

 User Manual

User Manual
4269.40100, 1.0, 2020-04

ShieldBuddy TC375 User Manual

Basic information on the ShieldBuddy TC375 development
board

Connectors, board layout, component placement, power options,
programming

Released

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Edition 2020-04

Published by:
Hitex (U.K.) Limited.
University Of Warwick Science Park, Coventry, CV4 7HS, UK
© 2021 Hitex (U.K.) Limited.
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the product, Hitex (UK) Ltd. hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of
any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Hitex Office (www.hitex.co.uk).

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 3 1.0, 2020-04

Document Change History

Date Version Changed By Change Description

20/4/2020

1.0

M Beach

First version, based on TC375 v3.2

We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your comments (including a reference to this document) to:
comments@hitex.co.uk

mailto:comments@hitex.co.uk

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 4 1.0, 2020-04

Table of Contents

1 Getting Started ... 8
1.1 What Are The ShieldBuddy TC375 Tools? .. 8
1.2 Getting Started With The TC375 Toolchain ... 8
1.3 Using The ShieldBuddy TC375 .. 9
1.4 Using The Eclipse IDE ... 9
1.5 Debugging Programs Using Eclipse PLS UDE Debug Perspective .. 10
1.6 Getting Help ... 10

2 ShieldBuddy TC375 Extensions To The Arduino IDE .. 11
2.1 How is the ShieldBuddy Different To Other Arduinos? .. 11
2.2 TC375 Processor Architecture ... 11
2.3 Serial Ports ... 12
2.3.1 Compiling Existing Arduino Sketches .. 13
2.4 Multicore Programming Extensions ... 14
2.4.1 Arduino IDE Extensions ... 14
2.4.2 Inter-Core Communications ... 14
2.4.2.1 Inter-Core Communications Example .. 15
2.4.2.2 Using Interrupts To Coordinate and Communicate Between Cores. ... 17
2.4.3 Timers/Ticks/delay(), millis(), micros() Etc. .. 18
2.4.3.1 Core 1 ... 19
2.4.3.2 Core 2 ... 19
2.4.3.3 Direct Fast Access To The System Timer0 ... 19
2.4.4 Managing the Multicore Memory Map .. 20
2.5 Peripheral And IO Extensions .. 23
2.5.1 Fast digitalRead & digitalWrite ... 23
2.6 Using The Analog A0 – A11 Pins As Digital IO .. 23
2.6.1 attachInterrupt() Function ... 23
2.6.2 Enabling and Disabling Interrupts .. 23
2.6.3 ADC Read Resolution .. 23
2.6.4 analogWrite() & AnalogOut .. 24
2.6.5 Available PWM Channels ... 24
2.6.5.1 PWM Frequency... 24
2.6.5.2 Custom PWM Frequencies .. 24
2.6.5.3 Fast Update Of AnalogOut() Function ... 24
2.6.5.4 DAC0 and DAC1 pins .. 25
2.7 CAN .. 26
2.7.1 CAN Functions Usage .. 26
2.7.1.1 Receiving any message regardless of message ID ... 28
2.8 I2C/Wire Pins & Baudrate .. 28
2.9 EEPROM Support .. 29
2.10 Resetting The ShieldBuddy .. 29
2.10.1 Resetting From Programs .. 29
2.10.2 Resetting From Windows ... 29
2.11 SPI Support .. 30
2.11.1 Default Spi .. 30
2.11.2 Spi Channel 1 ... 30
2.11.3 Spi Channel 2 ... 30
2.11.4 Software Bit-Bashed SPI .. 31
2.12 Aurix DSP Function Library .. 32
2.13 Ethernet BootLoader/In Application Ethernet Flash Programmer .. 33
2.13.1 Overview .. 33
2.13.2 Setting The Network Addresses ... 33
2.13.3 Configuring The SPI ... 33
2.14 Using The Bootloader .. 34
2.15 Sending Programs To The ShieldBuddy .. 34
2.16 Tone() Functions .. 35
2.17 PWM Measurement Functions ... 35

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 5 1.0, 2020-04

2.17.1 Using The PWM Measurement Functions ... 35
2.18 General Purpose Timer Interrupts .. 37

3 Hardware Release Notes HW Revision B .. 38
3.1 ShieldBuddy TC375 RevA Known Problems ... 38
3.2 VIN Pin ... 38

4 Arduino-Based Connector Details.. 39
4.1 Board Layout .. 39
4.2 Connector Pin Allocation .. 40
4.3 TC375 ASCLIN to ShieldBuddy connector mapping ... 42

5 Powering The ShieldBuddy ... 44
5.1 Selectable Options ... 44
5.2 Restoring an ShieldBuddy with a completely erased FLASH. ... 45

6 Component Placement .. 46

7 Appendices ... 48
7.1 Basic Board Test .. 48

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 6 1.0, 2020-04

List of Figures

Figure 1 TC375 Internal Layout .. 11
Figure 2 TC375 RAMs .. 20
Figure 3 Top view of ShieldBuddy TC375 .. 39
Figure 4 Extended IO Connector .. 41
Figure 5 SPI Connector .. 41
Figure 6 On-Board CAN Connector ... 41
Figure 7 Component Location – Top Side .. 46
Figure 8 Component Location – Underside.. 46

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 7 1.0, 2020-04

List of Tables

Table 1 SPI Names ... 30
Table 2 Pins available for tone() function .. 35
Table 3 Pins available for PWM measurement functions ... 35
Table 4 ASCLIN to ShieldBuddy connector mapping ... 42
Table 5 Arduino To ShieldBuddy To TC375 Mapping .. 42

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 8 1.0, 2020-04

1 Getting Started

1.1 What Are The ShieldBuddy TC375 Tools?

The main ShieldBuddy toolchain is the Eclipse-based “FreeEntryToolchain” from Hightec/PLS/ Infineon. This is
a full C/C++ development environment with source-level debugger. The familiar Arduino IDE is also available
for the ShieldBuddy. Both IDEs are based on the Infineon iLLD libraries and allow the usual Arduino C++- like
Processing language to be used with the familiar Arduino IO functions e.g. digitalWrite(), analogRead(),
Serial.print() etc.. These functions are implemented for all three TC375 cores and can be used without
restriction.

Given the awesome power of the TC375 we expect most users to program it in C in Eclipse, using the iLLD API
directly or working with the underlying SFRs. The neat thing about the ShieldBuddy is that it lets you access the
massive power of the TC375 without knowing anything about the bits and bytes of the peripherals!

1.2 Getting Started With The TC375 Toolchain

If you have never used an Arduino-style board before then is a good idea to have a look at www.arduino.cc to
find out what it is all about! Although the ShieldBuddy contains three powerful 32-bit, 300MHz processors, it
can be used in exactly the same way as an ordinary Arduino Uno.

The same Arduino IDE can be used but with an add-on to allow
triple core operation. To use the ShieldBuddy you will need:

(i) a PC with Windows 7 or later

(ii) The Aurix free toolchain with Eclipse, C/C++ compiler and
UDE debugger from PLS:

http://free-entry-toolchain.hightec-rt.com/

Follow the instructions given as you will need a free licence file
which will be automatically emailed to you. You will need to copy it
to : C:\HIGHTEC\licenses.

(iii) The standard Arduino IDE installed from:
https://www.arduino.cc/en/Main/Software

You may already have this but make sure it is installed in the
default directory!

(iv) The Arduino development environment add-in for Eclipse and
the standard Arduino IDE:

http://www.hitex.co.uk/fileadmin/uk-
files/downloads/ShieldBuddy/ShieldBuddyTC375IDE.zip

Unzip this to a temporary directory using the zip password
“ShieldBuddy”. Run the installer and use the password
“ShieldBuddy” to copy the IDE onto your PC.

Run the installer and use the password “ShieldBuddy” to copy the IDE onto your PC. Install these in the order
Arduino IDE (you may already have this), Aurix freetoolchain, ShieldBuddy IDE.

http://www.arduino.cc/
http://free-entry-toolchain.hightec-rt.com/
https://www.arduino.cc/en/Main/Software
http://www.hitex.co.uk/fileadmin/uk-files/downloads/ShieldBuddy/ShieldBuddyTC375IDE.zip
http://www.hitex.co.uk/fileadmin/uk-files/downloads/ShieldBuddy/ShieldBuddyTC375IDE.zip

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 9 1.0, 2020-04

1.3 Using The ShieldBuddy TC375

Once all of the above packages have been installed, use the ShieldBuddy just like any other Arduino except that
you have three processors to play with rather than just one. Processor core 0 will run setup() and loop() with
processor cores 1 and 2 running setup1()/setup2() and loop1()/loop2(). There are no special measures required
to write triple-core programs but make sure that that you do not try to use the same peripheral with two different
cores at the same time. Whilst nothing nasty will happen, your programs will probably just not work properly!
Each core is basically identical except that cores 1 and 2 are about 20% faster than core 0, having an extra
pipeline stage. They all can use the same Arduino Processing language functions. When choosing which
ShieldBuddy to use in the Arduino IDE choose “ShieldBuddy TC375”.

NOTE: If you have worked with normal Arduinos, you may be used to your programs automatically
running as soon as they have downloaded. In the case of the ShieldBuddy, following download, you
have to press the Reset button to launch the new program. (The program will run automatically in the
future when power is applied to the system.)

1.4 Using The Eclipse IDE

If you want to use the Eclipse environment, start the toolchain with the icon. When prompted, open the
workspace at:

C:\Hitex\AURDuinoIDE\Eclipse

The default project is ShieldBuddyTC375User:

Arduino-style sketches are stored in the Sketches directory.
The default sketch “BoardEOLtest_TC375.cpp” is a simple
program that uses all three cores. You can overwrite the
statements we used with your own. Other useful sketches are
stored in the “unused” subdirectory.

To get your programs into the ShieldBuddy, use the PLS UDE
debugger in its standalone mode.

Open the workspace (ShieldBuddy with TC375 processor):

“C:\Hitex\AURduinoIDE\Eclipse\ ShieldBuddyTC375User \.ude\ShieldBuddyWorkspace_37xA.wsx”

The program will automatically load. You can run it by clicking the icon and stop it with the icon. To

reset the program, use the icon. You can find more information on using the Eclipse tools and the PLS UDE
debugger in the guide supplied with the FreeToolChain.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 10 1.0, 2020-04

1.5 Debugging Programs Using Eclipse PLS UDE Debug Perspective

To debug programs in the UDE debugger, an Eclipse perspective is provided as an alternative to using it as a
standalone debugger.. Debugging is started by clicking on the debug icon and then selecting
“ShieldBuddy TC375 User iROM”. Make sure that the ShieldBuddy is connected to the USB port on your PC
first.

You can now use the UDE debug perspective in the usual; Eclipse manner.

1.6 Getting Help

If you need help, there is a new on-line forum at http://ShieldBuddy.boards.net/.
This hardware user manual with the pinouts is at http://www.hitex.co.uk/index.php?id=3650.

http://aurduino.boards.net/
http://www.hitex.co.uk/index.php?id=3650

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 11 1.0, 2020-04

2 ShieldBuddy TC375 Extensions To The Arduino IDE

2.1 How is the ShieldBuddy Different To Other Arduinos?

Most Arduino-style boards use AVR or ARM/Cortex processors which are fine for basic messing about with
micros - these chips are everywhere in consumer gadgets and devices. The ShieldBuddy is different, having
the mighty Infineon Aurix TC375 processor. These are normally only to be found in state of the art engine
management systems, ABS systems and industrial motor drives in your favourite German car. They rarely
make it out into the daylight of the normal hobbyist/maker world and to date have only been known to a select
few at Bosch, BMW, Audi, Daimler-Benz etc..

The standard Arduino IDE can be used, provided that the ShieldBuddy add-in has been installed. Programs
can be written in exactly the same way as on an ordinary Arduino. However to make best use of the multicore
TC375 processor, there are some special macros and functions available.

2.2 TC375 Processor Architecture

Unlike the AVR, SAM3 etc. used on normal Arduinos, the TC375 has three near-identical 300MHz 32-bit CPU
cores on a shared bus, each with their own local RAM but sharing a common FLASH ROM. The peripherals
(timers, port pins, Ethernet, serial ports etc.) are also shared, with each core having full access to any
peripheral.

Figure 1 TC375 Internal Layout

The TC375 CPU core design has a basic 3.3ns cycle time which means you can get typically around 250 to 300
32-bit instructions per microsecond. This is seriously fast when you consider that the Arduino Uno’s

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 12 1.0, 2020-04

Atmega328P only manages around sixteen 8-bit instructions/us! In addition, there is a floating point unit on
each core so using floating point variables does not slow things down significantly.

With so much computing horsepower available, the TC375 can manage a huge range of peripherals. Besides
commonplace peripherals like CAN, ADC, I2C, Ethernet, SPI etc. the TC375 has possibly the most powerful
signal measurement and generation block to be found on any microcontroller (GTM) plus an advanced super-
fast delta-sigma analog to digital converter.

The Generic Timer Module (GTM) is the main source of pulse generation and measurement functions
containing over 200 IO channels. It is designed primarily for automotive powertrain control and electric motor
drives. Unlike conventional timer blocks, time-processing units, CAPCOM units etc. it can work in both the time
and angle domains without restriction. This is particularly useful for mechanical control systems, switch-
reluctance motor commutation, crankshaft synchronisation etc.

Under the bonnet (“hood” USA) the GTM has around 3000 SFRs but fortunately you do not need to know any of
these to realize useful functions! It is enormously powerful and the culmination of 30 years of meeting the needs
of high-end automotive control systems. However it can and indeed has been successfully applied to more
general industrial applications, particularly in the field of motor control where is can drive up to 4 three-phase
motors. The Arduino analogWrite() function makes use of it in a simple way to generate PWM. It can also
flash a LED. There is a second timer block (GPT12) can be used for encoder interfaces. Usefully most port
pins can generate direct interrupts.

With 176 pins required to get these peripherals out and only 100 pins on the Arduino Due form factor, some
functions have had to be limited. The 32 ADC channels have been limited to 16 and the 48 potential PWM
channels are also limited to 12, although more channels can be found on the double row expansion connector, if
needed.

2.3 Serial Ports

The Arduino has the Serial class for sending data to the UART which ultimately ends up as a COM port on the
host PC. The ShieldBuddy has 4 potential hardware serial ports so there are now 4 Serial classes. The default
Serial class that is directed to the Arduino IDE Serial Monitor tool becomes SerialASC on the ShieldBuddy.
Thus Serial.begin(9600) becomes SerialASC.begin(9600) and Serial.print(“Hi”) becomes SerialASC.print(“Hi”)
and so on.

The serial channels are allocated as per:

SerialASC Arduino FDTI USB-COM micro USB
Serial1 RX1/TX1 Arduino J403 pins 17/16
Serial0 RX0/TX0 Arduino J403 pins 15/14
Serial RX/TX Arduino default J402 pins D0/D1

Any of the serial channels can be used from any core but it is not a good idea to access the same serial port
from more than one core at the same time – see the later section on multicore programming.

The ShieldBuddy supports the following parity types:

SERIAL_8N1
SERIAL_8N2
SERIAL_8E1
SERIAL_8E2
SERIAL_8O1
SERIAL_8O2

For example:

SerialASC.begin(9600, SERIAL_8E1);

For even parity. The default is SERIAL_8N1.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 13 1.0, 2020-04

2.3.1 Compiling Existing Arduino Sketches

If you are compiling a sketch from a normal Arduino that uses “Serial.print()” then a quick way to make sure that
the ShieldBuddy’s SerialASC is really used is to add this to the top of any source file:

#define Serial SerialASC /* Redefine Arduino Serial as SerialASC */

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 14 1.0, 2020-04

2.4 Multicore Programming Extensions

2.4.1 Arduino IDE Extensions

The standard Arduino IDE has been extended to allow the
all 3 cores to be used. Anybody used to the default
Arduino sketch might notice though that in addition to the
familiar setup() and loop(), there is now a setup1(), loop1()
and setup2(), loop2(). These new functions are for CPU
cores 1 and 2 respectively. So while Core0 can be used
as on any ordinary Arduino, the lucky programmer can now
run three applications simultaneously.

Core0 can be regarded as the master core in the context of
the Arduino as it has to launch the other two cores and
then do all the initialisation of the Arduino IO, timer tick (for
millis() and micros() and delay()). Thus setup1() and
setup2() are reached before setup()!

Although all three cores are notionally the same, in fact
cores1 and 2 are about 25% faster than core0 as they
have an extra pipeline stage. Thus it is usually best to put
any heavyweight number crunching tasks on these cores.

Writing for a multicore processor can be a bit mind-bending
at first! The first thing to realise is that there is only one
ROM and the Arduino IDE just compiles source code. It
has no idea (and does not need to know) which core a
particular function will run on. It is only when the program
runs that this becomes fixed. Any function called from
setup and loop() will run on core0; any called from setup1()
and loop1() will execute on core1 and so on. Thus is
perfectly possible for the same function you wrote to
execute simultaneously on all three cores. As there is only
one image of this function in the FLASH, the internal bus
structure of the Aurix allows all three cores to access the same instructions at the same addresses (worst case)
at exactly the same time. Note that if this extreme case happens, there will be a slight loss of performance.

Sharing of functions between cores is easy, provided that they do not make use of the peripherals! Whilst there
are three cores, there are only two ADCs. If all three cores want to access the same result register, there is no
particular problem with this. However if you want a timer to generate an interrupt and call a shared function,
then that function might need to know which core it is currently running on! This is easy to do as there is a
macro defined to return the core number.

if(GetCpuCoreID() == 2)

{

 /* We must be running on core 2! */

}

Fortunately it is rare to have to do this but it is used extensively in the ShieldBuddy to Arduino translation layer.

2.4.2 Inter-Core Communications

One of the aims of the AURIX multicore design is to avoid the awkward programming issues that can arise in
multicore processors and make the system architect’s job easier. The three independent cores exist within a
single memory space (0x00000000 – 0xFFFFFFFF), so they are all able to access any address without
restriction. This includes all the peripherals and importantly all FLASH and RAM areas.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 15 1.0, 2020-04

Having a consistent global address space when accessing RAM can considerably ease the passing of data
between cores using shared structures. Supporting high performance when doing this is achieved by the
implementation of a crossbar bus system to connect the cores, memories and DMA systems. Of course there
are protection mechanisms that can generate traps for such accesses if the application requires it, as they may
indicate a program malfunction which would need to be handled in an orderly manner.

The upshot of this is that the programmer does not need to worry about cores accessing the same memory
location (i.e. variable) at the same time. In some multicore processors this would cause an exception and is
regarded as an error. Certainly if you are new to multicore programming, this makes life much easier. Of
course there could be a contention at the lowest level and this can result in extra cycles being inserted but given
the speed of the CPU, this is unlikely to be an issue with Arduino-style applications.

With an application split across three cores, the immediate problem is how to synchronise operations. As the
Aurix design allows RAM locations to be accessed by any core at any time, this is no problem. In the simplest
case, global variables can be used to allow one core to send a signal to another. Here is an example.

2.4.2.1 Inter-Core Communications Example

We want to use the SerialASC.print() function to allow each core to send a message to the Arduino Serial
Monitor – something like “Hello From Core 0”, “Hello From Core 1” etc..

If we do nothing clever and just allow each core’s
Loop() to write to the SerialASC, we get a complete
jumble of characters. This is because each core will
write to the transmit buffer at random times. The
Aurix does not care that 3 cores are trying to use the
same serial port and nothing nasty like an exception
will happen. All the characters are in there from all
the cores but not necessarily in the right order.

What we need to do is make sure that each core
waits in turn for the other cores to finish writing to the
serial port. This is quite easy using some global
variables. However with true multicore programming,
weird things can happen that don’t occur in single
core.

An obvious approach to solving this is to have a
global variable that tells everybody whether the
SerialASC port is being used. However this does not
work where we are trying to prevent a single resource
(e.g. serial port) being simultaneously accessed from
two cores. It can work where we simply want to pass
variables between cores though. The problem is that
other cores can do anything at any time relative to
each other. If Cores1 and 2 both execute the check
of the SerialASCInUse flag at around the same time,
they will both see it as ‘0’ and then both set it to ‘1’. In
practice it is when Core2 checks the flag in the few
instructions between Core1 checking it for ‘0’ and
then setting it to ‘1’, that we get into trouble. They will
then both attempt to write to the SerialASC port, with
the result that garbage gets sent to the terminal.

To solve this tricky problem, we need a means of
checking the SerialASCInUse flag for ‘0’ and setting it
to ‘1’ in a single Aurix instruction. This means that

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 16 1.0, 2020-04

there would be no gap within which another core could get it. This is catered for by the uint32
Htx_LockResource(uint32 *ResourcePtr) function. This sets the flag at address ResourcePtr automatically to
Htx_RESOURCE_BUSY = 1 and returns the previous flag state.

The ShieldBuddy serial port classes have been extended by adding a “PortInUse” variable so that multicore
support is now built in. Using the Htx_LockResource() function, we can ensure that no two cores will try to
access the SerialASC at the same time.

This is rather inefficient way of getting cores to work
together as the cores spend a lot of time hanging around
in while() loops. Another way is to get one core to create
an interrupt in another core to tell it to do something.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 17 1.0, 2020-04

2.4.2.2 Using Interrupts To Coordinate and Communicate Between Cores.

The Arduino language has been extended to allow you to trigger an interrupt in another core. This means that
core 0 can trigger an interrupt in say core 1. That interrupt might tell Core 0 that a resource is now free or
perhaps tell it to go and read a global variable that core0 has just updated.

 /* Create an interrupt in core 1 */

 CreateCore1Interrupt(Core1IntService);

Here Core1IntService is a function written by the user that Core 1 will execute when Core 0 requests it to do so.

Here is an example of coordinating the three
cores to use the SerialASC port again. Now the
print to the SerialASC port only takes place when
(in this example) core0 requests it.

Note: if you want to create periodic interrupts in
one core rather than between cores, please see
section 2.18.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 18 1.0, 2020-04

There are three CreateCoreXInterrupt() functions available, one for each core. The parameter passed is the
address of the function that you want to run in the other core:

/* Create an interrupt in core 0 */

CreateCore0Interrupt(Core0IntService);

/* Create an interrupt in core 1 */

CreateCore1Interrupt(Core1IntService);

/* Create an interrupt in core 2 */

CreateCore2Interrupt(Core2IntService);

These can be used with any core (i.e. in setup(), setup1() and setup2()). Thus any core can run an interrupt
fuction in any other core. To trigger the interrupt to happen, the InterruptCoreX() function is used.

/* Trigger interrupt in Core0 now! */

InterruptCore0();

/* Trigger interrupt in Core1 now! */

InterruptCore1();

/* Trigger interrupt in Core2 now! */

InterruptCore2();

2.4.3 Timers/Ticks/delay(), millis(), micros() Etc.

The TC375 STM0 (system timer 0) is used to as a basis for all the Arduino timing functions such as delay(),
millis(), micros() etc. This is based on a 10ns tick time. In addition, the user can create his own timer-based
interrupts in core 0 using the CreateTimerInterrupt() function.

This is used as per:

void STM0_inttest(void)

{

 digitalWrite(2, ToggleVar0 ^= 1);

}

void setup() {

/* 10ns per bit count */

CreateTimerInterrupt(ContinuousTimerInterrupt, 10000, STM0_inttest);

Here the user wants his function “STM0_inttest() to run every 100us forever. The time is specified in units of
10ns so 100us =10000 * 0.01us. For 50us, the value would be 5000. This can be used for making simple task
schedulers.

If the STM0_inittest() is only intended to run once but in 100us from now, this would be used:

/* Run STM0_inttest once, 100us in the future */

CreateTimerInterrupt(OneShotTimerInterrupt, 10000, STM0_inttest);

The maximum time period that can be set is about 42 seconds. The minimum practical time period is around
20us. If you want something faster then you will need to use another method!

For cores 1 and 2, there are further timer interrupt creation functions, using STM1 and STM2. There are two
timer interrupts per core allowed using this method (other methods allow more!).

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 19 1.0, 2020-04

2.4.3.1 Core 1

The CreateTimerInterrupt0_Core1() function and CreateTimerInterrupt1_Core1() allow two independent
interrupt functions to be called freely in the same way as with core0’s CreateTimerInterrupt(). These use STM1.

For example:

void STM1_inttest0(void)

{

 digitalWrite(3, ToggleVar1 ^= 1);

}

void STM1_inttest1(void)

{

 digitalWrite(4, ToggleVar2 ^= 1);

}

/* Make STM1_inttest0() function run every 100us */

CreateTimerInterrupt0_Core1(ContinuousTimerInterrupt, 10000, STM1_inttest0);

/* Make STM1_inttest1() function run every 50us */

CreateTimerInterrupt1_Core1(ContinuousTimerInterrupt, 5000, STM1_inttest1);

2.4.3.2 Core 2

For Core2 there are similar functions to core 1 but which are now based on STM2:

void STM2_inttest0(void)

{

 digitalWrite(5, ToggleVar3 ^= 1);

}

void STM2_inttest1(void)

{

 digitalWrite(6, ToggleVar4 ^= 1);

}

/* Make STM2_inttest0() function run every 100us */

CreateTimerInterrupt0_Core2(ContinuousTimerInterrupt, 10000, STM2_inttest0);

/* Make STM2_inttest1() function run every 50us */

CreateTimerInterrupt1_Core2(ContinuousTimerInterrupt, 5000, STM2_inttest1);

2.4.3.3 Direct Fast Access To The System Timer0

To read the current value of the STM0, upon which all the timing functions are based, use the
GetCurrentNanoSecs() function. This returns the current timer value in steps of 10ns.

TimeSnapshot0 = GetCurrentNanoSecs();

for(i = 0; i < 500; i++)

{ ; }

TimeSnapshot1 = GetCurrentNanoSecs();

/* Time in units of 10ns */

ExecutionTime = TimeSnapshot1 - TimeSnapshot0;

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 20 1.0, 2020-04

2.4.4 Managing the Multicore Memory Map

The Arduino IDE gives no clue as to where anything goes or even what memory is available. If you are not
bothered about execution speed or are only using Core 0, then variables can be declared just as in any other
Arduino board. However if you are using Cores1 & 2, having some idea how the physical memory is arranged
inside the TC375 can make a huge difference to the maximum performance that can be obtained.

Figure 2 TC375 RAMs

A global variable declared in the usual way will end up in the Core 0 SRAM (“DPSR0”).

If this is only used by Core0 then the access time will be very fast. This is because each of the RAMs appears
at two addresses in the memory map. Core0’s DSPR RAM appears to be at 0xD0000000 where it is
considered to be local and is directly on Core0’s local internal bus. It is also visible to the other cores at
0x70000000 so that they can read and write it freely. The penalty is that the access will be via a bus system
that all cores can access (the SRI) which unfortunately is much slower and can be influenced by other traffic
between cores. Thus all the cores have local RAM (DSPR0/1/2) that is visible to the other cores, albeit at
reduced speed.

There is a fourth RAM area (“DAM”) which is not tied directly to any core and which all cores have access to.
This is useful for shared variables that are heavily used by all cores.

Core 2 SRAM
(DSPR2)

0x50000000

Core 1 SRAM
(DSPR1)

0x60000000

Core 0 SRAM
(DSPR0)

0x70000000

LMU SRAM
(LMURAM)

0xB0000000

Core 0 SRAM
(DSPR0)

0xD0000000

Core 1 SRAM
(DSPR1)

Core 2 SRAM
(DSPR2)

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 21 1.0, 2020-04

It makes sense to put the variables used by each of the cores into their local RAMs but as standard, the Ardunio
IDE has no support for this. By default, any global variables will end up in the Core0 local RAM (DSPR0). For
the ShieldBuddy, a series of ready-made macros are available that allow you to put variables into any of these
SRAM areas easily.

Using these macros for core 1 and 2 data will give a
significant increase in performance and is highly
recommended.

The complete set of macros for putting variables in specific RAMs is:

/* DAM RAM uninitialised data */

StartOfUninitialised_DAMRam_Variables

/* Put your DAM RAM fast access variables that have no initial values here e.g. uint32 DAM_var; */

EndOfUninitialised_DAMRam_Variables

/* LMU uninitialised data */

StartOfInitialised_DAMRam_Variables

/* Put your DAM RAM fast access variables that have an initial value here e.g. uint32 DAM_var_init = 1;

*/

EndOfInitialised_DAMRam_Variables

/* CPU1 Uninitialised Data */

StartOfUninitialised_CPU1_Variables

/* Put your CPU1 fast access variables that have no initial values here e.g. uint32 CPU1_var; */

EndOfUninitialised_CPU1_Variables

/* CPU1 Initialised Data */

StartOfInitialised_CPU1_Variables

/* Put your CPU1 fast access variables that have an initial value here e.g. uint32 CPU1_var_init = 1;

*/

EndOfInitialised_CPU1_Variables

/* CPU2 Uninitialised Data */

StartOfUninitialised_CPU2_Variables

/* Put your CPU2 fast access variables that have no initial values here e.g. uint32 CPU2_var; */

EndOfUninitialised_CPU2_Variables

/* CPU2 Initialised Data */

StartOfInitialised_CPU2_Variables

/* Put your CPU2 fast access variables that have an initial value here e.g. uint32 CPU2_var_init = 1;

*/

EndOfInitialised_CPU2_Variables

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 22 1.0, 2020-04

There are some further macros that let the DMLU0/1/2 RAMs (64kbyte each) be used but these are not
normally required for Arduino-style applications.

/* DLMU0 Core0 */

/* DLMU0 uninitialised data */

StartOfUninitialised_DLMU0Ram_Variables

EndOfUninitialised_DLMU0Ram_Variables

/* DLMU0 uninitialised data */

StartOfInitialised_DLMU0Ram_Variables

EndOfInitialised_DLMU0Ram_Variables

/* DLMU1 Core1 */

/* DLMU1 uninitialised data */

StartOfUninitialised_DLMU1Ram_Variables

EndOfUninitialised_DLMU1Ram_Variables

/* DLMU1 uninitialised data */

StartOfInitialised_DLMU1Ram_Variables

EndOfInitialised_DLMU1Ram_Variables

/* DLMU2 Core2 */

/* DLMU2 uninitialised data */

StartOfUninitialised_DLMU2Ram_Variables

EndOfUninitialised_DLMU2Ram_Variables

/* DLMU2 uninitialised data */

StartOfInitialised_DLMU2Ram_Variables

EndOfInitialised_DLMU2Ram_Variables

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 23 1.0, 2020-04

2.5 Peripheral And IO Extensions

2.5.1 Fast digitalRead & digitalWrite

These functions are identical to the Arduino versions but run much faster.

Example of writing to Pin 2.

digitalWrite(2,HIGH); // 30ns

digitalWrite(2,LOW); // 30ns => 16MHz

The maximum pin toggling rate is 16MHz.

2.6 Using The Analog A0 – A11 Pins As Digital IO

The Arduino pins A0 to A11 can be used as normal digital IO. They are numbered from 54 to 65 and can be
used like any other IO pin. They can be accessed through these numbers or as A0 to A11 so these commands
are in reality identical:

pinMode(54, OUTPUT); // Set A0 to an output pin

digitalWrite(54, HIGH); // Set A0 to ‘1’

pinMode(A0, OUTPUT); // Set A0 to an output pin

digitalWrite(A0, HIGH); // Set A0 to ‘1’

2.6.1 attachInterrupt() Function

The Arduino attachInterrupt() function is supported with some minor differences. The following pins are able to
create interrupts:

2, 3, 15, 18, 20, 52

The mode parameter supports only values of RISING, FALLING, CHANGE.

ASC and QSPI are still available from functions called from these interrupts but timer functions created from the
CreateTimerInterrupt() function are not.

2.6.2 Enabling and Disabling Interrupts

It is possible to disable all interrupts using:

noInterrupts();

This will also stop the delay() and other timer-related functions. Interrupts can be re-enabled using:

interrupts();

2.6.3 ADC Read Resolution

The default resolution for ADC conversion results is 10 bits, like on an ordinary Arduino. On the ShieldBuddy
you can set 8-bit or 12-bit conversions if required, using the analogReadResolution () function.

/* Set default VADC resolution 10 bits */

analogReadResolution (10u);

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 24 1.0, 2020-04

To set 12-bits of resolution,:

analogReadResolution (12u);

To set 8-bits:

analogReadResolution (8u);

Typically around 1500ksamples/sec is possible, regardless of the resolution.

2.6.4 analogWrite() & AnalogOut

2.6.5 Available PWM Channels

The following pins can be used with analogWrite() to generate PWM:

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 22, 23, 24, 25, 26, 27, 28, DAC0, DAC1

2.6.5.1 PWM Frequency

Like the Arduino, the ShieldBuddy uses PWM to generate analog voltages. The PWM frequency is only around
1kHz on the Arduino. The ShieldBuddy frequency is 390kHz when using 8-bit resolution. Whilst this is great for
AC waveform generation, audio applications etc., it can be too high for some power devices used for things like
motor control.

The useArduinoPwmFreq() function will set the PWM frequency to 1.5kHz so that motor shields etc. should
work without problems.

2.6.5.2 Custom PWM Frequencies

It is also possible to set any PWM frequency using the useCustomPwmFreq() function:

/* Use 4000Hz carrier */

useCustomPwmFreq(4000);

The maximum frequency that may be set is 390kHz. The minimum is 6Hz.

If you want to change the PWM frequency after calling analogWrite(x,y), use the following functions:

AnalogOut_2_Reset(); // Allow analog channel 2 to be altered

useCustomPwmFreq(3900); // Change to 3900Hz carrier

analogWrite(2, 128); // Write 50% duty ratio at 3900Hz carrier

2.6.5.3 Fast Update Of AnalogOut() Function

In situations where the duty ratio has to be updated very frequently, it is often better to update just the duty ratio
register in the PWM system for the particular channel in use rather than using the normal analogWrite(). This
can be done using macros like:

AnalogOut_2_DutyRatio = 128;

The value used must be within the range allowed by the resolution you are using. For the default 8-bit, this is 0-
255; for 10-bit this is 0-1023 and so on.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 25 1.0, 2020-04

For this to work, you must have used the normal analogWrite(x, y) for that channel at least once e,g.

analogWrite(2, 128);

2.6.5.4 DAC0 and DAC1 pins

These Arduino pins are specifically for accurate digital to analog conversion. They have a fixed 14-bit resolution
(0-16383) and a 6.1kHz PWM frequency.

analogWrite(DAQ0, 8192); // Set 2.5V on DAC0 pin

analogWrite(DAQ1, 4096); // Set 1.25V on DAC1 pin

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 26 1.0, 2020-04

2.7 CAN

Controller Area Network is available on the three pin headers P202. This has a CAN transceiver and so CANH
and CANL are available, with a 120R terminating resistor fitted. This is CAN channel whose software name is
“CAN”.

Controller Area Network is supported via the CANRX/CANTX pins, J406 (double row connector) pins 23 and 22
plus J406 pin53 and J405 DAC0. These are CAN0, CAN1 and CAN3 modules respectively. 11 and 29-bit
message IDs can be used. A total of 16 message objects (or more simply, messages) can be used. This is a
subset of the TC375’s real capability and is limited for the sake of simplicity.

There are three CAN channels on the ShieldBuddy TC375, CAN0, CAN1 and CAN3. These are located as
follows:

Name TC375 Port ShieldBuddy Pin Software Name
CANH/CANL P23.0/P13.0 P202 pin2 & pin1 CAN

CAN0 RX P20.7 pin CANRX CAN0
CAN0 TX P20.8 pin CANTX

CAN1 RX P14.1 J406 pin23 CAN1
CAN1 TX P14.0 J406 pin22

CAN3 RX P20.9 J405 DAC0 CAN3
CAN3 TX P20.10 J406 pin53

Some prior knowledge of CAN is required to use these functions!

2.7.1 CAN Functions Usage

First the CAN module(s) must be initialised with the required Baudrate:

/*** Core 0 ***/

void setup() {

 // put your setup code for core 0 here, to run once:

 CAN0_Init(250000);

 CAN1_Init(250000);

Next the messages to be sent or received via CAN must be set up. Here we will setup a transmit message on
CAN0 and receive it on CAN1 (we have connected two CAN modules together):

Transmit Message

/* Parameters CAN ID, Acceptance mask, data length, */

/* 11 or 29 bit ID, Message object to use */

CAN0_TxInit(0x100, 0x7FFFFFFFUL, 8, 11, 0);

Receive Message

/* Parameters CAN ID, Acceptance mask, data length, */

/* 11 or 29 bit ID, Message object to use */

CAN1_RxInit(0x100, 0x7FFFFFFFUL, 8, 11, 1);

Here we are setting up a message object in the CAN0 module (CANRX/CANTX pins) to send 8 bytes with a
message ID of 0x100, using 11-bit identifiers. We will be using message object0 for the transmit message.
There are a total of 16 message objects available in the ShieldBuddy CAN driver and it is up to the user to make

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 27 1.0, 2020-04

sure that each transmit and receive object has an unique message object number! In our example, if we set up
another message (receive or transmit) we will use object 2, as 0 and 1 are already in use.

For the send message function, we must provide a structure into which the data to be sent can be placed. The
predefined structure type “CANMessagePayloadType” may be used for this.

typedef union { uint8 bytes[8]; uint32 dword[2]; } CANMessagePayloadType;

The union “msg1” is created:

CANMessagePayloadType msg1;

To send the message on CAN0 with 8 bytes of data consisting of 0x12340000 (lower 4 bytes) and 0x9abc000
(upper 4 bytes) with message ID 0x100:

/* Parameters CAN ID, 32 bits low data, 32 bits high data, data length */

msg1.dword[0] = 0x12340000;

msg1.dword[1] = 0x9abc000;

CAN0_SendMessage(0x100, &msg1, 8);

To receive the message on CAN1:

/* Parameters CAN ID, address of structure to hold returned data, data length */

RxStatus = CAN1_ReceiveMessage(0x100, &msg1, 8);

For the receive message function, we must provide a structure into which the receive function can place the
received data. The predefined structure type “CANMessagePayloadType” can be used for this:

CANMessagePayloadType msg1;

The data received can be accessed in:

LowerData = msg1.bytes[0];

UpperData = msg1.bytes[1];

The receive function also returns a status value which can help in the event of a message reception failure. The
predefined type “IfxCan_Status” can be used:

IfxCan_Status RxStatus;

The return values are any one of:

 IfxCan_Status_ok = 0x00000000,

 IfxCan_Status_notInitialised = 0x00000001,

 IfxCan_Status_busOff = 0x00000010,

 IfxCan_Status_notSentBusy = 0x00000020,

 IfxCan_Status_receiveEmpty = 0x00000040,

 IfxCan_Status_messageLost = 0x00000080,

 IfxCan_Status_newData = 0x00000100,

 IfxCan_Status_newDataButOneLost = 0x00000180

Please note that the CAN receive function does not need to know which message object in the CAN module is
being used – it works it out from the message ID passed to it. However this relies on any message ID only
being used once, which is a basic requirement of the CAN specification anyway. If the CAN receive functions
are run but there is no message waiting then they will return value of 0x40. When this is data, they will return a
value of 0x100.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 28 1.0, 2020-04

2.7.1.1 Receiving any message regardless of message ID

If you want to receive all messages on the CAN bus into a single message object, the acceptance mask
parameter in the CANx_RxInit() function needs to be set to zero.

/* Receive all message IDs up t0 0xFFF */
CAN1_RxInit(0x200, 0x7FFFF000UL, 8, 11, 1);

Now the CAN message ID can be anything from 1 to 0xFFF so you can enter any otherwise unused and valid
11 or 29-bit ID. Here we used 0x200. To receive the messages, use:

RxStatus = CAN1_ReceiveMessage(0x200, &msg1, 8);

2.8 I2C/Wire Pins & Baudrate

The ShieldBuddy’s default I2Cperipheral is on pins 20 (SDA) and 21 (SCL). Currently only the master mode is
supported. There are two new functions available compared with the Arduino. Before calling the Wire.begin(),
the pins to be used for the I2C can be specified, along with the Baudrate. The default pins are 20 and 21 but an
alternative set are at pins 6 (SDA) and 7 (SCL) as these are used on some shields. A further set are on pins
SDA1 and SCL1.

Wire.setWirePins(UsePins_20_21); // Default pins for Arduino Due/MEGA SCL1/SDA1

Or:

Wire.setWirePins(UsePins_6_7); // Pins 6 & 7

Or:

Wire.setWirePins(UsePins_SDA1_SCL1); // SDA1, SCL1

Wire.begin(); // join i2c bus (address optional for master)

The default Baudrate is 100kbit/s but this can be changed to up to 400kbit/s

Wire.setWireBaudrate(400000); // Set high speed mode

Wire.begin(); // join i2c bus (address optional for master)

Only one set of pins can be used with the Wire library at once. If you need two I2C channels then the second
one will have to use the software-driven I2C library. To do this, the SoftwareWire.h must be included at the top
of the file, for example:

// Use SW I2C port on any two pins

#include <SoftwareWire.h>

// Create Software I2C on pin6 (SDA) pin 7 (SCL)

SoftwareWire SwWire(6, 7, 0, 0); /* No pullups, no clock stretch */

It can then be used just like the normal I2C ports except that the Baudrate is fixed at around 100kbit/s.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 29 1.0, 2020-04

2.9 EEPROM Support

The Arduino EEPROM functions are available but their use is slightly different to when on an Arduino Uno,
MEGA, Due etc. This is because the TC375 has DFLASH rather than EEPROM. This has a similar number of
write cycles (125k) but due to the 8kbyte sector size, the mechanism for writing is different. There are 8kbytes
of emulated EEPROM available to you. Most of the features of the EEPROM system are described at:

https://www.arduino.cc/en/Reference/EEPROM

Note: The total DFLASH size if 384kbyte and if you want to use it with very large data sets then do not use the
Arduino-style EEPROM functions!

Date can be written to and read from the emulated EEPROM one byte at a time. If the EEPROM is to be used
in an application, it is recommended that the EEPROM manager is initialised before any read or write
operations.

/* Initialise EEPROM system */

if(EEPROM.eeprom_initialise() == EEPROM_Not_Initialised)

{

 /* EEPROM is bad */

 while(1) { ; }

}

It is not mandatory to do this but if there is a failure in the EEPROM then it will not be reported. It is also the
case that the first read or write will initialise the EEPROM manager but please note that the first such operation
will take several milliseconds and if there is a failure in the EEPROM, you will not know about it.

EEPROM data can be read freely. EEPROM writes can be done freely as in fact the data is captured in a RAM
buffer. Once all the writes required by the application are completed, the eeprom_update() function must be
used to program the data into the underlying DFLASH.

/* Write buffer to DFLASH */

EEPROM.eeprom_update();

This should not be confused with the EEPROM.update() function. This only stops data being written into the
RAM buffer if the same data is already there.

2.10 Resetting The ShieldBuddy

2.10.1 Resetting From Programs

It is possible to reset the ShieldBuddy by executing the Reset_TC375() function. This causes a TC375 system
reset which puts the CPUs into the reset state.

2.10.2 Resetting From Windows

To reset and run the program in the ShieldBuddy, there is a simple DOS command-line utility Reset_TC375.exe
that will allow the board to be manually reset and then run. This is located in:

C:\Program Files (x86)\Arduino\hardware\ShieldBuddyTC375\aurix\variants\tc375

 It is a good idea to create shortcut to the Reset_TC375.exe on the Windows Taskbar so that you can manually
reset and run the ShieldBuddy after downloading a program.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 30 1.0, 2020-04

2.11 SPI Support

2.11.1 Default Spi

The SPI is similar to that on the Arduino Uno and MEGA and can be used in much the same way. The default
slave select is pin10 with alternative one being on pin4. These can be used in the same way as on the Arduino.

Spi.begin(); // Use default slave select on p10

Spi.begin(10); // Use default slave select on p10

Spi.begin(4); // Use slave select on p4 (used by SD cards)

Spi.begin(5); // Use slave select on p5 (used by TFT shields)

2.11.2 Spi Channel 1

There is a second independent Spi channel on p12 (MISO), p11(MOSI) and p13 (SCK) which also uses p10 as
the slave select. To use this Spi channel:

Spi.begin(BOARD_SPI_SS0_S1); // Use Spi1 with slave select on p10

To use this SPI channel:

Spi.transfer(BOARD_SPI_SS0_S1, data);

2.11.3 Spi Channel 2

There is a further Spi channel on p50 (MISO), p51 (MOSI) and p52 (SCK) which currently implemented as a
bit-bashed Spi. This is intended for use with special shields like the Industrial Shield range from Boot & Work.
Two possible slave selects are supported, pin53 and pin10.

Spi.begin(BOARD_SOFT_SPI_SS2); // Use slave select on p53

Spi.begin(BOARD_SOFT_SPI_SS0); // Use slave select on p10

To use these channels:

Spi.transfer(BOARD_SOFT_SPI_SS2), data);

Spi.transfer(BOARD_SOFT_SPI_SS0), data);

Note that the latter cannot be used at the same time as any other Spi channel that has p10 as the slave select.
This Spi channel runs at about 3Mbit/s so a typical 8-bit transfer takes around 2.9us.

Table 1 SPI Names

SPI Name Comment Used Pins

BOARD_SPI_SS0 Pin10 is default CS on SPI Ch0
MISO = P201.1, MOSI =
P201.4 SCK = P201.3

BOARD_SPI_SS0_S1 Really pin 10 but this means use it with SPI Ch 1
MISO = p12, MOSI = p11
SCK = p13

BOARD_SOFT_SPI_SS0 Bit bashed SPI only p10 chip select
MISO = p50, MOSI = p51
SCK = p52

BOARD_SOFT_SPI_SS2 Bit bashed SPI only p53 chip select
MISO = p50, MOSI = p51
SCK = p52

BOARD_SPI_SS1 Used for SD Cards on SPI Ch0
MISO = P201.1, MOSI =
P201.4 SCK = P201.3

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 31 1.0, 2020-04

2.11.4 Software Bit-Bashed SPI

A general purpose software-drive SPI is available on any 4 pins. This can be used on pins where there is no
hardware SPI available.

#include “SPI.h”

/* Initialise 4 pins for software SPI channel */

/* SoftSPi_Begin(SS_pin, SCK_pin, MISO_pin, MOSI_pin) */

SPI.SoftSPi_Begin(2,3,4,5); // Use pins 2,3,4,5 for SPI

Data can be sent and received using:

// Send data via soft SPI

SpiData = SPI.SoftSPi_Transfer(2, SpiData, SPI_LAST);

The software SPI only supports SPI MODE0 (clock idle low, shift transmit data on trailing edge) with the MSB
sent first. You can have as many SPI channels as there are pins available!

With complex shields like the Ethernet/SD card shield, you only need to make sure that the SPI.SoftSPi_Begin()
is called at the start of setup() with the pins you want to use. This will defined a chip selects to be used for the
software SPI channel. Any further chip selects you need for further devices can be simply specified in the
SPI.transfer() call.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 32 1.0, 2020-04

2.12 Aurix DSP Function Library

The Aurix has a number of built-in DSP-like functions such as saturated maths, Q-arithmetic, circular buffer
types etc. These are often used in applications such as:

• Complex Arithmetic

• Vector Arithmetic

• FIR Filters

• IIR Filters

• Adaptive Filters

• Fast Fourier Transforms

• Discrete Cosine Transform

• Mathematical functions

• Matrix operations

• Statistical functions

To allow these to be implemented easily and efficiently, Infineon have released the “TriLib” library. This consists
of assembler-coded routines that are highly optimized for minimum run time and are designed to be callable
directly from C and C++ programs (including the Arduino IDE). They are not floating point. For such
operations, the on-board floating point units are directly used by the compiler, so nothing special needs to be
done. It should be borne in mind though that the free Aurix GCC toolchain used with the ShieldBuddy does not
have the highly optimised runtime libraries supplied with the full version so some functions are slower than
might be expected.

It is recommend to use the DSP TriLib functions on cores 1 or 2 as these are around 20% faster than core0 due
to the more sophisticated pipeline. There are no special steps to take when using them.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 33 1.0, 2020-04

2.13 Ethernet BootLoader/In Application Ethernet Flash Programmer

It is possible to program the TC375 PFLASH via an Ethernet shield using TFTP. There are a number of ways to
do this which are described below.

2.13.1 Overview

TFTP is a simple file transfer protocol which is often used to boot diskless and embedded systems. It uses UDP
and requires a conventional TCP/IP network setup. The booloader is not 100% robust and if transmission and
programming is interrupted, it is possible for the ShieldBuddy to be left with an incomplete or damaged
application in its Pflash. If this happens, you will have to reprogram it directly from the Arduino IDE or the UDE
debugger via USB.

2.13.2 Setting The Network Addresses

The default IP address "192.168.3.177" will need to be changed to suit your local network environment, as will
the IP addresses given in .\aurix\system\include\net.h. Edit this file as required.

/* Gateway Address */

#define GWIP0 192

#define GWIP1 168

#define GWIP2 3

#define GWIP3 1

/* Subnet Mask */

#define MASK0 255

#define MASK1 255

#define MASK2 255

#define MASK3 0

/* MAC Address */

#define MAC0 0x12

#define MAC1 0x34

#define MAC2 0x45

#define MAC3 0x78

#define MAC4 0x9A

#define MAC5 0xBC

/* IP Address */

#define IP0 192

#define IP1 168

#define IP2 3

#define IP3 177

2.13.3 Configuring The SPI

The Ethernet bootloader use a bit-based SPI to eliminate the need for interrupts running during PFlash
programming. This can be configured to use any 4 Arduino pins but the most commonly used ones for Ethernet
are given in net.h. Please note that the SPI pins on the 6-way ICP (P201) connector are not normally assigned
Arduino pin numbers but on the ShieldBuddy, they are pins 61, 62 and 63.

/*** Bit Bashed SPI for TFTP Download ***/

/* Pin definitions for ICP SPI port */

#define SCK_pin 62

#define MISO_pin 61

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 34 1.0, 2020-04

#define MOSI_pin 63

#define TFTP_SS 10

These can be changed as required.

2.14 Using The Bootloader

The EnterBootLoader() function will wait for 10 seconds for TFTP transmission from the PC to begin. If nothing
is received it times out and exits. If data is received, it is programmed into the TC375 Pflash. If the data stream
is interrupted before completion, it waits for transmission to restart without timing out. This is because the
Pflash is likely to be in a corrupted state and the TC375 continues to execute the Bootloader which is running
from the PSPR0 RAM. If the TC375 is reset in this state, it will not restart and you will have to reprogram it via
the Arduino IDE or the UDE debugger.

The Bootloader can be used in two ways:

(i) Program the “BootLoaderTest” sketch into the ShieldBuddy and then at some later time, send it the real
application via Ethernet and TFTP.

(ii) Build sketches/applications with a call to the Bootloader included in them:

// Call the bootloader to program itself back into Flash

// Ends with a TC375 reset if programming was successful otherwise it returns

// after 10 seconds.

EnterBootLoader();

2.15 Sending Programs To The ShieldBuddy

The Bootloader expects to receive a binary image of the new ShieldBuddy program. At the moment this not
possible from directly from the Arduino IDE. Note that CPU1 & 2 cannot be used during the programming
process and the bootloader will disable them until the final reset occurs.

First of all, use the Arduino IDE to program the BootLoaderTest sketch into the ShieldBuddy in the normal way
and then reset the board. The binary image of this sketch can be created with the HEX2BIN tool from the same
AurduinoUpload.hex file that the Arduino IDE would normally send to the ShieldBuddy via USB:

C:\Hitex\AURduinoIDE\Tools\hex2bin c:\HIGHTEC\AurduinoUpload.hex

The binary file is then sent to the ShieldBuddy using TFTP.EXE:

C:\Hitex\AURduinoIDE\Tools\tftp -i 192.168.3.177 put C:\HIGHTEC\AurduinoUpload.bin

These lines can be combined into a batchfile containing:

C:\Hitex\AURduinoIDE\Tools\hex2bin C:\HIGHTEC\AurduinoUpload.hex

C:\Hitex\AURduinoIDE\Tools\tftp -i 192.168.3.177 put C:\HIGHTEC\AurduinoUpload.bin

Now run the batchfile:

C:\Hitex\AURduinoIDE\Tools\SendAppTftp.bat

The user LED (pin13) on the board will flash until the TFTP connection is made at which point it stops. When
the programming is completed, the TC375 will be reset and the bootloader will restart. You should see the LED
flashing again.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 35 1.0, 2020-04

2.16 Tone() Functions

The standard Tone functions are implemented, as per the Arduino. The only difference is that the range of
tones is from 0.232Hz to 100MHz. The duration can be up to 65.5 seconds.

Not all ShieldBuddy pins can be used for the Tone functions. The following pins may be used:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

18 19 20 21 22 28 30 31

32 34 39 41 42 43 47 49

51 52

Table 2 Pins available for tone() function

2.17 PWM Measurement Functions

The TC375 GTM TIM modules can be used to make PWM period and duty cycle measurements automatically
and without interrupts. The PWM frequency must be in the range of 5.96Hz to 10MHz. The following
ShieldBuddy pins can be used for this purpose:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 17 18 19 20

21 24 25 27 28 29 31 33 35 37

38 39 44 45 46

Table 3 Pins available for PWM measurement functions

2.17.1 Using The PWM Measurement Functions

The PWM measurement system must first be initialized for the pin you want to use, here on pin 8. This is for a
normal positive-going PWM signal:

// Initialise PWM measurement

Init_TIM_TPWM(8, TIM_TPWM_RISINGEDGE); // Use pin 8, rising edges

For an inverted PWM signal on pin9 for example:

Init_TIM_TPWM(9, TIM_TPWM_FALLINGEDGE); // Use pin 9, falling edges

The function used to make the measurement is “MeasurePwm()”. This has parameters as per:

MeasurePwm(uint8 _pin, uint32 *Period, uint32 *Duration, float *DutyRatio);

It expects to receive the address of the variable into which you want the new data to be inserted, e.g.

MeasurePwm(8, &PWM_Period0, &PWM_Duration0, &DutyRatio0);

Where the parameters have previously been declared as:

uint32 PWM_Period0;

uint32 PWM_Duration0;

float DutyRatio0;

The PWM period and duration are returned as integers scaled in units of 10ns. Thus a period of 1ms will result
in PWM_Period0 being 100000. The duty ratio is returned as floating point value in the range of 0-1. Please

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 36 1.0, 2020-04

note that if there is just a ‘1’ or ‘0’ applied to the pin i.e. no PWM is present, the MeasurePwm(() function will not
update the parameters passed to it. To allow you to check for this condition, it returns either
“NoPwmMeasurementData” or “PwmMeasurementData” from the typdef MeasurePwmReturnType:

typedef enum { NoPwmMeasurementData, PwmMeasurementData } MeasurePwmReturnType;

For example:

if(MeasurePwm(8, &PWM_Period0, &PWM_Duration0, &DutyRatio0) == PwmMeasurementData)

{

 // New PWM data available – parameters passed will be updated

}

else

{

 // New PWM data available – parameters passed are not updated
}

To measure just the duty ratio of a PWM signal, you can use:

DutyRatio0 = MeasureDutyRatio(8);

To measure just the frequency of a PWM signal (or in fact any signal), you can use:

Frequency0 = MeasureFrequency(8);

.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 37 1.0, 2020-04

2.18 General Purpose Timer Interrupts

There are nine general purpose timers available (based on the ATOMs in the GTM) that can be used to call an
user-defined function from a periodic interrupts. The longest time is about 170 seconds and the shortest is
around 1us. The units of time are by default based on 0.02us per count (50MHz).

Example

We want call this function every 100us using timer 2:

void UserTimer2Handler(int i)

{

 digitalWrite(13,!digitalRead(13));

}

First, set the name of the function to be called:

// Set user handlers

TimerChannelConfig[2].user_inthandler = UserTimer2Handler;

Then initialize the Timer 2 channel:

// Initialise general timer channels

InitialiseTimerChannel(2);

Finally, set the period of the interrupt, in units of 0.02us:

// Set period of timers

SetTimerChannelPeriod(2, 5000);

The function UserTimer2Handler() will now be called every 100us.

You can temporarily disable a timer channel using:

DisableTimerChannelInt(2);

And restart it with:

EnableTimerChannelInt(2);

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 38 1.0, 2020-04

3 Hardware Release Notes HW Revision B

3.1 ShieldBuddy TC375 RevA Known Problems

The ShieldBuddy TC375 Revision A has a number of functional characteristics, listed below.

1. It will only run at 5V. It is possible to get 3V3 operation but this requires the changing of the TLF35584
device to a 3V3 version and the changing of some resistors

3.2 VIN Pin

The VIN pin on the ShieldBuddy power connector strip allows access to the 9-12V input from the power jack
socket. This may be used to power shields that require a higher voltage e.g. the DC motor shield. In this case,
please note that the maximum continuous current that can be drawn through this pin is 1.5A due to the 0.5mm
track used..

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 39 1.0, 2020-04

4 Arduino-Based Connector Details

The ShieldBuddy TC375 is based on the Arduino Due (SAM3X) form factor. Where possible, the pin
functionality of the Due has been implemented using an equivalent Aurix peripheral.

4.1 Board Layout

D0D7D8D17

A5A0 A11

PWMH PWML COMMUNICATION

ADCHADCLPOWER

CAN

Figure 3 Top view of ShieldBuddy TC375

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 40 1.0, 2020-04

4.2 Connector Pin Allocation

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 41 1.0, 2020-04

Figure 4 Extended IO Connector

Figure 5 SPI Connector

Figure 6 On-Board CAN Connector

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 42 1.0, 2020-04

4.3 TC375 ASCLIN to ShieldBuddy connector mapping

Table 4 ASCLIN to ShieldBuddy connector mapping

TC375 Port Pin ASCLIN Board Marking Comment

P15.0 ASC1 TX0 Serial0

P15.1 ASC1 RX0

P33.9 ASC2 TX1 Serial1

P33.8 ASC2 RX1

P20.0 ASC3 TX2 Serial2

P20.3 ASC3 RX2

P15.2 ASC0 TX Serial

P15.3 ASC0 RX

P15.7 ASC3 TX
SerialASC - Available via
USB

P32.2 ASC3 RX

Table 5 Arduino To ShieldBuddy To TC375 Mapping

Arduino Signal Name ShieldBuddy Connector
Name

TC375T Pin Assignment

Analog pin 0 ADCL.1 SAR8.7/P32.3

Analog pin 1 ADCL.2 SAR8.6/P32.4

Analog pin 2 ADCL.3 SAR8.5/P23.1

Analog pin 3 ADCL.4 SAR8.4/P33.9

Analog pin 4 ADCL.5 SAR3.1/P10.0

Analog pin 5 ADCL.6 SAR3.0/P10.7

Analog pin 6 ADCL.7 SAR2.5/P14.7

Analog pin 7 ADCL.8 SAR2.4/P20.6

Analog pin 8 ADCH.1 SAR0.3/P33.6

Analog pin 9 ADCH.2 SAR0.2/P22.2

Analog pin 10 ADCH.3 SAR0.1/P23.5

Analog pin 11 ADCH.4 SAR0.0/P23.4

Analog pin 12/DAC0 ADCH.5 SAR8.12/P20.9/P33.10

Analog pin 13/DAC1 ADCH.6 SAR8.13/P14.8

Analog pin 14/CAN RX ADCH.7 SAR8.14/P20.7 CAN0 RX

Analog pin 15/CAN TX ADCH.8 SAR8.15/P20.8 CAN0 TX

Digital pin 4 (PWM/SS) PWML.5 P10.4 (P2.2 optional via R410 dnf)

Analog Reference AREF PWMH.8 AREF

Digital pin 0 (RX0) PWML.1 P15.3

Digital pin 1 (TX0) PWML.2 P15.2

Digital pin 2 (PWM) PWML.3 P2.0

Digital pin 3 (PWM) PWML.4 P2.1

Digital pin 5 (PWM) PWML.6 P2.3

Digital pin 6 (PWM) PWML.7 P2.4

Digital pin 7 (PWM) PWML.8 P2.5

Digital pin 8 (PWM) PWMH.1 P2.6

Digital pin 9 (PWM) PWMH.2 P2.7

Digital pin 10 (PWM/SS) PWMH.3 P10.5

Digital pin 11 (PWM/MOSI) PWMH.4 P10.3

Digital pin 12 (PWM/MISO) PWMH.5 P10.1

Digital pin 13 (PWM/SPCK) PWMH.6 P10.2

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 43 1.0, 2020-04

Arduino Signal Name ShieldBuddy Connector
Name

TC375T Pin Assignment

Digital pin 14 (TX3) COMMUNICATION.8 P15.0 ASC1 RX TXCAN2

Digital pin 15 (RX3) COMMUNICATION.7 P15.1 ASC1 RX RXCAN2

Digital pin 16 (TX2) COMMUNICATION.6 P33.9 ASC2 TX

Digital pin 17 (RX2) COMMUNICATION.5 P33.8 ASC2 RX

Digital pin 18 (TX1) COMMUNICATION.4 P20.0 ASC3 TX

Digital pin 19 (RX1) COMMUNICATION.3 P20.3 ASC3 RX

Digital pin 20 (SDA) COMMUNICATION.2 P15.4

Digital pin 21 (SCL) COMMUNICATION.1 P15.5

Digital pin 22 XIO.3 P14.0

Digital pin 23 XIO.4 P14.1

Digital pin 24 XIO.5 P15.6

Digital pin 25 XIO.6 P00.0

Digital pin 26 XIO.7 P00.8

Digital pin 27 XIO.8 P00.1

Digital pin 28 XIO.9 P00.9

Digital pin 29 XIO.10 P00.2

Digital pin 30 XIO.11 P00.10

Digital pin 31 XIO.12 P00.3

Digital pin 32 XIO.13 P00.11

Digital pin 33 XIO.14 P00.4

Digital pin 34 XIO.15 P00.12

Digital pin 35 XIO.16 P00.5

Digital pin 36 XIO.17 P33.2

Digital pin 37 XIO.18 P00.6

Digital pin 38 XIO.19 P33.1

Digital pin 39 XIO.20 P00.7

Digital pin 40 XIO.21 P33.2

Digital pin 41 XIO.22 P11.9

Digital pin 42 XIO.23 P11.10

Digital pin 43 XIO.24 P11.11

Digital pin 44 (PWM) XIO.25 P33.3

Digital pin 45 (PWM) XIO.26 P11.2

Digital pin 46 (PWM) XIO.27 P11.3

Digital pin 47 XIO.28 P11.6

Digital pin 48 XIO.29 P21.3

Digital pin 49 XIO.30 P21.0

Digital pin 50 (MISO) XIO.31 P33.4 + P21.2 + P33.13

Digital pin 51 (MOSI) XIO.32 P33.12 + P13.3 + P2.8

Digital pin 52 (SCK) XIO.33 P33.5 + P15.8 + P10.8 + P33.11

Digital pin 53 (SS) XIO.34 P33.7 + P20.10 + P11.12

SPI connector 1 MISO3 P22.1

SPI connector 2 +5V

SPI connector 3 SPCK3 P22.3

SPI connector 4 MOSI3 P22.0

SPI connector 5 RESET

SPI connector 6 GND

I2C SDA1 PWMH.10 P13.1

I2C SCL1 PWMH.9 P13.2

GND PWMH.7 GND

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 44 1.0, 2020-04

5 Powering The ShieldBuddy

The ShieldBuddy can be powered from USB or from 6V to12V on the jack socket.

It is possible to power the board from just the USB however some shields require more current than can be
supplied via USB so in the case, the external power jack should be used.

5.1 Selectable Options

It is sometimes useful to be able to access all of Port2 on consecutive pins on PWML (J402). This can be done
by fitting a zero Ohm link in the R410 position.

The TLF35584 is a sophisticated power regulator and watchdog device. Unless it is refreshed or disabled within
600ms of power-on, it will cause the TC375 to reset. To prevent this, jumper JP601 is fitted. The ShieldBuddy
startup code in fact does contain a SPI-based driver that disables the TLF35584 so this jumper is not essential
but if you use other programming environments, this may not be present so JP601 should be fitted.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 45 1.0, 2020-04

5.2 Restoring an ShieldBuddy with a completely erased FLASH.

If the TC375 PFLASH becomes completely erased or if the bootmode headers are damaged, the device can no
longer be accessed via JTAG or DAP. The debugger will report “No Valid ABM On Target” and the FLASH
cannot be programmed, even though it might appear to have been. To overcome this, JP201 can be used to
temporarily enable the debug interface so that the PFLASH can be reprogrammed. To do this, follow the
procedure given below:

With the ShieldBuddy powered up:

1. Close the jumper JP201
2. Press the reset button
3. Remove the jumper on JP201
4. Attempt to start your Flash programming tool or debugger
5. The tool should now connect
6. Reprogram the PFLASH in the usual way

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 46 1.0, 2020-04

6 Component Placement

Figure 7 Component Location – Top Side

Figure 8 Component Location – Underside

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 47 1.0, 2020-04

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 48 1.0, 2020-04

7 Appendices

7.1 Basic Board Test

If you think your ShieldBuddy has been damaged, please run this simple test to see if the CPU is still OK.

Note: It is assumed that Infineon DAS v4.6 or later is already installed on your PC.

Go to “C:\Hitex\AURduinoIDE\Tools\EOL_Test”

Connect the ShieldBuddy to the USB port on your PC.

Wait for DAS to detect the ShieldBuddy – this takes about 15 seconds. Run the batch file
“programShieldBuddy.bat”.

The Memtool programming tool will start and program the BoardEOLTestTC375.hex hexfile into the TC375
FLASH.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 49 1.0, 2020-04

Now start a terminal emulation program (e.g. Arduino Serial Monitor,
MTTY, Hyperterm etc.). The COM port created by the ShieldBuddy
will vary from PC to PC. You can find it in the Arduino IDE under
“Port:”

Use 115200 Baud.

With the terminal program running, press the reset button on the ShieldBuddy. The following text should
appear:

Now press any alpha key – here it was ‘A’ and then Send. The key you pressed will be printed into the terminal
and the LED on the ShieldBuddy pin 13 should start to flash. As the test program was designed for a VT100
terminal, some weird control characters will appear at the start.

That completes a successful test.

 ShieldBuddy TC375 Development Platform
 Aurix 32-Bit Triple Core

Released 50 1.0, 2020-04

www.hitex.co.uk

Published by Hitex (U.K.) Limited. 4269.40100, 1.0

