | 0x03000010
SPI_CTRL register SPI driver
0x80000001 | Chip Set up SPI_CTRL When transfer | 0x83014033 | 0x80000001
selectidentifier<<26| | register start bit[27:26]:Depend on chip
CS hold delay <<13 | select
CSsetup .delay <<12] bit[13]:Depend on hold delay
€S3 polar!ty <<1]| bit[12]:Depend on set up delay
CS2 polarity << 10| CS1 bit(11:81:D p hi lect
polarity << 9| CS0 i l[:] :Depend on chip selec
polarity << 8| Clock polarity
idle level << 3 | Data bit[3]:Depend on clock idle level
shift edge <<2 bit[2]:Depend on data shift
edge

Depend on
configuration

3)qe} 49351834 ssaddy - g xipuaddy 8
aping Jasn JaALIp/i13)puey 0°€ IdS

e

uoauljul

¢C-10-v20T

apIng Jasn

89

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
SPI_TX_CTRL 31:0 | Word 0x00000000 Initialize Initialize SPI 0x00000030 | 0x00000000
(32 bits) SPI_TX_CTRL register | driver
0x00000000 De-initialize De-initialize 0x00000030 | 0x00000000
SPI_TX_CTRL register | SPIdriver
0x00000000 Refresh SPI_TX_CTRL | When transfer | 0x00000030 | 0x00000000
register start
SPI_RX CTRL 31:0 | Word 0x00000000 Initialize Initialize SPI 0x00000130 | 0x00000000
(32 bits) SPI_RX_CTRL register | driver
0x00000000 De-initialize De-initialize 0x00000130 | 0x00000000
SPI_RX_CTRL register | SPIdriver
0x00000000 Refresh SPI_RX_CTRL | When transfer | 0x00000100 | 0x00000000
register start
TX CTRL 31:0 | Word 0x00000107 Initialize TX_CTRL Initialize SPI 0x00010000 | 0x00000000
(32 bits) register driver
0x00000107 De-initialize TX_CTRL | De-initialize 0x0001011F | 0x00000107
register SPI driver
0x00000000 | First Set up TX_CTRL When transfer | 0x00010000 | 0x00000000
transfer bit<< 8 | Data register start bit[8]:Depend on first transfer
width bit
Depend on bit[4:0]:Depend on data width
configuration
TX_FIFO_CTRL |31:0 |Word 0x00000000 Initialize Initialize SPI 0x00030000 | 0x00000000
(32 bits) SPI_TX_FIFO_CTRL | driver
register
0x00000000 De-initialize De-initialize 0x000300FF | 0x00000000
SPI_TX_FIFO_CTRL SPI driver
register
0x00000000 | invalidate | Set up transmitter From transfer | 0x00020000 | 0x00000000

FIFO << 16 | | FIFO
trigger level

Depend transfer mode

FIFO control register

start to
transfer end

bit[16]:Set on transmission
starting/Clear on transmission

ending

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

69

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
bit[7:0]:
Sync transfer: FIFO size/bytes
per data element
Async transfer (DMA): FIFO
size/bytes per data element
Async transfer (non-DMA
interrupt): 1
Async transfer (non-DMA
polling): FIFO size/bytes per
data element
TX_FIFO_STAT |31:.0 |Word 0x00000000 Read only register Initialize SPI OxFFFF81FF | 0x00000000
us (32 bits) driver
0x00000000 Read only register De-initialize OxFFFF81FF | 0x00000000
SPI driver
0x00000000 | FIFO Checking FIFO isnot | During transfer | 0x00008000 | 0x00000000
write pointer << 24 | FULL.
FIFO read pointer << 16
| Amount of entries in
FIFO
Read only
TX_FIFO_WR 31:0 | Word Transfer data Transfer data During transfer | - -
(32 bits) Write only register

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

0L

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
RX_CTRL 31:0 | Word 0x00000107 Initialize RX_CTRL Initialize SPI 0x00000200 | 0x00000000.
(32 bits) register driver
0x00000107 De-initialize RX_CTRL | De-initialize 0x0000031F | 0x00000107
register SPI driver
0x00000000 | First Set up RX_CTRL During transfer | 0x00000200 | 0x00000000.
transfer bit<<8|Data | register Bit[8]:Depend on first transfer
width bit
Depend on bit[4:0]:Depend on data width
configuration
RX_FIFO_CTRL |31:0 |Word 0x00000000 Initialize Initialize SPI 0x00030000 | 0x00000000
(32 bits) SPI_TX_FIFO_CTRL driver
register
0x00000000 De-initialize De-initialize 0x000300FF | 0x00000000
SPI_RX_FIFO_CTRL SPI driver
register
0x00000000 | Invalidate | Set up receiver FIFO | From transfer | 0x00000200 | 0x00000000.

FIFO << 16 | FIFO
trigger level

Depend transfer mode

control register

start to
transfer end

Bit[16]:Set on receive
starting/Clear on receive ending
bit[7:0]:

Sync transfer: FIFO size/bytes
per data element
Async transfer (DMA): 0
Async transfer (non-DMA
interrupt): (FIFO size-24)/bytes
per data element
Async transfer (non-DMA
polling): 0

3)qe} 49351834 ssaddy - g xipuaddy 8
aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

1L

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size

RX_FIFO_STAT |31:0 |Word 0x00000000 Read only register Initialize SPI OxFFFF81FF | 0x00000000
us (32 bits) driver

0x00000000 Read only register De-initialize OxFFFF81FF | 0x00000000

SPI driver

0x00000000 | FIFO Checking received During transfer | 0x00008000 | 0x00000000

write pointer << 24 | data exist.

FIFO read pointer << 16

| Amount of entries in

FIFO

Read only
RX FIFO_RD 31:0 | Word DATA[31:0] Received data - - -

(32 bits) Can’t monitoring
INTR_CAUSE 31:0 | Word 0x00000000 Initialize Initialize SPI 0x00000000 | 0x00000000
(32 bits) driver (monitoring | (monitoring is not needed.)
0x00000000 De-initialize De-initialize is not
SPI driver needed.)

0x00000000 | RX Interrupt cause During transfer

interrupt << 3 | Master

interrupt

Read only
INTR_T2C_EC_ |31:0 | Word 0x00000000 Initialize externally Initialize SPI 0x0000000F | 0x00000000
MASK (32 bits) clocked I12C interrupt | driver

mask register
0x00000000 De-initialize De-initialize 0x0000000F | 0x00000000
externally clocked SPI driver

[2C interrupt mask
register

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

(45

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_SPI_EC_ 131:0 | Word 0x00000000 Initialize externally Initialize SPI 0x0000000F | 0x00000000
MASK (32 bits) clocked SPlinterrupt | driver
mask register
0x00000000 De-initialize De-initialize 0x0000000F | 0x00000000
externally clocked SPI driver
SPlinterrupt mask
register
INTR_M 31:0 | Word 0x000003FF Initialize Master Initialize SPI 0x00000000 | 0x00000000
(32 bits) interrupt request driver (monitoring | (monitoring is not needed.)
register is not
0x000003FF De-initialize Master | De-initialize needed.)
interrupt request SPI driver
register
0x00000000 | SPI SPI bus idle checking | During transfer
transfer done <<9
INTR_M MASK 31:0 |Word 0x00000000 Initialize Master Initialize SPI 0x00000317 | 0x00000000
(32 bits) interrupt mask driver
register
0x00000000 De-initialize Master De-initialize 0x00000317 | 0x00000000
interrupt mask SPI driver
register
0x00000000 | SPI Enable or disable During transfer | 0x00000117 | 0x00000000

transfer done interrupt
mask

SPI_DONE interrupt

ininterrupt
mode

bit[9]:Set on complete TX data
write to FIFO in non-DMA Async
transfer

Set on complete RX data
receiving in DMA Async transfer

3)qe} 49351834 ssaddy - g xipuaddy 8
aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

—~
w

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_S_MASK 31:0 | Word 0x00000000 Initialize Slave Initialize SPI 0x000007FF | 0x00000000
(32 bits) interrupt mask driver
register
0x00000000 De-initialize Slave De-initialize 0x000007FF | 0x00000000
interrupt mask SPI driver
register
INTR_TX 31:0 | Word 0x000007FF Initialize transmitter | Initialize SPI 0x00000000 | 0x00000000
(32 bits) interrupt request driver (monitoring | (monitoring is not needed.)
register is not
0x000007FF De-initialize De-initialize needed.)
transmitter interrupt | SPI driver
request register
0x000007FF Clear all transmitter | When
interrupt factor transition stop
INTR_TX_MASK |31:0 |Word 0x00000000 De-initialize Initialize SPI 0x00007FFF | 0x00000000
(32 bits) transmitter interrupt | driver
mask register
0x00000000 De-initialize De-initialize 0x00007FFF | 0x00000000
transmitter interrupt | SPldriver
mask register
0x00000000 Disable all When 0x00007FFF | 0x00000000
transmitter transmission
interrupts stop

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

YL

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_RX 31:0 | Word 0x00000FFF Initialize receiver Initialize SPI 0x00000000 | 0x00000000
(32 bits) interrupt request driver (monitoring | (monitoring is not needed.)
register isnot
0x00000FFF De-initialize receiver | De-initialize needed.)
interrupt request SPI driver
register
0x00000FFF Clear all receiver When

interrupt factor

receiving stop
When receiver
interruptis
cached

0x00000000 | FIFO over
flow<<5

Checking transfer
error

During transfer

0x00000000 | FIFO not
empty <<2 | FIFO
trigger

Checking received
data exist.

During transfer

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

S

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_RX _MASK 131:0 | Word 0x00000000 Initialize receiver Initialize SPI 0x00000FFF | 0x00000000
(32 bits) interrupt mask driver
register
0x00000000 De-initialize receiver | De-initialize 0x00000FFF | 0x00000000
interrupt mask SPI driver
register
0x0000000 | FIFO Enable receiver FIFO | When transfer | 0x00000F80 | 0x00000000
trigger interrupt enable | trigger interrupt start without bit[0]: Set on Async transfer
DMAin (non-DMA,) starting/Clear on
interrupt Async transfer (non-DMA)
mode ending
0x00000000 Disable all interrupts | When transfer | 0xO0000FFF | 0x00000000
start with DMA
ininterrupt
mode or
non-interrupt
mode
0x00000000 Disable all receiver When 0x00000FFF | 0x00000000

interrupts

receiving stop

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

C
Z 8.2 DW
OCQ
S Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
CH_CTL 31:0 |Word 0x00000002 Initialize channel Initialize SPI 0x80000BF4 | 0x00000000
(32 bits) control register driver
0x00000002 De-initialize channel | De-initialize SPI 0x80000BF4 | 0x00000000
control register driver
0x00000000 | DMA Start or Stop DMA During transfer 0x00000BF4 | 0x00000000
channel enable << with DMA bit[31]:Set on Async transfer
31 (DMA) stating/Clear on Async
transfer (DMA) ending
CH_STATUS 31:0 | Word -:Read only Initialize channel Initialize SPI 0x0000000F | 0x00000001
(32 bits) status register driver
-:Read only De-initialize channel | De-initialize SPI 0x0000000F | 0x00000001
status register driver
= Cause of interrupt | Checking DW channel | During transfer 0x00000000 | 0x00000000
Read only status. with DMA bit[3:0]:Clear on Async transfer
(DMA) stating/ Set on Async
transfer (DMA) ending
CH_IDX 31:0 |Word 0x00000000 Initialize channel Initialize SPI 0x00000000 | 0x00000000
(32 bits) current indices driver
0x00000000 De-initialize channel | De-initialize SPI 0x0000FFFF | 0x00000000
currentindices driver
0x00000000 | Y loop | Calculate buffer During transfer 0x00000000 | 0x00000000
index << 8| X loop position with DMA bit[15:8] | bit[7:0]
index Clear on Async transfer (DMA)
stating
Change on during transfer
S
w
N
&
P
2
T

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

¢C-10-v20T

apIng Jasn

Ll

Hx 'A9Y €020€-200

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
CH_CURR_PTR 31:0 | Word 0x00000000 Initialize channel Initialize SPI 0x00000000 | 0x00000000
(32 bits) current descriptor driver
pointer register
0x00000000 De-initialize channel | De-initialize SPI OxFFFFFFFC | 0x00000000
current descriptor driver
pointer register
ADDR[31:2] Set descriptor When stating 0x00000000 | 0x00000000
address transfer with DMA bit[31:2]:Set to current
descriptor address on stating
transfer
ADDRJ[31:2] Calculate buffer During transfer 0x00000000 | 0x00000000
position with DMA bit[31:2]:Clear to 0 on ending
transfer
INTR 31:0 | Word 0x00000001 Initialize interrupt Initialize SPI 0x00000000 | 0x00000000
(32 bits) register driver (monitoring | (monitoring is not needed.)
0x00000001 De-initialize interrupt | De-initialize SPI is not
register driver needed.)
0x00000001 Clear interrupt When stating
transfer with DMA
When DMA
interrupt is caught
INTR_MASK 31:0 | Word 0x00000000 Initialize interrupt Initialize SPI 0x00000001 | 0x00000000
(32 bits) mask register driver
0x00000000 De-initialize interrupt | De-initialize SPI 0x00000001 | 0x00000000
mask register driver
0x00000000 | Disable or enable During transfer 0x00000000 | 0x00000000
Enable interrupt DMA interrupt with DMA bit[0]:Set on stating DMA/Clear
on ending DMA
SRAM_DATAO 31:0 | Word 0x00000000 Initialize SRAM data0 | Initialize SPI 0x00000000 | 0x00000000
(32 bits) register driver (monitoring is not needed.)

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

¢C-10-v20T

apIng Jasn

8L

Hx 'A9Y €020€-200

Register

Bit
No.

Access
size

Value

Description

Timing

Mask value

Monitoring value

(monitoring
is not
needed.)

0x00000000

De-initialize SRAM
data0 register

De-initialize SPI
driver

0x00000000
(monitoring
is not
needed.)

0x00000000
(monitoring is not needed.)

SRAM DATAl

31:0

Word
(32 bits)

0x00000000

Initialize SRAM datal
register

Initialize SPI
driver

0x00000000
(monitoring
is not
needed.)

0x00000000
(monitoring is not needed.)

0x00000000

De-initialize SRAM
datal register

De-initialize SPI
driver

0x00000000
(monitoring
is not
needed.)

0x00000000
(monitoring is not needed.)

3)qe} 49351834 ssaddy - g xipuaddy 8

aping Jasn JaALIp/i13)puey 0°€ IdS

uoauljul

e

o _.
SPI1 3.0 handler/driver user guide < In f| neon

Revision history

Revision history

Revision Issue date Description of change
* 2020-09-16 Initial release
*A 2020-11-20 2.6 Memory Mapping

Changed Spi_MemMap.h file include folder.
2.6.2 Memory Allocation and Constraints
Added the restriction of VRAM.
4.1 General Configuration
Deleted restriction of SpiSupportConcurrentSyncTransmit.
4.2.3 External Device Configuration
Changed and added Note description.
SpiCsSelection
SpiHwUnit
7.4.11 Spi_SyncTransmit
Deleted restriction of SpiSupportConcurrentSyncTransmit.
Migrated to Infineon template.
*B 2021-05-24 5.9 Sleep Mode
Changed description and added Note.
5.1.1.3 Externally Buffered Channels
Changed Note.

*C 2021-08-19 Added note in 6.3 Interrupts.
*D 2021-12-07 Updated to the latest branding guidelines.
*E 2023-10-06 Updated register information in 8.2.
Corrected core identification keyword in sections 2.6 and 5.14.
*F 2023-12-08 Web release. No content updates.
*G 2024-03-18 4.4.4 BSW scheduler

Changed BSW scheduler (SchM) section name
6.3 Interrupts
Deleted Note

*H 2024-07-22 Updated description in 5.7 Production errors.

User guide 79 002-30203 Rev. *H
2024-07-22

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-07-22
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document reference
002-30203 Rev. *H

Important notice

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the SPI handler/driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding
	1.7 Multicore support
	1.7.1 Multicore type
	1.7.1.1 Single core only (multicore type I)
	1.7.1.2 Core dependent instances (multicore type II)
	1.7.1.3 Core independent instances (multicore type III)

	1.7.2 Virtual core support

	2 Using the SPI handler/driver
	2.1 Installation and prerequisites
	2.2 Configuring the SPI driver
	2.2.1 Architecture specifics

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Memory allocation and constraints

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 PORT driver
	3.4.2 MCU driver
	3.4.3 DIO driver
	3.4.4 AUTOSAR OS
	3.4.5 BSW scheduler
	3.4.6 DET
	3.4.7 DEM
	3.4.8 Error callout handler
	3.4.9 DMA

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 SPI driver configuration
	4.2.1 Channel configuration
	4.2.2 Job configuration
	4.2.3 External device configuration
	4.2.4 Sequence configuration
	4.2.5 SPI DEM event parameter references
	4.2.6 SPI published information
	4.2.7 SpiMulticore
	4.2.8 SpiCoreConfiguration

	4.3 Vendor and driver-specific parameters
	4.3.1 Container SpiGeneral
	4.3.1.1 SpiErrorCalloutFunction
	4.3.1.2 SpiIncludeFile

	4.4 Other modules
	4.4.1 PORT driver
	4.4.2 DET
	4.4.3 AUTOSAR OS
	4.4.4 BSW scheduler

	5 Functional description
	5.1 Channels, jobs, and sequences
	5.1.1 Channels
	5.1.1.1 General
	5.1.1.2 Internally buffered channels
	5.1.1.3 Externally buffered channels
	5.1.1.4 Data buffers

	5.1.2 Jobs
	5.1.3 Sequences
	5.1.4 Scheduling

	5.2 Inclusion
	5.3 Initialization
	5.4 De-initialization
	5.5 Runtime reconfiguration
	5.6 API parameter checking
	5.6.1 AUTOSAR specified development errors
	5.6.2 Vendor-specific development errors

	5.7 Production errors
	5.8 Reentrancy
	5.9 Sleep mode
	5.10 Debugging support
	5.11 Execution time dependencies
	5.12 Deviation from AUTOSAR
	5.13 Caveats
	5.14 Functions available without core dependency

	6 Hardware resources
	6.1 Ports and pins
	6.2 Timer
	6.3 Interrupts
	6.4 DMA

	7 Appendix A – API reference
	7.1 Include files
	7.2 Data types
	7.2.1 Spi_StatusType
	7.2.2 Spi_JobResultType
	7.2.3 Spi_SeqResultType
	7.2.4 Spi_DataBufferType
	7.2.5 Spi_NumberOfDataType
	7.2.6 Spi_ChannelType
	7.2.7 Spi_JobType
	7.2.8 Spi_SequenceType
	7.2.9 Spi_HWUnitType
	7.2.10 Spi_AsyncModeType
	7.2.11 Spi_ExtDeviceType
	7.2.12 Spi_OvsValueType

	7.3 Constants
	7.3.1 Error codes
	7.3.2 Vendor-specific error codes
	7.3.3 Version information
	7.3.4 Module information
	7.3.5 API service IDs
	7.3.6 Vendor-specific API service IDs
	7.3.7 Invalid core ID value

	7.4 Functions
	7.4.1 Spi_Init
	7.4.2 Spi_DeInit
	7.4.3 Spi_WriteIB
	7.4.4 Spi_AsyncTransmit
	7.4.5 Spi_ReadIB
	7.4.6 Spi_SetupEB
	7.4.7 Spi_GetStatus
	7.4.8 Spi_GetJobResult
	7.4.9 Spi_GetSequenceResult
	7.4.10 Spi_GetVersionInfo
	7.4.11 Spi_SyncTransmit
	7.4.12 Spi_GetHWUnitStatus
	7.4.13 Spi_Cancel
	7.4.14 Spi_SetAsyncMode
	7.4.15 Spi_GetBufferStatus
	7.4.16 Spi_Terminate
	7.4.17 Spi_ChangeOvsSetting

	7.5 Scheduled functions
	7.5.1 Spi_MainFunction_Handling

	7.6 Required callback functions
	7.6.1 SPI notification functions
	7.6.1.1 Spi_JobEndNotification
	7.6.1.2 Spi_SeqEndNotification

	7.6.2 DET
	7.6.2.1 Det_ReportError

	7.6.3 DEM
	7.6.3.1 Dem_ReportErrorStatus

	7.6.4 Callout functions
	7.6.4.1 Error callout API

	7.6.5 Callout functions

	8 Appendix B – Access register table
	8.1 SCB
	8.2 DW

	Revision history
	Disclaimer

