

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-30828 Rev. *H

www.infineon.com 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration and use of the analog digital converter (ADC) driver. It will

help you to understand the functionality of the driver and will provide a reference to the driver’s API.

The installation, build process, and general information about the use of the EB tresos Studio are not within the

scope of this document. See the EB tresos Studio for ACG8 user’s guide [8] for detailed information of these

topics.

Intended audience

This document is intended for anyone who uses the analog digital converter (ADC) (expansion pack) driver of

the TRAVEO™ T2G family.

Document Structure

Chapter 1 General overview gives a brief introduction to the ADC driver, explains the embedding in the

AUTOSAR environment and describes the supported hardware and development environment.

Chapter 2 Using the ADC driver details the steps required to use the ADC driver in your application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the ADC driver.

Chapter 4 EB tresos Studio configuration interface describes the driver's configuration with the EB tresos

Studio software.

Chapter 5 Functional description gives a functional description of all services offered by the ADC driver.

Chapter 6 Hardware resources gives a description of all hardware resources used.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table 1 Abbreviation

Abbreviation Description

ADC Analog Digital Converter

Alternate calibration Alternate calibration is used to quietly run calibration algorithm (in the background)

for all groups except groups which are used for regular calibration.

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

Basic Software Standardized part of software which does not fulfill a vehicle functional job.

http://www.infineon.com/

User guide 2 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

About this document

Abbreviation Description

BSW Basic Software. Standardized part of software which does not fulfill a vehicle

functional job.

Channel Represents analog inputs. These analog inputs are analog signal pin and internal

signals. Channel means ADC physical channel.

Channel Group A set of one or more channels, which can be accessed as a single entity by its group

name.

CPU Central Processing Unit

DEM Diagnostic Event Manager

DET Default Error Tracer

DMA Direct Memory Access

DW Data Wire, this is CPU feature. DW is used for peripheral-to-memory and memory-to-

peripheral data transfers. DW is also called Peripheral-DMA (P-DMA) controller.

Generically, this feature is called “DMA”.

EB tresos Studio Elektrobit Automotive configuration framework

GCE Generic Configuration Editor

GPT General Purpose Timer

HW Hardware

HW trigger HW trigger signal that starts one conversion of an ADC channel group. HW trigger

signals are generated by timer, GPIO signal, etc.

HW unit Represents a microcontroller input electronic device that includes all parts which

are needed to perform an “analog to digital conversion”.

ISR Interrupt Service Routine

Logical channel SAR ADC has some logical channels depend on hardware. The group consists of

several consecutive logical channels. SAR ADC samples the analog input (channel)

mapped to logical channel.

MCAL Microcontroller Abstraction Layer

MCU Microcontroller Unit

OCU Output Compare Unit

OS Operating System

PASS Programmable Analog Subsystem, this is hardware subsystem. This subsystem

includes “SAR ADC”.

Preconditioning Enabling broken wire detection by charging or discharging the ADC sampling

capacitor before sampling the input signal.

PWM Pulse Width Modulation

Regular calibration Regular calibration is used to run calibration algorithm for all channel groups except

groups which are used for alternate calibration.

Result (Stream) Buffer The user of the ADC driver must provide a buffer for every group. This buffer can

hold multiple samples of the same group channel if streaming access mode is

selected. If single access mode is selected one sample of each group channel is held

in the buffer. (Result buffer is called stream buffer in general when the channel

group is handled in streaming access mode.)

User guide 3 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

About this document

Abbreviation Description

SAR ADC Successive Approximation Register analog-to-digital converter, this is hardware

peripheral. SAR ADC means ADC HW unit.

SARMUX SARMUX is the analog multiplexer that routes the signal to be converted to the ADC

core input.

SARMUXn is an analog multiplexer of SAR ADCn, where n indicates the SAR ADC

number.

SelfDiag Self diagnostic

SW Software

SW trigger Starting an ADC group conversion by an API call

TCPWM 16-bit and four 32-bit Timer/Counter Pulse-Width Modulator, this is hardware

peripheral.

UTF-8 8-Bit Universal Character Set Transformation Format

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Specification of ADC driver, AUTOSAR release 4.2.2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of ECU configuration parameters, AUTOSAR release 4.2.2.

[5] Specification of default error tracer, AUTOSAR release 4.2.2.

[6] Specification of diagnostic event manager, AUTOSAR release 4.2,2.

[7] Specification of memory mapping, AUTOSAR release 4.2.2

Elektrobit automotive documentation

Bibliography

[8] EB tresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[9] Layered software architecture, AUTOSAR release 4.2.2.

User guide 4 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 4

1 General overview ... 8

1.1 Introduction to the ADC driver .. 8

1.2 User profile .. 8

1.3 Embedding in the AUTOSAR environment ... 9

1.4 Supported hardware ... 10

1.5 Development environment ... 10

1.6 Character set and encoding .. 10

1.7 Multicore support .. 10

1.7.1 Multicore type .. 10

1.7.1.1 Single core only (Multicore type I) .. 10

1.7.1.2 Core dependent instances (Multicore type II) .. 11

1.7.1.3 Core independent instances (Multicore type III).. 11

1.7.2 Virtual core support ... 12

2 Using the ADC driver ... 13

2.1 Installation and prerequisites ... 13

2.2 Configuring the ADC driver ... 13

2.2.1 Architecture specifics ... 13

2.3 Adapting an application .. 15

2.4 Starting the build process ... 17

2.5 Measuring the stack consumption ... 17

2.6 Memory mapping .. 18

2.6.1 Memory allocation keyword .. 18

2.6.2 Memory allocation and constraints ... 19

3 Structure and dependencies .. 20

3.1 Static files .. 20

3.2 Configuration files ... 20

3.3 Generated files .. 20

3.4 Dependencies .. 21

3.4.1 MCU driver .. 21

3.4.2 PORT driver... 21

3.4.3 AUTOSAR OS ... 21

3.4.4 DET .. 21

3.4.5 DEM ... 21

3.4.6 GPT, PWM, and OCU driver (hardware trigger sources) .. 21

3.4.7 Error callout handler .. 22

3.4.8 BSW scheduler .. 22

4 EB tresos Studio configuration interface .. 23

4.1 General configuration ... 23

4.2 AdcPublishedInformation configuration ... 24

4.3 AdcCustomFunction .. 24

4.4 AdcPowerStateConfig configuration .. 25

4.5 AdcConfigSet configuration .. 25

4.6 AdcHwUnit configuration ... 26

4.7 AdcChannel configuration .. 28

4.8 AdcGroup configuration .. 31

User guide 5 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

Table of contents

4.9 AdcGenericHWTriggerSelectConfiguration .. 34

4.10 AdcMulticore .. 34

4.11 AdcCoreConfiguration ... 34

5 Functional description .. 36

5.1 Module function .. 36

5.2 Inclusion .. 36

5.3 Initialization and de-initialization .. 36

5.4 Runtime reconfiguration ... 37

5.5 Channels and channel groups .. 37

5.6 Start/stop SW-triggered group conversion .. 37

5.7 Enable or disable hardware-triggered group conversion .. 39

5.8 Read services ... 39

5.9 Notification .. 40

5.10 Limit checking ... 41

5.11 Power management .. 41

5.12 Interrupt and polling mode .. 41

5.13 Triggered by HW .. 42

5.14 DMA transfer .. 42

5.15 Changing the sampling time during runtime ... 43

5.16 Port selection .. 43

5.17 Sample mode .. 43

5.18 Diagnostic feature ... 44

5.19 Analog calibration feature .. 45

5.20 SelfDiag feature ... 48

5.21 Hardware prioritization ... 48

5.21.1 Explicit hardware prioritization ... 48

5.21.2 Implicit hardware prioritization .. 49

5.22 Software prioritization .. 49

5.23 API parameter checking .. 49

5.24 Vendor-specific error checking ... 51

5.25 Reentrancy ... 53

5.26 Configuration checking ... 53

5.27 Sleep mode .. 53

5.28 Debugging support .. 53

5.29 Execution-time dependencies .. 54

5.30 Important notes on the ADC driver’s environment .. 56

5.31 Functions available without core dependency .. 57

6 Hardware resources ... 58

6.1 Peripheral clocks ... 58

6.2 Analog input signals .. 58

6.3 Interrupts ... 59

6.4 Triggers .. 60

7 Appendix A – API reference .. 61

7.1 Include files .. 61

7.2 Data types .. 61

7.2.1 Adc_ChannelType .. 61

7.2.2 Adc_GroupType .. 61

7.2.3 Adc_ValueGroupType .. 61

7.2.4 Adc_StreamNumSampleType ... 61

User guide 6 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

Table of contents

7.2.5 Adc_StatusType ... 62

7.2.6 Adc_SamplingTimeType .. 62

7.2.7 Adc_PowerStateRequestResultType... 62

7.2.8 Adc_PowerStateType ... 63

7.2.9 Adc_ConfigType ... 63

7.2.10 Adc_ChannelRangeSelectType.. 63

7.2.11 Adc_PrescaleType .. 64

7.2.12 Adc_ConversionTimeType ... 64

7.2.13 Adc_ResolutionType .. 64

7.2.14 Adc_TriggerSourceType... 65

7.2.15 Adc_GroupConvModeType .. 65

7.2.16 Adc_GroupPriorityType ... 65

7.2.17 Adc_GroupDefType .. 66

7.2.18 Adc_StreamBufferModeType .. 66

7.2.19 Adc_GroupAccessModeType ... 66

7.2.20 Adc_HwTriggerSignalType .. 67

7.2.21 Adc_HwTriggerTimerType ... 67

7.2.22 Adc_PriorityImplementationType ... 67

7.2.23 Adc_GroupReplacementType .. 68

7.2.24 Adc_ResultAlignmentType .. 68

7.2.25 Adc_HwUnitType ... 69

7.2.26 Adc_OffsetValueType ... 69

7.2.27 Adc_GainValueType ... 69

7.2.28 Adc_SignalType .. 69

7.2.29 Adc_DataReadType .. 69

7.2.30 Adc_GroupHwTriggSrcType .. 70

7.2.31 Adc_CoreIdType ... 70

7.2.32 Adc_DriverStatusType ... 71

7.3 Constants ... 71

7.3.1 Error codes ... 71

7.3.2 Version information ... 72

7.3.2.1 Module information .. 72

7.3.3 API service IDs .. 72

7.3.4 Invalid core ID value ... 73

7.4 Functions ... 74

7.4.1 Adc_Init ... 74

7.4.2 Adc_DeInit .. 74

7.4.3 Adc_StartGroupConversion ... 75

7.4.4 Adc_StopGroupConversion ... 76

7.4.5 Adc_ReadGroup ... 77

7.4.6 Adc_EnableHardwareTrigger .. 78

7.4.7 Adc_DisableHardwareTrigger .. 79

7.4.8 Adc_EnableGroupNotification ... 79

7.4.9 Adc_DisableGroupNotification .. 80

7.4.10 Adc_GetGroupStatus ... 81

7.4.11 Adc_GetVersionInfo ... 82

7.4.12 Adc_GetStreamLastPointer ... 82

7.4.13 Adc_SetupResultBuffer .. 84

7.4.14 Adc_SetPowerState ... 85

7.4.15 Adc_GetCurrentPowerState .. 86

User guide 7 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

Table of contents

7.4.16 Adc_GetTargetPowerState .. 87

7.4.17 Adc_PreparePowerState .. 88

7.4.18 Adc_Main_PowerTransitionManager .. 89

7.4.19 Adc_ChangeSamplingTime ... 89

7.4.20 Adc_ChangeCalibrationChannel ... 90

7.4.21 Adc_SetCalibrationValue ... 91

7.4.22 Adc_GetCalibrationAlternateValue ... 92

7.4.23 Adc_GetCalibrationValue ... 93

7.4.24 Adc_DisableChannel .. 94

7.4.25 Adc_EnableChannel ... 95

7.4.26 Adc_GetADCAddr .. 96

7.4.27 Adc_ReadChannelValue ... 96

7.4.28 Adc_GetGroupLimitCheckState .. 97

7.4.29 Adc_SelectChannelThreshold ... 98

7.4.30 Adc_EnableHwTrigger ... 99

7.4.31 Adc_DisableHwTrigger ... 100

7.4.32 Adc_StartDiagnosticFull .. 101

7.4.33 Adc_GetDiagnosticResult .. 102

7.4.34 Adc_StartDiagnostic .. 103

7.5 Required callback functions ... 104

7.5.1 Default error tracer (DET) ... 104

7.5.1.1 Det_ReportError .. 104

7.5.2 Diagnostic event manager (DEM) .. 104

7.5.2.1 Dem_ReportErrorStatus ... 104

7.5.3 Callout functions .. 105

7.5.3.1 Error callout API .. 105

7.5.3.2 Get core ID API ... 106

8 Appendix B – Access register table .. 107

8.1 SAR ADC ... 107

8.2 DW .. 116

Revision history ... 123

Disclaimer ... 125

User guide 8 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

1 General overview

1 General overview

1.1 Introduction to the ADC driver

The ADC driver is a set of software routines, which enable the requested analog-to-digital conversions of ADC

channels.

For this purpose, the ADC driver provides services for:

• Initializing and de-initializing the driver

• Starting and stopping a group conversion

• Reading group conversion results

• Enabling and disabling group notification

• Enabling and disabling power regarding ADC hardware

• Changing sampling time for each ADC channel

The driver conforms to the AUTOSAR standard and is implemented according to the Specification of ADC driver

[2].

The ADC driver is delivered with a plugin for the EB tresos Studio, which allows you to statically configure the

driver. The driver provides an interface to enable ADC hardware channels, to define symbolic names for

hardware units, channel groups, channels and to create channel groups.

1.2 User profile

This guide is intended for users with a least basic knowledge of the following domains:

• Embedded systems

• C programming language

• AUTOSAR standard

• Target hardware architecture

User guide 9 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

1 General overview

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The ADC driver (Figure 2) is part of the

microcontroller abstraction layer (MCAL), the lowest layer of basic software in the AUTOSAR environment.

As an internal I/O driver, it provides a standardized and microcontroller-independent interface to higher

software layers for starting/stopping ADC conversion of single/multiple channels of the ECU hardware.

For an overview of the AUTOSAR layered software architecture, see the layered software architecture [9].

Figure 2 ADC driver in MCAL layer

User guide 10 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

1 General overview

1.4 Supported hardware

This version of the ADC driver supports the TRAVEO™ T2G microcontroller family. The supported derivatives are

listed in the release notes.

Additional derivatives that contain only a subset of the capabilities of one derivative mentioned above can be

implemented / supported by providing a resource file with its properties.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The BASE, MAKE, PORT, MCU, and

RESOURCE module are required for the proper functionality of the ADC driver. PWM, GPT, and OCU module are

not mandatory, and they can be used to trigger a group conversion by external signals (HW trigger) if necessary.

1.6 Character set and encoding

All source code files of the ADC driver are restricted to the ASCII character set. The files are encoded in UTF-8

format, with only the 7-bit subset (values 0x00 … 0x7F) being used.

1.7 Multicore support

The ADC driver supports multicore type II. The driver also supports multicore type III for some APIs (for

example, read-only API or atomic-write API). For each multicore type, see the following sections.

Note: If multicore type III is required, the section including data related to read-only API or atomic write

API must be allocated to the memory which can be read from any cores.

1.7.1 Multicore type

In this section, type I, type II, and type III are defined as multicore characteristics.

1.7.1.1 Single core only (Multicore type I)

For this multicore type, the driver is available on a single core. This type is referred as “Multicore Type I”.

Multicore type I has the following characteristic:

• The peripheral channels are accessed by only one core.

Figure 3 Overview of the multicore type I

User guide 11 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

1 General overview

1.7.1.2 Core dependent instances (Multicore type II)

For this multicore type, the driver has core-dependent instances with individually allocable hardware. This type

is referred as “Multicore Type II”.

Multicore type II has the following characteristics:

• The driver code is shared among all cores

− A common binary is used for all cores

− A configuration is common for all cores

• Each core runs an instance of the driver

• Peripheral channels and their data are individually allocable to cores but cannot be shared among cores

• One core will be the master; and the master core must be initialized first

− Cores other than the master core are called satellite cores.

Figure 4 Overview of the multicore type II

1.7.1.3 Core independent instances (Multicore type III)

For this multicore type, the driver has core independent instances with globally available hardware. This type is

referred as “Multicore Type III”.

Multicore type III has the following characteristics:

• The code of the driver is shared among all cores

− A common binary is used for all cores

− A configuration is common for all cores

• Each core runs an instance of the driver

• Peripheral channels are globally available for all cores

User guide 12 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

1 General overview

Figure 5 Overview of the multicore type III

1.7.2 Virtual core support

The ADC driver supports a number of cores. The configured cores need not to be equal to the physical cores.

The ADC driver calls a configurable callout function (AdcGetCoreIdFunction) to identify the core that is

currently executing the code. This function can be implemented in the integration scope. The function can be

written such that it does not return the physical core, but instead returns the SW partition ID, OS application ID,

or any attribute/parameter. By interpreting these as the core, the ADC driver can support multiple SW partitions

on a single physical core.

User guide 13 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

2 Using the ADC driver

This chapter describes all necessary steps to incorporate the ADC driver into your application.

2.1 Installation and prerequisites

Note: Before you start, see the EB tresos Studio for ACG8 user’s guide [8] for the following information.

1. The installation procedure of EB tresos ECU AUTOSAR components.

2. The usage of the EB tresos Studio.

3. The usage of the EB tresos ECU AUTOSAR build environment (It includes the steps to setup and integrate the

own application within the EB tresos ECU AUTOSAR build environment).

The installation of the ADC driver complies with the general installation procedure for EB tresos ECU AUTOSAR

components given in the documents mentioned above. If the driver has been successfully installed, the driver

will appear in the module list of the EB tresos Studio (see the EB tresos Studio for ACG8 user’s guide [8]).

This guide assumes that the project is properly set up and is using the application template as described in the

EB tresos Studio for ACG8 user’s guide [8]. This template provides the necessary folder structure, project and

makefiles needed to configure and compile your application within the build environment. You also must be

familiar with the use of the command shell.

2.2 Configuring the ADC driver

The ADC driver can be configured with any AUTOSAR compliant GCE tool. Save the configuration in a separate

file (for example, Adc.xdm). More information about the ADC driver configuration can be found in 4 EB tresos

Studio configuration interface.

2.2.1 Architecture specifics

ADC driver supports not only AUTOSAR specification but also vendor- and driver-specific features. Therefore

vendor- and driver-specific parameters are also added. All vendor- and driver-specific configuration parameters

are listed as below:

• AdcDemEventParameterRefs

− ADC_E_HARDWARE_ERROR

• AdcConfigSet

− AdcSupplyMonitorEnabledA

− AdcSupplyMonitorLevelA

− AdcSupplyMonitorEnabledB

− AdcSupplyMonitorLevelB

• AdcHwUnit

− AdcDiagnoseEnable

− AdcDiagnosticReference

− AdcPreconditionCycle

− AdcSarMux1ConnectToAdc0

− AdcSarMux1DiagnoseEnable

− AdcSarMux1DiagnosticReference

− AdcSarMux2ConnectToAdc0

User guide 14 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

− AdcSarMux2DiagnoseEnable

− AdcSarMux2DiagnosticReference

− AdcSarMux3ConnectToAdc0

− AdcSarMux3DiagnoseEnable

− AdcSarMux3DiagnosticReference

− AdcCoreAssignment

• AdcChannel

− AdcUseExternalMultiplexer

− AdcChannelResultSigned

− AdcChannelPulseDetect

− AdcChannelPulsePositiveCount

− AdcChannelPulseNegativeCount

− AdcDiagnosisMode

• AdcGroup

− AdcGroupHwTriggSrc

− AdcFirstLogicalChannel

− AdcInterruptMode

− AdcUseDma

− AdcUseAlternateCalibration

− AdcSampleMode

− AdcUseRedundancy

− AdcLimitCheckNotification

− AdcUseDynamicAllocate

− AdcSWPriority

• AdcGeneral

− AdcCalibrationApi

− AdcErrorCalloutFunction

− AdcIncludeFile

− AdcCoreConsistencyCheckEnable

− AdcGetCoreIdFunction

− AdcMasterCoreReference

• AdcCustomFunction

− AdcSelfDiagApi

− AdcVoltageDeviation

− AdcDiagConvertTimeout

• AdcGenericHWTriggerSelect

− AdcGroupGenericHwTriggSrc

− AdcGenericTriggerSelect

• AdcCoreConfiguration

− AdcCoreConfigurationId

− AdcCoreId

User guide 15 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

2.3 Adapting an application

To use the ADC driver in your application, you first must include the header files of ADC, PORT, and MCU driver

by adding the following lines of code to your source file:

#include “Mcu.h” /* AUTOSAR MCU Driver */

#include “Port.h” /* AUTOSAR PORT Driver */

#include “Adc.h” /* AUTOSAR ADC Driver */

This publishes all required function and data prototypes and symbolic names of the configuration into the

application. In addition, you must implement the error callout function for ASIL safety extension.

To use the ADC driver, the appropriate port pins, SAR clock setting, triggers (HW trigger and trigger to DMA), and

ADC interrupts must be configured in PORT driver, MCU driver, and OS. For detailed information see Hardware

resources.

Initialization of MCU, PORT, and ADC driver needs to be done in the following order:

For the master core:

Mcu_Init(&Mcu_Config[0]);

Port_Init(&Port_Config[0]);

Adc_Init(&Adc_Config[0]);

For the satellite core:

Mcu_Init(&Mcu_Config[0]);

Adc_Init(&Adc_Config[0]);

Note: As a reference, the symbolic name can also be specified (for instance,

AdcConf_AdcConfigSet_AdcConfigSet_0).

The function Mcu_Init() is called with a pointer to a structure of type Mcu_ConfigType, which is published

by the MCU driver itself.

The function Port_Init() is called with a pointer to a structure of type Port_ConfigType, which is

published by the PORT driver itself. This function must be called on the master core only.

The function Adc_Init() is called with a pointer to a structure of type Adc_ConfigType, which is published

by the ADC driver itself.

The master core must be initialized prior to the satellite core. All cores must be initialized with the same

configuration.

After initialization of the ADC driver all groups are stopped and notifications are disabled. Initialization can be

done by calling the Adc_Init() API.

A channel can only be sampled if it is part of or included in an ADC group. The group needs to be started to

convert the channel values.

Each group has its individual state, which can be either of the following:

• ADC_IDLE: The group is inactive. The group was neither started nor enabled.

The group will not convert any samples as long as it is in this state.

User guide 16 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

• ADC_BUSY: The group is active. The group was started or enabled and has not finished conversion yet.

The group has not yet generated new sample data since it was started/enabled or since sample data was

read by the ADC driver’s environment the previous time.

• ADC_COMPLETED: The group is active. The group was started or enabled and has already finished at least

one conversion round, but has not filled up the result buffer completely.

The group has already generated new sample data. Sample data is available in the result buffer that was not

yet read by the ADC driver’s environment.

• ADC_STREAM_COMPLETED: The group completed conversion and has filled up the result buffer completely.

Whether the group is active or inactive depends on its mode. SW trigger continuous conversion and single

access group, HW trigger one-shot conversion and single access group, or circular streaming access group

keep active even though the result buffer is fulfilled. SW trigger one-shot conversion and single access

group, or linear streaming access group would be inactive immediately after the result buffer is fulfilled.

The group has already generated new sample data. Sample data is available in the result buffer that was not

read yet by the ADC module’s environment.

• ADC_ERROR: The group is inactive, that is, a DMA transmission error occurred. The result for current group

conversion is not available.

After the group state reaches ADC_COMPLETED or ADC_STREAM_COMPLETED, the sample data may be read. In

state ADC_BUSY, reading will return no result.

Example: Group (MY_ADC_GROUP_1) is configured for single access mode and references MY_ADC_CHANNEL_0

and MY_ADC_CHANNEL_2 to define the channel group.

/* Allocate a buffer to receive results for each channel. */

Adc_ValueGroupType sampleBuffer[2];

Adc_SetupResultBuffer(MY_ADC_GROUP_1, sampleBuffer)

Adc_StartGroupConversion(MY_ADC_GROUP_1);

/* Try to read until group is finished. */

while (Adc_ReadGroup(MY_ADC_GROUP_1, sampleBuffer) != E_OK);

The above code shows that Adc_ReadGroup() can be used to wait until the completion of the conversion. It is

also possible to wait until the completion of the conversion by calling Adc_GetGroupStatus() instead

Adc_ReadGroup().

/* Try to check status until group is finished. */

while (Adc_GetGroupStatus(MY_ADC_GROUP_1) != ADC_STREAM_COMPLETED);

For more information on Adc_StartGroupConversion() and other services, see Functions.

A notification function can be called to announce the completion of the ADC channel group conversion if the

notification function is configured in advance. In this case, your application must provide the functions and its

declarations that you configured. The file containing the declarations must be included using the

AdcIncludeFile parameter which is located in container AdcGeneral. The notification functions, which

are end of conversion, take no parameters and have void return type:

void MyNotificationFunction(void)

{

User guide 17 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

/* Insert your code here */

}

The limit check notification functions take one parameter for limit check information and have void return

type. LimitCheckState indicates the channel in the group that corresponds to the condition of limit check. 0

bit of LimitCheckState indicates the first channel in the group:

void MyLimitCheckNotificationFunction(UINT32 LimitCheckState)

{

/* Insert your code here */

}

The notification functions are called from an interrupt context.

2.4 Starting the build process

Do the following to build your application.

Note: For a clean build, you should use the build command with target clean_all before (make

clean_all).

1. Type the following in the command shell to generate the necessary dependent files:

> make generate

The details of the generated files are described in Generated files.

2. Then, type the following command to resolve the required file dependencies:

> make depend

3. Finally, you can compile and link the application with the following command:

> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file, which can be downloaded to the

target CPU cores.

2.5 Measuring the stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The

executable file built by this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement:

-DSTACK_ANALYSIS_ENABLE

2. Type the following command to clean library files:

> make clean_lib

3. Follow the build process described in Starting the build process.

4. Measure the stack consumption by following the instructions given in the release notes.

User guide 18 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

2.6 Memory mapping

The Adc_MemMap.h file in the $(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0I0R0/include directory is a

sample. This file is replaced by the file generated by MEMMAP module. Input to the MEMMAP module is

generated as Adc_Bswmd.arxml in the $(PROJECT_ROOT)/output/generated/swcd directory of your project

folder.

2.6.1 Memory allocation keyword

• ADC_START_SEC_CODE_ASIL_B /ADC_STOP_SEC_CODE_ASIL_B

The memory section type is CODE. All executable code is allocated in this section.

• ADC_START_SEC_CONST_ASIL_B_UNSPECIFIED /ADC_STOP_SEC_CONST_ASIL_B_UNSPECIFIED

The memory section type is CONST. The following constants are allocated in this section:

− ADC hardware configuration setting

− ADC channel configuration setting

− ADC channel group configuration setting

− Lookup table to search a specific ADC channel group by interrupt resources index

− DMA configuration setting

− DMA channel configuration setting

− ADC whole configuration setting

− Pointer to driver status

− Pointer to target power status

• ADC_CORE[AdcCoreConfigurationId]_START_SEC_VAR_INIT_ASIL_B_GLOBAL_UNSPECIFIED

/ADC_CORE[AdcCoreConfigurationId]_STOP_SEC_VAR_INIT_ASIL_B_GLOBAL_UNSPECIFIED

The memory section type is VAR. The following variables are allocated in this section:

− Pointer to the configuration data set by Adc_Init(). (Initial value: NULL)

− Information for driver status

• ADC_CORE[AdcCoreConfigurationId]_START_SEC_VAR_CLEARED_ASIL_B_GLOBAL_UNSPECIFIED

/ADC_CORE[AdcCoreConfigurationId]_STOP_SEC_VAR_CLEARED_ASIL_B_GLOBAL_UNSPECIFIED

The memory section type is VAR. The following variable is allocated in this section:

− Information for ADC DMA descriptors

− Information for target power state

− Information for stream setting

− Information for ADC channel group status

− SW priority management information

• ADC_CORE[MasterCoreId]_START_SEC_VAR_CLEARED_ASIL_B_GLOBAL_32

/ADC_CORE[MasterCoreId]_STOP_SEC_VAR_CLEARED_ASIL_B_GLOBAL_32

MasterCoreId means the AdcCoreConfigurationId specified in AdcMasterCoreReference.

The memory section type is VAR. The following variable is allocated in this section:

− Customer special flag

User guide 19 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

2 Using the ADC driver

• ADC_CORE[AdcCoreConfigurationId]_START_SEC_VAR_CLEARED_ASIL_B_GLOBAL_16

/ADC_CORE[AdcCoreConfigurationId]_STOP_SEC_VAR_CLEARED_ASIL_B_GLOBAL_16

The memory section type is VAR. The following variable is allocated in this section:

− First/Last enable channel information

• ADC_CORE[AdcCoreConfigurationId]_START_SEC_VAR_CLEARED_ASIL_B_GLOBAL_32

/ADC_CORE[AdcCoreConfigurationId]_STOP_SEC_VAR_CLEARED_ASIL_B_GLOBAL_32

The memory section type is VAR. The following variables are allocated in this section:

− Enable/disable group channel information

− Unread/read information

− Limit check enable point information

• ADC_CORE[AdcCoreConfigurationId]_START_SEC_VAR_CLEARED_ASIL_B_GLOBAL_BOOLEAN

/ADC_CORE[AdcCoreConfigurationId]_STOP_SEC_VAR_CLEARED_ASIL_B_GLOBAL_BOOLEAN

The memory section type is VAR. The following variable is allocated in this section:

− Notification enable setting

2.6.2 Memory allocation and constraints

All the memory sections that store init or uninit status must be zero-initialized before any driver function is

executed on any core. If core consistency checks are disabled, inconsistent parameters would be detected and

reported by PPU and SMPU.

• ADC_CORE[AdcCoreConfigurationId]_START_VAR_[INIT_POLICY]_ASIL_B_GLOBAL_[ALIGNMENT]

/

ADC_CORE[AdcCoreConfigurationId]_STOP_VAR_[INIT_POLICY]_ASIL_B_GLOBAL_[ALIGNMENT]

This section is read/write accessed from the core represented by AdcCoreConfigurationId and read

accessed from the other cores. Therefore, this section must not be allocated to TCRAM. For the core

represented by AdcCoreConfigurationId, this section must be allocated to either non-cache or write-

through cache SRAM area. For other cores, this section must be allocated to non-cache SRAM area.

For multicore type III, this section is read accessed from other cores. Therefore, this section must not be

allocated to TCRAM. For the core represented by AdcCoreConfigurationId, this section must be allocated

to either non-cache or write-through cache SRAM area. For other cores, this section must be allocated to

non-cache SRAM area.

For the details of INIT_POLICY and ALIGNMENT, see the specification of memory mapping [7].

User guide 20 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

3 Structure and dependencies

3 Structure and dependencies

The ADC driver consists of static, configuration, and generated files.

3.1 Static files

• $(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/Adc_TS_* is the path to the ADC driver plugin.

• $(PLUGIN_PATH)/lib_src contains all static source files of the ADC driver. These files contain the functionality

of the driver, which does not depend on the current configuration. The files are grouped into a static library.

• $(PLUGIN_PATH)/lib_include contains all the internal header files for the ADC driver.

• $(PLUGIN_PATH)/src comprises configuration dependent source files or special derivative files. Each file will

be rebuilt when the configuration is changed.

All necessary source files will automatically be compiled and linked during the build process and all include

paths will be set if the ADC driver is enabled.

• $(PLUGIN_PATH)/include is the basic public include directory needed by the user and should be included in

Adc.h.

• $(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,

architecture and derivative specific adaptations to create a correct matching parameter configuration for

the ADC driver.

3.2 Configuration files

The configuration of the ADC driver is done via EB tresos Studio. The file containing the ADC driver’s

configuration is named Adc.xdm and is located in the directory $(PROJECT_ROOT)/config. This file serves as

input for the generation of the configuration-dependent source and header files during the build process.

3.3 Generated files

During the build process the following files are generated on the basis of the current configuration description.

They are located in the sub folder output/generated of your project folder:

• include/Adc_Cfg.h provides settings of configurations with pre-compiled attribute, for example, all symbolic

names required by the API. In addition, it defines a DemEventId parameter of the DEM module, which is

referred in configuration. It will be included in Adc.h.

• include/Adc_ExternalInclude.h provides the external include file information of configuration.

• include/Adc_Irq.h provides generated declaration of interrupt service routine.

• include/Adc_PBcfg.h provides settings of configurations with post-build attribute.

• src/Adc_Irq.c contains the interrupt service routine.

• src/Adc_PBcfg.c contains the constants for the ADC configuration.

Note: Generated source files do not need to be added to your application make file. They will be

compiled and linked automatically during the build process.

• swcd/Adc_Bswmd.arxml contains BSW module description.

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,

follow the menu path Project > Build Project and click generate_swcd.

User guide 21 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

3 Structure and dependencies

3.4 Dependencies

3.4.1 MCU driver

Although the ADC driver can be successfully compiled and linked without an AUTOSAR compliant MCU driver,

the latter is required to configure and initialize SAR clock. Otherwise, the ADC driver does not work expectedly.

The MCU driver needs to be initialized before the ADC driver is initialized. Mcu_GetCoreID can optionally be set

to the AdcGetCoreIdFunction configuration parameter. See the MCU driver’s user guide for details.

3.4.2 PORT driver

Although the ADC driver can be successfully compiled and linked without an AUTOSAR compliant PORT driver,

the latter is required to configure and initialize all ports, HW trigger route, and DMA route (connection between

IPs). Otherwise, the ADC driver will does not work expectedly. The PORT driver needs to be initialized before the

ADC driver is initialized.

3.4.3 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the ADC driver. See Interrupts for further

information. GetCoreID can optionally be set to the AdctGetCoreIdFunction configuration parameter.

3.4.4 DET

If the default error detection feature is enabled in the ADC driver configuration, the DET must be installed,

configured, and integrated into the application also.

3.4.5 DEM

If the diagnostic event manager is enabled in the ADC driver configuration, the DEM must be installed,

configured, and integrated into the application.

3.4.6 GPT, PWM, and OCU driver (hardware trigger sources)

An ADC conversion can be triggered by hardware, but configuration and controlling of the hardware trigger

source is not within scope of the ADC driver. The following hardware trigger options are available:

• GPT driver

TCPWM can generate toggle signals to trigger an ADC channel group conversion when the timer expires. You

are responsible for configuring and controlling the timer corresponding to ADC first channel in group by

using GPT driver. Trigger functionality is enabled when the GptHwTriggerOutputLine configuration

parameter is configured in GPT driver.

• PWM driver

TCPWM can generate toggle signals to trigger an ADC channel group conversion when the timer counter

matches the comparison value which is set in advance. You are responsible for configuring and controlling

the timer corresponding to ADC first channel in group by using PWM driver. Trigger functionality is enabled, if

the PwmHwTriggerOutputLine configuration parameter is configured in PWM driver. Configuration

parameters PwmHwTriggerOutputFactor and, PwmHwTriggerOutputDefaultTime or

PwmHwTriggerOutputDefaultTick can be used to set the trigger timing.

User guide 22 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

3 Structure and dependencies

• OCU driver

TCPWM can generate toggle signals to trigger an ADC channel group conversion when the timer counter

matches the threshold value which is set in advance. You are responsible for configuring and controlling the

timer corresponding to ADC first channel in group by using OCU driver. Trigger functionality is enabled when

the OcuHwTriggerOutputLine configuration parameter is configured in OCU driver.

3.4.7 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection

is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It

is configured via the AdcErrorCalloutFunction configuration parameter.

3.4.8 BSW scheduler

The ADC driver uses the following services of the BSW scheduler (originally named SchM, now BswM) to enter

and leave critical sections:

• SchM_Enter_Adc_ADC_EXCLUSIVE_AREA_[AdcCoreConfigurationId](void)

• SchM_Exit_Adc_ADC_EXCLUSIVE_AREA_[AdcCoreConfigurationId](void)

You must ensure that the BSW scheduler is properly configured and initialized before using the ADC driver

services.

User guide 23 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see the EB tresos Studio for ACG8 user’s guide [8].

4.1 General configuration

This container has the following parameters to configure the general functions of ADC driver:

• ADC_E_HARDWARE_ERROR is a reference to the configured DEM event to report "Hardware failure". If the

reference is not configured, the error will not be reported.

• AdcDevErrorDetect enables or disables the development error notification for the ADC driver.

Setting this parameter to FALSE will disable the notification of development errors via DET. However, in

contrast to AUTOSAR specification, detection of development errors is still enabled and errors will be

reported via AdcErrorCalloutFunction.

• AdcDeInitApi adds or removes the service Adc_DeInit() from the code.

• AdcEnableLimitCheck enables or disables the limit checking feature in the ADC driver.

• AdcEnableQueuing determines if the queuing mechanism is active in case the priority mechanism is

disabled.

Note: This parameter is not evaluated by the ADC driver because the prioritization mechanism

ADC_PRIORITY_NONE is not supported.

• AdcEnableStartStopGroupApi adds or removes the services Adc_StartGroupConversion() and

Adc_StopGroupConversion() from the code.

• AdcGrpNotifCapability determines if the group notification mechanism (the functions to enable and

disable the notifications) is available at runtime.

• AdcHwTriggerApi adds or removes the services Adc_EnableHardwareTrigger() and

Adc_DisableHardwareTrigger() from the code.

• AdcCalibrationApi adds or removes the services Adc_ChangeCalibrationChannel(),

Adc_SetCalibrationValue(), Adc_GetCalibrationAlternateValue(), and

Adc_GetCalibrationValue() from the code.

• AdcLowPowerStatesSupport adds or removes all power state management related APIs

(Adc_SetPowerState(), Adc_GetCurrentPowerState(), Adc_GetTargetPowerState(),

Adc_PreparePowerState(), Adc_Main_PowerTransitionManager()).

• AdcPowerStateAsynchTransitionMode enables or disables support of the ADC driver to the

asynchronous power state transition.

Note: As there is no preparation period in the hardware feature, only synchronous power state transition

mode is supported. Therefore, this parameter is not used by the ADC driver and is not being

evaluated.

• AdcPriorityImplementation determines whether a priority mechanism is available for prioritization of

the conversion requests and if available, the type of prioritization mechanism. The selection applies for

groups with trigger source software and trigger source hardware.

− ADC_PRIORITY_HW: Only hardware priority mechanism is available.

− ADC_PRIORITY_NONE: Priority mechanism is not available.

− ADC_PRIORITY_HW_SW: Hardware and software priority mechanism are available.

User guide 24 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

Note: The HW priority mechanism is used for all groups (including SW triggered SW priority group).

• AdcReadGroupApi adds or removes the service Adc_ReadGroup() from the code.

• AdcResultAlignment selects alignment of ADC raw results in the ADC result buffer (left/right alignment).

− ADC_ALIGN_LEFT: Left alignment.

− ADC_ALIGN_RIGHT: Right alignment.

• AdcVersionInfoApi adds or removes the service Adc_GetVersionInfo() from the code.

• AdcErrorCalloutFunction is used to specify the error callout function name. The function is called on

every error. The ASIL level of this function limits the ASIL level of the ADC driver.

Note: This parameter must have a valid C function name; otherwise an error would occur in the

configuration phase.

• AdcIncludeFile is a list of filenames that will be included within the driver. Any application-specific

symbol that is used by the ADC configuration (such as error callout function) should be included by

configuring this parameter.

Note: This parameter must have a unique filename with extension .h; otherwise some errors will occur in

the configuration phase.

4.2 AdcPublishedInformation configuration

This container has the following parameters, but these parameters cannot be changed. The parameters are

used to publish common information about ADC driver.

• AdcChannelValueSigned informs whether the result value of the ADC driver has sign information (TRUE)

or not (FALSE).

Note: The AdcChannelResultSigned parameter specifies whether the result has signed information.

Therefore, this AdcChannelValueSigned configuration parameter set to TRUE has no meaning.

• AdcGroupFirstChannelFixed informs whether the first channel of an ADC channel group can be

configured (FALSE) or is fixed (TRUE) to a value determined by the ADC HW unit.

Note: This parameter is fixed to FALSE.

• AdcMaxChannelResolution is maximum channel resolution in bits (does not specify accuracy).

Note: This parameter is fixed to 12.

4.3 AdcCustomFunction

This container has the following parameters to configure SelfDiag.

• AdcSelfDiagApi adds or removes the Adc_StartDiagnosticFull(), Adc_GetDiagnosticResult(),

and Adc_StartDiagnostic() services from the code.

• AdcVoltageDeviation is a configuration parameter to set the deviation value for SelfDiag. This

parameter specifies a value as a percentage relative to 2.5 V. For example, if the value of ‘10’ is set for this

User guide 25 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

parameter, 0.25 V is an acceptable range. It means that the acceptable range for 2.5 V would be 2.25 to 2.75

V.

Note: This parameter can be used when the AdcSelfDiagApi configuration parameter is enabled.

Otherwise, this parameter is disabled.

• AdcDiagConvertTimeout specifies the maximum count of checks to determine whether the conversion is

finished. The SelfDiag function waits for the conversion done for self-diag. If conversion is not finished up

to this count which this parameter shows, the function might check the result before the conversion is

actually completed. In this case, the SelfDiag API does not work correctly. Therefore, this parameter

should be greater than the actual conversion time. One checking process would take almost 10 cycles;

however, note that this would depend on the compile option.

Note: This parameter can be used when the AdcSelfDiagApi configuration parameter is enabled.

Otherwise, this parameter is disabled.

4.4 AdcPowerStateConfig configuration

This container has the following parameters to define a power state and initiate a callback when the power

state is reached.

• AdcPowerState describes a different power state supported by the ADC HW. It should be defined by the HW

supplier and used by the ADC driver to reference specific HW configurations, which set the ADC HW module

in the referenced power state.

At least the power mode corresponding to full power state will always be configured.

Note: Valid range is 0 (ADC_FULL_POWER) or 1 (ADC_OFF_POWER).

• AdcPowerStateReadyCbkRef contains a reference to a power mode callback defined in a CDD or IoHwAbs

component.

Note: As there is no preparation period in the hardware feature, only synchronous power state transition

mode is supported. Therefore, this parameter is not used by the ADC driver and is not being

evaluated.

4.5 AdcConfigSet configuration

This container contains the following configuration (parameters) and sub containers of the AUTOSAR ADC

module:

• AdcSupplyMonitorEnabledA enables or disables the supply monitor for AMUXBUS_A (amuxbus_a_mon).

Note: This parameter can be used when at least one of AdcChannelId is set to AmuxbusA in the

AdcConfigSet container at least. Otherwise, this parameter is disabled.

• AdcSupplyMonitorLevelA selects supply monitor level for AMUXBUS_A.

− ADC_SUPP_VREFL: AMUXBUS_a_mon = VRL

− ADC_SUPP_VREFH: AMUXBUS_a_mon = VRH

User guide 26 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

Note: This parameter can be used when the AdcSupplyMonitorEnabledA configuration parameter is

set to TRUE. Otherwise, this parameter is disabled.

• AdcSupplyMonitorEnabledB enables or disables the supply monitor for AMUXBUS_B (amuxbus_b_mon).

Note: This parameter can be used when at least one of AdcChannelId is set to AmuxbusB in the

AdcConfigSet container. Otherwise, this parameter is disabled.

• AdcSupplyMonitorLevelB selects the supply monitor level for AMUXBUS_B.

− ADC_SUPP_VREFL: AMUXBUS_b_mon = VRL.

− ADC_SUPP_VREFH: AMUXBUS_b_mon = VRH.

Note: This parameter can be used when the AdcSupplyMonitorEnabledB configuration parameter is

set to TRUE. Otherwise, this parameter is disabled.

4.6 AdcHwUnit configuration

This container contains the HW unit configuration (parameters):

• AdcClockSource specifies the clock frequency for ADC hardware.

Note: This parameter is not used by the ADC driver and therefore is not being evaluated. The clock

source inputted into each ADC hardware unit is fixed. The ADC hardware does not support setting

of the clock source. This feature can be made available using the MCU module.

• AdcHwUnitId is the numeric ID of the HW unit.

− ADC_SAR_<PASS number>_<SAR ADC number>: The range of this enumeration parameter depends on

the hardware (for example, ADC_SAR_0_0, ADC_SAR_0_1, and so on).

Note: PASS number is fixed to 0.

• AdcCoreAssignment specifies the reference to AdcCoreConfiguration for the HwUnit core

assignment.

Note: AdcCoreAssignment must have the target’s AdcCoreConfiguration setting. The same

resource cannot be allocated to multiple cores.

• AdcPrescale specifies optional ADC module-specific clock prescale factor, if supported by hardware.

Note: This parameter is not used by the ADC driver and therefore is not being evaluated. The ADC

hardware does not support setting of frequency. This feature can be made available using the

MCU module.

• AdcDiagnoseEnable is an optional parameter to enable or disable diagnostic reference for HW unit.

Note: This parameter must be enabled when the channel in the group connects to the diagnostic

reference through SARMUX, which is used in this hardware unit (see Diagnostic feature).

Otherwise, this parameter should be disabled.

User guide 27 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

• AdcDiagnosticReference is used to select diagnostic reference for hardware unit. The following

diagnostic references are available:

− ADC_DIAG_VREFL: Diagnostic reference is VREFL.

− ADC_DIAG_VREFH_1DIV8: Diagnostic reference is VREFH_1DIV8.

− ADC_DIAG_VREFH_2DIV8: Diagnostic reference is VREFH_2DIV8.

− ADC_DIAG_VREFH_3DIV8: Diagnostic reference is VREFH_3DIV8.

− ADC_DIAG_VREFH_4DIV8: Diagnostic reference is VREFH_4DIV8.

− ADC_DIAG_VREFH_5DIV8: Diagnostic reference is VREFH_5DIV8.

− ADC_DIAG_VREFH_6DIV8: Diagnostic reference is VREFH_6DIV8.

− ADC_DIAG_VREFH_7DIV8: Diagnostic reference is VREFH_7DIV8.

− ADC_DIAG_VREFH: Diagnostic reference is VREFH.

− ADC_DIAG_VREFX: Diagnostic reference is VREFH.

− ADC_DIAG_VBG: Diagnostic reference is VBG.

− ADC_DIAG_VIN1: Diagnostic reference is VIN1.

− ADC_DIAG_VIN2: Diagnostic reference is VIN2.

− ADC_DIAG_VIN3: Diagnostic reference is VIN3.

− ADC_DIAG_I_SOURCE: Diagnostic reference is I_SOURCE.

− ADC_DIAG_I_SINK: Diagnostic reference is I_SINK.

Note: This parameter can be used when AdcDiagnoseEnable is enabled. Otherwise, this parameter is

disabled.

• AdcPreconditionCycle is used to specify the duration of preconditioning in SAR clock cycles.

• AdcSarMux1ConnectToAdc0, AdcSarMux2ConnectToAdc0, and AdcSarMux3ConnectToAdc0 determine

if SARMUX1, SARMUX2, and SARMUX3 are connected to the hardware unit of SAR ADC0.

• AdcSarMux1DiagnoseEnable, AdcSarMux2DiagnoseEnable, and AdcSarMux3DiagnoseEnable enable

or disable the diagnostic reference for SARMUX1, SARMUX2, and SARMUX3.

Note: These parameters can be used when SARMUXes other than SAR ADC0 are connected to SAR ADC0.

These parameters must be enabled when the group that included some input signals from each SARMUXes

uses the diagnostic reference. Otherwise, these parameters should be disabled.

• AdcSarMux1DiagnosticReference, AdcSarMux2DiagnosticReference, and

AdcSarMux3DiagnosticReference select the diagnostic reference output for SARMUX1, SARMUX2, and

SARMUX3. The available diagnostic reference outputs are the same as the AdcDiagnosticReference

configuration parameter.

Note: These parameters can be used when the AdcSarMux1DiagnoseEnable,

AdcSarMux2DiagnoseEnable, and AdcSarMux3DiagnoseEnable configuration parameters are

enabled. Otherwise, these parameters are disabled.

User guide 28 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

4.7 AdcChannel configuration

This container contains the channel configuration (parameters):

• AdcChannelConvTime is the configuration of conversion time, that is, the time during which the analog

value is converted into digital (in clock cycles) for each channel.

Note: Valid range is only 14. HW sets it from 13 to 15, although the range of this parameter is fixed to 14.

The conversion time depends on the hardware setting which is used; it cannot be specified by SW

explicitly.

• AdcChannelHighLimit is the high limit used for limit checking.

Note: If the AdcResultAlignment configuration parameter is set to ADC_ALIGN_LEFT, the configured

value which is shifted to 4 bits towards the left needs to be set. If the AdcChannelResultSigned

configuration parameter is enabled, signed value needs to be set.

This parameter can be used when the AdcChannelLimitCheck configuration parameter is enabled.

Otherwise, this parameter is disabled.

• AdcUseExternalMultiplexer is a configuration that indicates whether to use the output for the external

multiplexer.

If AdcUseExternalMultiplexer is enabled, ADC outputs the value of bit 10:8 of AdcChannelId to

external multiplexer while the channel is being converted.

• AdcChannelId defines the assignment of the channel to the ADC physical channel. This parameter is the

symbolic name to be used as argument for certain APIs. This symbolic name allows accessing channel data.

This value will be assigned to the symbolic name derived from the short name of the AdcChannel container.

If AdcUseExternalMultiplexer is enabled, 10: 8 bit indicates the value to be output to the external

multiplexer.

Note: Actual numeric of ADC channel ID can be calculated by using the following formula; the available

channel depends on the device used: ADC channel ID = n + (64 * m) + (256 * e)

Where,

m is the SAR ADC number or SARMUX number

n is the address of the analog signal

e is the output of signal pattern to external multiplexer (0 – 7)

For example, ADC channel ID for AN31 on ADC_SAR_0_1 or SARMUX1 and output to external

multiplexer is 7 is 1887 (31 + 64 * 1 + 256 * 7).

Table 2 Available ADC channels

AdcChannelId AdcHwUnitId Description

0 .. 31 + (64 * m) +
(256 * e)

ADC_SAR_x_m AN0..31, select corresponding analog input

32 + (64 * m) +
(256 * e)

ADC_SAR_x_m Internal special signal (Vmotor, select motor input)

33 + (64 * m) ADC_SAR_x_m Internal special signal (Vaux, select auxiliary input)

34 + (64 * m) ADC_SAR_x_m Internal special signal (AmuxbusA)

35 + (64 * m) ADC_SAR_x_m Internal special signal (AmuxbusB)

User guide 29 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

AdcChannelId AdcHwUnitId Description

36 + (64 * m) ADC_SAR_x_m Internal special signal (Vccd)

37 + (64 * m) ADC_SAR_x_m Internal special signal (Vdda)

38 + (64 * m) ADC_SAR_x_m Internal special signal (Vbg, bandgap voltage from SRSS)

39 + (64 * m) ADC_SAR_x_m Internal special signal (Vtemp, select temperature sensor)

62 + (64 * m) ADC_SAR_x_m VrefL

63 + (64 * m) ADC_SAR_x_m VrefH

“x” represents PASS number and “m” represents SAR ADC number and “e” represents output of signal pattern

to external multiplexer.

• AdcChannelLimitCheck enables or disables limit checking for an ADC channel.

Note: This parameter can be used when the AdcEnableLimitCheck configuration parameter is

enabled. Otherwise, this parameter is disabled.

• AdcChannelLowLimit is the low limit used for limit checking.

Note: If the AdcResultAlignment configuration parameter is set to ADC_ALIGN_LEFT, the configured

value which is shifted to 4 bits towards the left needs to be set. If the AdcChannelResultSigned

configuration parameter is enabled, signed value needs to be set.

This parameter can be used when the AdcChannelLimitCheck configuration parameter is enabled.

Otherwise, this parameter is disabled.

• AdcChannelPulseDetect enables or disables the range detection of an ADC channel.

Note: This parameter can be used when the AdcChannelLimitCheck configuration parameter is

enabled. Otherwise, this parameter is disabled.

• AdcChannelRangeSelect defines which conversion values are considered related to the borders defined

with AdcChannelLowLimit and AdcChannelHighLimit configuration parameters.

− ADC_RANGE_ALWAYS: Complete range – independent of channel limit settings.

− ADC_RANGE_BETWEEN: Range between low and high limits with the high limit value included.

− ADC_RANGE_NOT_BETWEEN: Range above high limit or below low limit with the low limit value included.

− ADC_RANGE_NOT_OVER_HIGH: Range below high limit with the high limit value included.

− ADC_RANGE_NOT_UNDER_LOW: Range above low limit.

− ADC_RANGE_OVER_HIGH: Range above high limit.

− ADC_RANGE_UNDER_LOW: Range below low limit, with the low limit value included.

Note: This parameter can be used when the AdcChannelLimitCheck configuration parameter is

enabled. Otherwise, this parameter is disabled.

• AdcChannelRefVoltsrcHigh is the upper reference voltage source for each channel.

Note: This parameter is not used by the ADC driver and therefore is not being evaluated.

User guide 30 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

• AdcChannelRefVoltsrcLow is the lower reference voltage source for each channel.

Note: This parameter is not used by the ADC driver and therefore is not being evaluated.

• AdcChannelResolution is the channel resolution in bits.

Note: Only 12-bit resolution is available.

• AdcChannelSampTime is the configuration of sampling time, that is, the time during which the value is

sampled, (in clock cycles) for each ADC channel group.

• AdcChannelResultSigned determines the conversion result data is signed or unsigned. Signed value is

used if the parameter is TRUE, otherwise unsigned value is used.

Note: This parameter can be used when the AdcResultAlignment configuration parameter is set to

ADC_ALIGN_RIGHT. Otherwise, this parameter is disabled.

In case of unsigned value, conversion data is effectively a 12-bit value zero-extended (for example, VrefL:

0x0000, VrefH/2: 0x0800, VrefH: 0x0FFF). In case of signed value, the MSB (bit 11) of conversion data is

inverted and sign extended (for example, VrefL: 0xF800, VrefH/2: 0x0000, VrefH: 0x07FF).

• AdcChannelPulsePositiveCount is the default counter value for the events resulting from range

detection. If the resulting events occur, the counter decreases. When this counter is 0, a relevant

interruption will happen and the counter will reset to the default value configured for

AdcChannelPulsePositiveCount. The detection settings of the resulting events follow

AdcChannelRangeSelect.

Note: This parameter can be used when the AdcChannelPulseDetect configuration parameter is

enabled. Otherwise, this parameter is disabled.

• AdcChannelPulseNegativeCount is the default counter value for the events resulting from range

detection. If the resulting events do not occur, the counter decreases. When this counter is 0, the counter

will reset to the default value configured for AdcChannelPulseNegativeCount. The detection settings of

the resulting events follow AdcChannelRangeSelect.

Note: This parameter can be used when the AdcChannelPulseDetect configuration parameter is

enabled. Otherwise, this parameter is disabled.

• AdcDiagnosisMode specifies how verification is done for SelfDiag.

− ADC_DIAGNOSIS_NO: No SelfDiag. The SelfDiag APIs return E_OK for the specified channel when the API is

called in this mode.

− ADC_DIAGNOSIS_SIMPLE: Connectivity would be verified by doing and checking the conversions of the

channel related to SelfDiag 2 times.

− ADC_DIAGNOSIS_FULL: Correctness would be verified through conversions of the channel related to

SelfDiag for 9 times.

Note: This parameter can be used when the AdcSelfDiagApi configuration parameter is enabled.

Otherwise, this parameter is disabled.

User guide 31 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

4.8 AdcGroup configuration

This container contains the group configuration (parameters):

• AdcGroupAccessMode is the type of access mode to group conversion results.

− ADC_ACCESS_MODE_SINGLE: Single value access mode.

− ADC_ACCESS_MODE_STREAMING: Streaming access mode.

• AdcGroupConversionMode is the type of conversion mode supported by the driver.

− ADC_CONV_MODE_CONTINUOUS: Conversions of an ADC channel group are performed continuously after a

software API call (start). The run automatically (no additional software or hardware trigger is needed).

− ADC_CONV_MODE_ONESHOT: The conversion of an ADC channel group is performed once after a trigger.

• AdcGroupId is the numeric ID of the group. This parameter is the symbolic name to be used as argument

for all APIs. This symbolic name allows accessing channel group data. This value will be assigned to the

symbolic name derived of the short name of the AdcGroup container. The configured values are zero-based

and consecutively numbered.

• AdcGroupPriority is the priority level of the group.

Note: Groups with higher values are converted before groups with lower numbers.

For details, see SelfDiag feature.

• AdcGroupReplacement is the replacement mechanism used on ADC group level if a group conversion is

interrupted by a group that has a higher priority. There are three types of behavior available and one of

them can be specified at a time for each ADC channel group.

− ADC_GROUP_REPL_ABORT_RESTART: Abort/Restart mechanism is used on group level, if a group is

interrupted by a higher priority group. The complete conversion round of the interrupted group (all group

channels) is restarted after the higher priority group conversion is finished. If the group is configured in

streaming access mode, only the results of the interrupted conversion round are discarded. Results of

previous conversion rounds which are already written to the result buffer are not affected. Immediately

abort the ongoing acquisition and on return restart the group scan from the first ADC channel of the

group.

− ADC_GROUP_REPL_SUSPEND_RESUME: Suspend/Resume mechanism is used on group level, if a group is

interrupted by a higher priority group. The conversion round (conversion of all group channels) of the

interrupted group is completed after the higher priority group conversion is finished. If the group is

configured in streaming access mode, only the results of the interrupted conversion round are discarded.

Results of previous conversion rounds which are already written to the result buffer are not affected.

Before preempting, complete the ongoing acquisition and on return resume the group scan starting with

the next channel.

− ADC_GROUP_REPL_ABORT_RESUME: Abort/Resume mechanism is used on group level, if a group is

interrupted by a higher priority group. The conversion round (conversion of all group channels) of the

interrupted group is completed after the higher priority group conversion is finished. If the group is

configured in streaming access mode, only the results of the interrupted conversion round are discarded.

Results of previous conversion rounds which are already written to the result buffer are not affected.

Immediately abort the ongoing acquisition and on return resume the group scan starting with the

aborted channel.

Note: ADC_GROUP_REPL_ABORT_RESUME is vendor specific replacement function.

User guide 32 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

• AdcGroupTriggSrc is the type of source event that starts a group conversion.

− ADC_TRIGG_SRC_HW: Group is triggered by a hardware event.

− ADC_TRIGG_SRC_SW: Group is triggered by a software API call.

• AdcHwTrigSignal configures the edge of the hardware trigger signal on which the driver should react, that

is, start the conversion.

− ADC_HW_TRIG_BOTH_EDGES: React on both edges of the hardware trigger signal (only if supported by the

ADC hardware).

− ADC_HW_TRIG_FALLING_EDGE: React on the falling edge of the hardware trigger signal (only if supported

by the ADC hardware).

− ADC_HW_TRIG_RISING_EDGE: React on the rising edge of the hardware trigger signal (only if supported

by the ADC hardware).

Note: This parameter is not used by the ADC driver and therefore is not being evaluated. The ADC

hardware does not support specifying the edge of the hardware signal. A similar feature is

supported by other modules (for example, PORT driver).

• AdcHwTrigTimer is the reload value of the embedded timer of the ADC module.

Note: This parameter is not used by the ADC driver and therefore is not being evaluated. The ADC

hardware does not have the embedded timer. A similar feature is supported by other modules (for

example, PWM driver).

• AdcNotification is the callback function for this group.

Note: This parameter can be used when the AdcInterruptMode configuration parameter is enabled.

Otherwise, this parameter is disabled.

• AdcStreamingBufferMode configures the streaming buffer as “linear buffer” (the ADC driver stops the

conversion as soon as the stream buffer is full) or “ring buffer” (wraps around if the end of the stream buffer

is reached).

− ADC_STREAM_BUFFER_CIRCULAR: The ADC driver continues the conversion even if the stream buffer is

full (number of samples reached) by wrapping around the stream buffer itself.

− ADC_STREAM_BUFFER_LINEAR: The ADC driver stops the conversion as soon as the stream buffer is full

(number of samples reached).

• AdcStreamingNumSamples is the number of ADC values to be acquired per channel in streaming access

mode.

Note: In single access mode, this parameter assumes a value of 1, since only one sample per channel is

processed.

• AdcGroupDefinition assigns AdcChannels to an AdcGroup.

• AdcFirstLogicalChannel is the first logical channel of the group, that is, the logical channel that should

be configured in the HW for the first channel in AdcGroupDefinition. This logical channel may be

triggered by a configured HW trigger.

• AdcGroupHwTriggSrc determines hardware trigger event of the group.

− ADC_HWTRIGG_SRC_TCPWM: Trigger from corresponding TCPWM channel.

User guide 33 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

− ADC_HWTRIGG_SRC_GENERIC0: Trigger from generic trigger input 0.

− ADC_HWTRIGG_SRC_GENERIC1: Trigger from generic trigger input 1.

− ADC_HWTRIGG_SRC_GENERIC2: Trigger from generic trigger input 2.

− ADC_HWTRIGG_SRC_GENERIC3: Trigger from generic trigger input 3.

− ADC_HWTRIGG_SRC_GENERIC4: Trigger from generic trigger input 4.

Note: This parameter can be used when the AdcGroupTriggSrc configuration parameter is set to

ADC_TRIGG_SRC_HW. Also, to set ADC_HWTRIGG_SRC_GENERIC0/1/2/3/4, it is necessary to

configure the container of AdcGenericHWTriggerSelectConfiguration.

• AdcInterruptMode enables or disables interrupt mode for each group.

• AdcUseDma enables or disables the DMA for each group.

Note: This parameter cannot be enabled when this group contains a channel in which

AdcChannelPulseDetect is enabled.

• AdcUseAlternateCalibration determines whether to use alternate calibration values for each group.

• AdcSampleMode selects the sampling mode for group (see Port selection for further information).

− ADC_SAMPLE_NORMAL: PRECOND_MODE is OFF and OVERLAP_DIAG is OFF.

− ADC_SAMPLE_NORMAL_HALF: PRECOND_MODE is OFF and OVERLAP_DIAG is HALF.

− ADC_SAMPLE_NORMAL_FULL: PRECOND_MODE is OFF and OVERLAP_DIAG is FULL.

− ADC_SAMPLE_NORMAL_MUX: PRECOND_MODE is OFF and OVERLAP_DIAG is MUX_DIAG.

− ADC_SAMPLE_VREFL: PRECOND_MODE is VREFL and OVERLAP_DIAG is OFF.

− ADC_SAMPLE_VREFL_HALF: PRECOND_MODE is VREFL and OVERLAP_DIAG is HALF.

− ADC_SAMPLE_VREFL_FULL: PRECOND_MODE is VREFL and OVERLAP_DIAG is FULL.

− ADC_SAMPLE_VREFL_MUX: PRECOND_MODE is VREFL and OVERLAP_DIAG is MUX_DIAG.

− ADC_SAMPLE_VREFH: PRECOND_MODE is VREFH and OVERLAP_DIAG is OFF.

− ADC_SAMPLE_VREFH_HALF: PRECOND_MODE is VREFH and OVERLAP_DIAG is HALF

− ADC_SAMPLE_VREFH_FULL: PRECOND_MODE is VREFH and OVERLAP_DIAG is FULL

− ADC_SAMPLE_VREFH_MUX: PRECOND_MODE is VREFH and OVERLAP_DIAG is MUX_DIAG.

− ADC_SAMPLE_DIAG: PRECOND_MODE is DIAG and OVERLAP_DIAG is OFF.

− ADC_SAMPLE_DIAG_MUX: PRECOND_MODE is DIAG and OVERLAP_DIAG is MUX_DIAG.

• AdcUseRedundancy enables or disables result buffer redundancy. To enable AdcUseRedundancy, it is

necessary to prepare twice the buffer size specified by Adc_SetupResultBuffer(). This is to secure the

redundancy buffer after the result buffer.

• AdcLimitCheckNotification is limit check callback function for this group.

Note: This parameter can be used when AdcChannelLimitCheck and AdcNotification

configuration parameters are enabled. Otherwise, this parameter is disabled.

• AdcUseDynamicAllocate enables or disables dynamic allocation for this group. Groups with

AdcUseDynamicAllocate enabled share the same logical channels.

User guide 34 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

Note: This parameter can be used when the AdcGroupTriggSrc configuration parameter is

ADC_TRIGG_SRC_SW. Otherwise, this parameter is disabled. Groups with

AdcUseDynamicAllocate enabled must have the same AdcFirstLogicalChannel.

• AdcSWPriority indicates the priority of groups with AcUseDynamicAllocate enabled. 255 is the highest

priority. The same priority as other groups are also allowed.

Note: This parameter can be used when the AdcUseDynamicAllocate configuration parameter is

enabled. Otherwise, this parameter is disabled.

4.9 AdcGenericHWTriggerSelectConfiguration

This container contains the generic hardware trigger configuration (parameters):

• AdcGroupGenericHwTriggSrc has the value of ADC_HWTRIGG_SRC_GENERIC 0 - 4. The trigger

configured here is used to configure AdcGroupHwTriggSrc.

• AdcGenericTriggerSelect selects the generic trigger for SAR generic trigger input.

4.10 AdcMulticore

AdcMulticore defines the multicore functional configuration of the ADC driver.

• AdcCoreConsistencyCheckEnable enables core consistency check during runtime. If enabled, the ADC

function checks if the provided parameter (channel) is allowed on the current core.

Note: Development error detect is enabled in ADC driver to enable this parameter.

• AdcGetCoreIdFunction specifies the API to be called to get the core ID, for example, GetCoreId()

Note: AdcGetCoreIdFunction must be a valid C function name.

• AdcMasterCoreReference specifies the reference to the master core configuration.

Note: AdcMasterCoreReference must have the target’s AdcCoreConfiguration setting.

4.11 AdcCoreConfiguration

AdcCoreConfiguration defines the core configuration of the ADC driver. AdcCoreConfiguration can also

be configured without ADC channel assignment.

• AdcCoreConfigurationId is a zero-based, consecutive integer value. This is used as a logical core ID.

Note: AdcCoreConfigurationId must be unique across AdcCoreConfiguration.

• AdcCoreId is a core ID assigned to ADC HwUnits. This ID is returned from the configured

AdcGetCoreIdFunction execution to identify the executing core.

Note: AdcCoreId must be unique across AdcCoreConfiguration.

User guide 35 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

4 EB tresos Studio configuration interface

The combination of AdcCoreConfigurationId and AdcCoreId must be unique across

AdcCoreConfiguration.

User guide 36 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5 Functional description

5.1 Module function

The ADC driver offers an API interface for enabling hardware triggered one-shot conversions and starting a

software triggered one-shot or continuous conversion of all channels within a channel group. A channel group

may consist of one or more ADC channels. Continuous or one-shot group conversions can be stopped by an API

call (all channels within the channel group will be stopped). A start/stop or enable/disable operation is always

performed on all channels of a channel group. However, starting or stopping an individual channel can be

achieved by specifying a group consisting of exactly one channel.

The conversion result for a channel can be read as soon as the conversion is completed. Each ADC group that is

in single access mode consists of a single buffer for each channel. The buffer is overwritten as soon as the next

conversion result for that specific channel is available. The result buffer which is used in streaming access

mode can store an arbitrary number of conversion results per channel. To synchronize read access, notification

functions for every group can be enabled (and disabled) during runtime.

Two or more groups software triggered can be started at the same time by calling an API

Adc_StartGroupConversion() multiple times with different groups. The requests will be accepted and

converted after all groups with higher priority have finished conversion.

The ADC driver also offers and API to temporarily disable or enable individual channels in each group, a

function to double hold the conversion result, and a function to switch the value of threshold dynamically.

5.2 Inclusion

The file Adc.h includes all necessary external identifiers. Thus, your application only needs to include Adc.h to

make all API functions and data types available.

5.3 Initialization and de-initialization

The ADC driver provides functions for initialization and de-initialization. Initialization by calling an API

Adc_Init() is mandatory once on each core before the use of ADC driver.

Note: This ADC driver supports post-build-time configuration, thus different configuration set pointers

can be passed to the Adc_Init()function.

Adc_Init() must be called on the master core before any cores are initialized. If Adc_Init() is

called on the satellite core, the master core must be already initialized. The same configuration set

must be specified on all cores during initialization. If no HwUnit is assigned to the satellite core,

Adc_Init() is not required on that core.

The driver is de-initialized by using Adc_DeInit() once on each core after use. The function resets all ADC

registers to their hardware power-on-reset values. Usage of Adc_DeInit() is prohibited while any conversion

is ongoing.

Note: Adc_DeInit() must be called on the master core after all satellite cores are de-initialized. If

Adc_DeInit() is called on the satellite core, the master core must be already initialized. The

integrated system must prevent other cores from calling the ADC API while Adc_DeInit() is

being called.

User guide 37 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.4 Runtime reconfiguration

All configuration parameters cannot be changed at runtime except the AdcChannelSampTime,

AdcChannelHighLimit and AdcChannelLowLimit. These parameters are changeable by calling an API

Adc_ChangeSamplingTime() or Adc_SelectChannelThreshold(). The option to change these

parameters by using Adc_ChangeSamplingTime() or Adc_SelectChannelThreshold() is only available

when the ADC channel group to which the ADC channel belongs to is not running.

Example using the Adc_ChangeSamplingTime() and Adc_SelectChannelThreshold():

#include “Adc.h”

/* ... */

/* initialize ADC Driver */

/* */

/* change sampling time */

Adc_ChangeSamplingTime(AdcConf_AdcGroup_AdcGroup_MY_GROUP,

AdcConf_AdcChannel_AdcChannel_MY_CHANNEL, my_sampling_time);

Adc_SelectChannelThreshold(AdcConf_AdcGroup_AdcGroup_MY_GROUP,

AdcConf_AdcChannel_AdcChannel_MY_CHANNEL, my_upper_limit_value,

my_lower_limit_value);

5.5 Channels and channel groups

A channel represents a single analog input signal. The value (not conversion result) of a single channel is of the

type Adc_ChannelType. They represent ADC physical channels. These values correspond to GPIO or internal

special signals. GPIO signals are connected to the hardware analog input pins directly, whereas internal signals

are not connected to the pins (See Analog input signals for details). If diagnostic reference is used, the selected

diagnostic reference signal is sampled instead of analog signal.

A channel group consists of several channels. Its value (not conversion result) is of the type Adc_GroupType.

Starting analog-to-digital conversion for a channel is only possible if the channel is included in a channel group.

The symbolic names of the groups will be used for the API calls.

Note: The value of a symbolic name is implementation/architecture optimized. The configured groups

are zero based and consecutively numbered because this index is used by the implementation for

a fast array access. The configured channels would be assigned to groups in ascending order.

There is no requirement for the channel numbers in a group to be consecutive; gaps between the

channel numbers are possible.

5.6 Start/stop SW-triggered group conversion

For accessing SW triggered group conversion, the ADC driver provides the following services:

• void Adc_StartGroupConversion(Adc_GroupType Group);

• void Adc_StopGroupConversion(Adc_GroupType Group);

Adc_StartGroupConversion() starts the conversion of all channels inside the specified group, if the group

is configured for SW triggered group. Depending on the group configuration, one-shot or continuous

conversion will be started.

User guide 38 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

If there is a conversion of some other group that is already running, the request will be accepted but will not

start. The queued conversion requests are executed based on priority (highest first). A high priority group can

interrupt an ongoing low priority group. The interrupted group will be aborted or suspended, and this can be

selected using the AdcGroupReplacement configuration parameter.

After the newly processed group is completed, the interrupted group might be restarted from a first channel in

the channel group. Otherwise, it might be resumed from the aborted channel or the channel next to the

aborted channel. It depends on the setting in the AdcGroupReplacement configuration parameter in the ADC

channel group.

If dynamic allocate is enabled and all groups of AdcUseDyamicAllocate are enabled, ADC starts conversion

for each group depending upon AdcSWPriority in SW priority order. If dynamic allocate is enabled and one

group of AdcUseDynamicAllocate is enabled and the other group of AdcUseDyanamicAllocate is disabled,

ADC starts conversion for each group depending on AdcGroupPriority in HW priority order.

Adc_StartGroupConversion() is not allowed on an ongoing group. However, it can be called in

ADC_STREAM_COMPLETED when the channel group is configured for streaming access and linear buffer mode

or for SW trigger and one-shot conversion mode.

Adc_StopGroupConversion() directly forces a group to stop if the conversion is running. If the requested

group was started but is not running now (pending by hardware priority mechanism), then it will be stopped.

Adc_StopGroupConversion() disables notification.

Adc_StopGroupConversion() on an idle group is not allowed.

Note: In a continuous mode of SW triggered group, the AdcGroupAccessMode configuration parameter

controls two implementations with different advantages and drawbacks.

If the AdcGroupAccessMode configuration parameter is configured for

ADC_ACCESS_MODE_SINGLE, the feature is implemented in a way that the conversion of the

group is triggered in a continuous manner by the hardware itself. This implementation minimizes

interrupt load. Depending on timing conditions, the conversion result that triggered calling the

group notification might already be overwritten at the time when conversion results are actually

read out within the interrupt or in a later call to Adc_ReadGroup(). In addition, if ADC conversion

is always completed faster than interrupt processing, it might cause unexpected behavior (for

example, stack).

If the AdcGroupAccessMode configuration parameter is configured for

ADC_ACCESS_MODE_STREAMING, the feature is implemented in a way that the conversion of the

group is triggered in a continuous manner by the software. The next conversion is triggered by the

interrupt of conversion completed. The next conversion does not start before ADC driver transfers

the conversion result from the register to the result buffer; so, this implementation assures

accurate conversion results.

User guide 39 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.7 Enable or disable hardware-triggered group conversion

The ADC driver provides the following services to access hardware triggered groups:

• void Adc_EnableHardwareTrigger(Adc_GroupType Group);

• void Adc_DisableHardwareTrigger(Adc_GroupType Group);

• void Adc_EnableHwTrigger(Adc_GroupType Group, Adc_HwTriggerTimerType

SelectTrigger);

• void Adc_DisableHwTrigger(Adc_GroupType Group);

Adc_EnableHardwareTrigger() opens the hardware trigger window (that is, if the hardware trigger event

occurs the conversion starts). Each hardware trigger event causes conversion of all channels of the group

resulting in one conversion result per channel.

The conversion mode for hardware triggered groups needs to be one-shot conversion.

Notification remains active (if enabled) after conversion is done.

The hardware trigger window will be closed (disabled) using Adc_DisableHardwareTrigger(). This also

disables the notification for this group.

Adc_EnableHardwareTrigger() is not allowed on an ongoing group.

Adc_DisableHardwareTrigger() closes the hardware trigger window (that is, if the hardware trigger event

comes the conversion does not start).

Adc_DisableHardwareTrigger() disables notification.

Adc_DisableHardwareTrigger() on an idle group is not allowed.

Hardware triggers will be ignored if they appear before the previously triggered conversion has finished.

Therefore, make sure that the hardware triggering period is longer than the conversion time of the whole

group.

Adc_EnableHwTrigger() is almost the same as Adc_EnableHardwareTrigger(). In addition, SW can

specify hardware trigger source with argument.

DisableHwTrigger() is the same as Adc_DisableHardwareTrigger().

5.8 Read services

The ADC driver provides the following API services for reading the last valid conversion results of a group:

• Std_ReturnType Adc_ReadGroup(Adc_GroupType Group, Adc_ValueGroupType*

DataBufferPtr);

• Adc_StreamNumSampleType Adc_GetStreamLastPointer(Adc_GroupType Group,

Adc_ValueGroupType** PtrToSamplePtr);

• Adc_DataReadType Adc_ReadChannelValue(Adc_GroupType Group, Adc_ChannelType

Channel, uint16* Adc_ChannelDataPtr);

Adc_ReadGroup() copies the results (if any) of the last conversion of all channels to the provided buffer and

returns E_OK if the result is available. The result value is copied from the result buffer, if interrupt mode is used,

DMA is enabled, or both. Otherwise, it is copied from the dedicated register.

If Adc_ReadGroup() is called while the ADC channel group conversion is not finished, the API will return

E_NOT_OK without any actions.

User guide 40 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

Adc_GetStreamLastPointer() returns the number of samples that have been converted per channel and a

result buffer pointer to the last valid conversion result of the requested group.

Asking for a result buffer pointer while there are no conversion results available will return zero and set a NULL

pointer to the passed parameter.

Adc_ReadChannelValue() copies the result of the last conversion of one channel to the provided buffer and

returns ADC_DATA_UNREAD if the result is not yet read. The result value is copied from the result buffer, if

interrupt mode is used, DMA is enabled, or both. Otherwise, the result is copied from the dedicated register.

If AdcUseRedundancy is enabled, the redundancy buffer and result buffers are compared in the above

functions. If there is a mismatch, these functions report an error code ADC_E_REDUNDANCY_ERROR.

5.9 Notification

To enable or disable the user defined notification functions, the ADC driver provides the following services:

• void Adc_EnableGroupNotification(Adc_GroupType Group);

• void Adc_DisableGroupNotification(Adc_GroupType Group);

These functions enable or disable the group notification during runtime. The user defined notification function

will be called if the analog-to-digital conversion of the group is finished.

The notification function will be called every time the analog-to-digital conversion has finished once for all

channels in the group.

The callback function that is specified by AdcNotification is called for each ADC channel group if it is used in

interrupt mode.

If AdcChannelLimitCheck is enabled and falls within the condition of limit check, the function specified by

AdcLimitCheckNotification will be also called.

The group notification will be automatically disabled if the group is explicitly stopped (calling by

Adc_StopGroupConversion() and Adc_DisableHardwareTrigger()).

Group notification can be enabled before the group is started and while the group is running. This means the

following is allowed:

Adc_EnableGroupNotification(MY_ADC_GROUP_1);

Adc_StartGroupConversion(MY_ADC_GROUP_1);

The function at the time of limit check has the following format:

typedef P2FUNC(void, TYPEDEF, Adc_LCNFctPtrType) (VAR(uint32, AUTOMATIC)

LimitCheckState);

The argument LimitCheckState indicates the channel in the group that corresponds to the limit check

condition. Each bit corresponds to each channel, and when it is 1, it means that the limit check conditions are

satisfied.

0 bit (LSb) represents the smallest channel number in the group. 31 bit (MSb) represents the 32nd channel in the

group.

Note: Notification can be disabled by calling Adc_DisableGroupNotification as mentioned in this

chapter. However, it would not work for notifications that have already been handled, if

Adc_DisableGroupNotification is called from a higher priority interruption during a few cycles

User guide 41 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

before the user-defined notification function is called after the ADC group conversion. In this

situation, the user-defined function might be called even though it is already disabled. To prevent

the unexpected call, notification should not be enabled before starting the ADC group conversion

(that is, before calling Adc_StartGroupConversion, Adc_EnableHardwareTrigger, and

Adc_EnableHwTrigger.

5.10 Limit checking

To activate the limit checking feature in general, you need to set the AdcEnableLimitCheck configuration

parameter to TRUE.

The result is notified by the callback function specified by AdcLimitCheckNotification.

The ADC conversion result is stored in the result buffer regardless of the limit check result.

5.11 Power management

The ADC driver supports power management feature to reduce the electricity related to ADC hardware. The

following APIs are available to manage power. This feature is not vendor-specific and it comes from AUTOSAR

specification. If power state needs to be changed, Adc_PreparePowerState() should be called before

calling Adc_SetPowerState().

• Std_ReturnType Adc_GetCurrentPowerState(Adc_PowerStateType * CurrentPowerState,

Adc_PowerStateRequestResultType * Result);

• Std_ReturnType Adc_GetTargetPowerState(Adc_PowerStateType * TargetPowerState,

Adc_PowerStateRequestResultType * Result);

• Std_ReturnType Adc_PreparePowerState(Adc_PowerStateType PowerState,

Adc_PowerStateRequestResultType * Result);

• Std_ReturnType Adc_SetPowerState(Adc_PowerStateRequestResultType * Result);

Note: Asynchronous power state transition mode is not supported. It means that an API

Adc_Main_PowerTransitionManager() is implemented as null function because there is no

preparation period in the hardware feature.

5.12 Interrupt and polling mode

The ADC driver supports not only interrupt mode but also polling mode. When interrupt mode is used, an

interruption occurs after the ADC conversion of all ADC channels in a group is completed (if DMA is disabled) or

DMA transfer is completed (if DMA is enabled). The ADC driver copies a result into a result buffer in an

interruption (if DMA is disabled). If DMA is enabled, the result is not copied in the interruption as the DW

hardware copies the result.

When polling mode is used, an interruption never occurs after the ADC group conversion is completed.

If polling mode is used with no DMA, the conversion result would be read from a register. If polling mode is used

with DMA, it would be read from a result buffer instead.

The AdcInterruptMode configuration parameter is intended to specify the interrupt or polling mode that is

used for each ADC channel group. If DMA is enabled, a result is copied to a result buffer via DMA hardware

instead of an interrupt handler.

Note: Only single access mode is supported in the polling mode. Streaming access mode cannot be

supported in polling mode.

User guide 42 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.13 Triggered by HW

HW trigger is used to trigger an ADC channel group conversion. The AdcGroupTriggSrc configuration

parameter needs to be set to ADC_TRIGG_SRC_HW, when HW trigger is used,

A group with trigger source hardware, whose trigger was enabled with Adc_EnableHardwareTrigger() or

Adc_EnableHwTrigger(), will execute the channel group conversions whenever a trigger event occurs.

The HW trigger connects to the first logical channel of the group. This connection needs to be established in

advance. This connection is supported by one-to-one trigger group or multiplexer-based trigger group. This is

selectable via the AdcGroupHwTriggSrc configuration parameter. One-to-one trigger group is used if an ADC

logical channel is connected from corresponding TCPWM directly. Multiplexer-based trigger group is used if an

ADC channel is connected from HW trigger via generic input. A kind of HW trigger which is connected via generic

input depends on which device is used.

In addition, if multiplexer-based trigger group is used, generic input needs to be specified via the

AdcGenericTriggerSelect configuration parameter.

Note: Trigger group needs to be configured by PORT driver but not ADC driver.

5.14 DMA transfer

DMA can be used to copy the conversion result from the register to the result buffer, if the AdcUseDma

configuration parameter is enabled in an ADC channel group. The transfer would reduce CPU load as it is done

without CPU assistance. In addition, if AdcUseRedundancy is valid, DMA will copy data from register to result

buffer and redundancy result buffer.

DW trigger connects to a last channel of the group to start DMA transfer. This connection needs to be

established in advance. DMA transfer will be started immediately after all of ADC channels in a group are

completed (if limit check is disabled). If limit check is enabled, it will be started immediately after all of ADC

channels in a group are completed. This connection is supported by one-to-one trigger group or multiplexer-

based trigger group. One-to-one trigger group is used if an ADC channel connects to DW directly. Multiplexer-

based trigger group is used if it connects to DW via generic output.

The group status is changed to ADC_ERROR after a DMA error is detected. DEM will be reported (if configured)

when Adc_GetGroupStatus() is called in this case. Adc_StopGroupConversion() or

Adc_DisableHardwareTrigger() should be called before restarting the ADC channel group in which the

error is detected.

Note: Trigger group needs to be configured by the PORT driver, but not the ADC driver.

Note: The ADC driver’s environment must guarantee that DMA is enabled (DW:CTL:ENABLED=1) when

DMA is used. The ADC driver cannot access the global register (DW:CTL:ENABLED bit) directly

because this setting affects other modules which access to the same register.

Note: If DMA and interrupt mode are disabled, Adc_ReadGroup() and

Adc_GetStreamLastPointer() read the conversion result from the associated register

directly. Therefore, if the call timing of Adc_ReadGroup() and

Adc_GetStreamLastPointer()is after the next conversion result comes in, the conversion

result, read by the APIs, is already overwritten by the next conversion. If DMA and interrupt mode

are disabled, reading the conversion result from register directly might cause reading the result

that it is out of range.

User guide 43 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

Note: For HW triggered group, the conversion result might be overwritten, when the trigger cycle is short.

Note: When DMA or interrupt is used, ADC driver transfers the conversion result from the register to the

result buffer using DMA or interrupt. In this case, ADC driver might transfer the overwritten result if

the next group conversion completes faster than the DMA transfer or interrupt processing.

Therefore, it is recommended to use DMA that can operate at high speed.

Note: When DMA is used, the group cannot contain a channel in which AdcChannelPulseDetect is

enabled.

5.15 Changing the sampling time during runtime

The ADC driver supports change of sampling time for an ADC channel during runtime. Sampling time can be

changed by calling an API Adc_ChangeSamplingTime(). The API has three parameters to specify the affected

ADC channel group, affected ADC channel, and sampling duration. The third argument SamplingTime is

represented in cycles but not time. Therefore, it should be specified in cycles according to current SAR clock

frequency.

Note: An error will occur if the API is called when the ADC channel group is not idle.

5.16 Port selection

Each hardware unit is preceded by its own SARMUX, which connects to a distinct set of up to 32 analog pins.

This means that hardware unit 1 cannot sample the analog pins connected to hardware unit 2.

In some cases, it may be desirable to have one hardware unit being able to reach all analog inputs of the chip.

The ADC driver provides the AdcSarMux1ConnectToAdc0, AdcSarMux2ConnectToAdc0, and

AdcSarMux3ConnectToAdc0 configuration parameters to support this use case.

When these configuration parameters are enabled, the corresponding SARMUXes are connected to the

hardware unit of SAR ADC0.

Note: SARMUXes of other hardware units can be connected only to the hardware unit of SAR ADC0.

Hardware units of SARMUXes connected to the hardware unit of SAR ADC0 cannot be used.

5.17 Sample mode

Sample mode is used to specify whether preconditioning, overlap diagnostic, or both is enabled. The

AdcSampleMode configuration parameter is used to specify the sample mode that is used.

Preconditioning provides functionality to enable broken wire detection by charging or discharging the ADC

sampling capacitor before sampling the input signal. If preconditioning is enabled, preconditioning time can be

specified in cycle (SAR clock) by the AdcPreconditionCycle configuration parameter.

Overlap diagnostic allows diagnostic reference output and the analog input signal to connect the ADC sampling

capacitor at the same time (see TRAVEO™ T2G automotive body controller entry family architecture technical

reference manual for further information).

Table 3 lists the sample mode and whether it covers preconditioning, overlap diagnostic, or both.

ADC_SAMPLE_NORMAL needs to be used if neither preconditioning nor overlap diagnostic are used.

User guide 44 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

Table 3 Available sample modes

AdcSampleMode Preconditioning Overlap diagnostic reference

ADC_SAMPLE_NORMAL Not used Not used

ADC_SAMPLE_NORMAL_HALF Not used Overlapping for the first half of the sample

window

ADC_SAMPLE_NORMAL_FULL Not used Overlapping for the full sample window

ADC_SAMPLE_NORMAL_MUX Not used Measure diagnostic reference through SARMUX

input

ADC_SAMPLE_VREFL Discharge to VREFL Not used

ADC_SAMPLE_VREFL_HALF Discharge to VREFL Overlapping for the first half of the sample

window

ADC_SAMPLE_VREFL_FULL Discharge to VREFL Overlapping for the full sample window

ADC_SAMPLE_VREFL_MUX Discharge to VREFL Measure diagnostic reference through SARMUX

input

ADC_SAMPLE_VREFH Charge to VREFH Not used

ADC_SAMPLE_VREFH_HALF Charge to VREFH Overlapping for the first half of the sample

window

ADC_SAMPLE_VREFH_FULL Charge to VREFH Overlapping for the full sample window

ADC_SAMPLE_VREFH_MUX Charge to VREFH Measure diagnostic reference through SARMUX

input

ADC_SAMPLE_DIAG Connect to the diagnostic

reference output during

preconditioning

Not used

ADC_SAMPLE_DIAG_MUX Connect to the diagnostic

reference output during

preconditioning

Measure diagnostic reference through SARMUX

input

5.18 Diagnostic feature

The ADC driver provides hardware feature about diagnostic.

Diagnostic reference can be configured by the AdcDiagnosticReference configuration parameter. It is only

available when the AdcDiagnoseEnable configuration parameter is enabled.

The AdcSarMux1DiagnosticReference, AdcSarMux2DiagnosticReference,

AdcSarMux3DiagnosticReference, AdcSarMux1DiagnoseEnable, AdcSarMux2DiagnoseEnable, and

AdcSarMux3DiagnoseEnable configuration parameters also operate in the same manner.

Table 4 lists the diagnostic reference available in each sample mode (that is, the AdcSampleMode configuration

parameter).

Note: ADC driver does not conduct diagnostic itself. Therefore, application needs to perform diagnostics

using the diagnostic feature.

User guide 45 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

Table 4 Available diagnostic references in each sample mode

AdcSampleMode Diagnostic

reference used?

Available diagnostic references

(iAdcDiagnosticReference)

ADC_SAMPLE_NORMAL Not used –

ADC_SAMPLE_NORMAL_HALF Used ADC_DIAG_I_SOURCE or ADC_DIAG_I_SINK

ADC_SAMPLE_NORMAL_FULL Used ADC_DIAG_I_SOURCE or ADC_DIAG_I_SINK

ADC_SAMPLE_NORMAL_MUX Used ADC_DIAG_VREFL to ADC_DIAG_VIN3

ADC_SAMPLE_VREFL Not used –

ADC_SAMPLE_VREFL_HALF Used ADC_DIAG_I_SOURCE or ADC_DIAG_I_SINK

ADC_SAMPLE_VREFL_FULL Used ADC_DIAG_I_SOURCE or ADC_DIAG_I_SINK

ADC_SAMPLE_VREFL_MUX Used ADC_DIAG_VREFL to ADC_DIAG_VIN3

ADC_SAMPLE_VREFH Not used –

ADC_SAMPLE_VREFH_HALF Used ADC_DIAG_I_SOURCE or ADC_DIAG_I_SINK

ADC_SAMPLE_VREFH_FULL Used ADC_DIAG_I_SOURCE or ADC_DIAG_I_SINK

ADC_SAMPLE_VREFH_MUX Used ADC_DIAG_VREFL to ADC_DIAG_VIN3

ADC_SAMPLE_DIAG Used ADC_DIAG_VREFL to ADC_DIAG_VIN3

ADC_SAMPLE_DIAG_MUX Used ADC_DIAG_VREFL to ADC_DIAG_VIN3

5.19 Analog calibration feature

Analog calibration is used to make the actual ADC transfer curve move closer to the ideal transfer curve. Analog

calibration can be conducted by correcting an offset and a gain error.

ADC driver provides the following APIs to correct an offset and a gain value (see Functions for further

information).

• Std_ReturnType Adc_ChangeCalibrationChannel(Adc_GroupType Group, Adc_SignalType

Signal);

• Std_ReturnType Adc_SetCalibrationValue(Adc_HwUnitType HwUnit, Adc_OffsetValueType

Offset, Adc_GainValueType Gain, boolean Update);

• Std_ReturnType Adc_GetCalibrationAlternateValue(Adc_HwUnitType HwUnit,

Adc_OffsetValueType * OffsetPtr, Adc_GainValueType * GainPtr);

• Std_ReturnType Adc_GetCalibrationValue(Adc_HwUnitType HwUnit, Adc_OffsetValueType

* OffsetPtr, Adc_GainValueType * GainPtr);

Hardware supports not only regular calibration but also alternate calibration to find new correction values

during runtime. You should use alternate calibration instead of regular calibration when new correction values

need to be found. The AdcUseAlternateCalibration configuration parameter in the AdcGroup which is

used for finding new correction values needs to be set to TRUE, if alternate calibration is used.

The same APIs (Adc_StartGroupConversion, Adc_StopGroupConversion,

Adc_DisableHardwareTrigger, Adc_EnableHardwareTrigger, Adc_ReadGroup,

Adc_GetStreamLastPointer, Adc_DisableGroupNotification, Adc_EnableGroupNotification,

Adc_SetupResultBuffer, Adc_GetGroupStatus, Adc_SelectChannelThreshold,

Adc_DisableChannel, Adc_EnableChannel, Adc_GetADCAddr, Adc_ReadChannelValue,

Adc_GetGroupLimitCheckState, Adc_EnableHwTrigger, Adc_DisableHwTrigger) are used for channel

group conversion regardless of whether alternate calibration is used.

User guide 46 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

You need to find new correction values according to a calibration flow mentioned in Table 5 (see TRAVEO™ T2G

automotive body controller entry family architecture technical reference manual for further information). An

offset and a gain error depend on external factors (for example, temperature). Therefore, analog calibration

needs to be conducted periodically.

Table 5 Calibration of the ADC hardware

No. Calibration flow API to be called at each stage

1 Set an analog gain correction value

(ANA_CAL_ALT.AGAIN) to ‘0’.

This operation is conducted in calibration flow 3

and 5.

2 Configure a channel to convert VrefL. Call Adc_ChangeCalibrationChannel(

Group=’AlternateCalibrationGroup’,

Signal=’VrefL’)

3 Do several software-triggered acquisitions using

different AOFFSET values X

(ANA_CAL_ALT.AOFFSET).

Do this until the AOFFSET value X is found for

which the converted value transitions from 0x001

to 0x000.

Call Adc_SetCalibrationValue(

HwUnit=’TargetHwUnit’, Offset=X, Gain=’0’,

Update=’FALSE’)

Call Adc_StartGroupConversion(

Group=’AlternateCalibrationGroup’)

Call Adc_ReadGroup(

Group=’AlternateCalibrationGroup’,

DataBufferPtr=<DataBufferAddress>)

This operation is repeated until the appropriate X

is found.

4 Now change the channel configuration to convert

VrefH.

Call Adc_ChangeCalibrationChannel(

Group=’AlternateCalibrationGroup’,

Signal=’VrefH’)

5 Do several software triggered acquisitions using

different AOFFSET values Y

(ANA_CAL_ALT.AOFFSET).

Do this until the AOFFSET value Y is found for

which the converted value transitions from 0xFFE

to 0xFFF.

Call Adc_SetCalibrationValue(

HwUnit=’TargetHwUnit’, Offset=Y, Gain=’0’,

Update=’FALSE’)

Call Adc_StartGroupConversion(

Group=’AlternateCalibrationGroup’)

Call Adc_ReadGroup(

Group=’AlternateCalibrationGroup’,

DataBufferPtr=<DataBufferAddress>)

This operation is repeated until the appropriate Y

is found.

6 Calculate A = (X+Y) / 2 + 2 (by application code

itself).

–

7 Set the analog offset value

(ANA_CAL_ALT.AOFFSET) to A.

This operation is conducted in no.9 and no.11.

8 Change the channel configuration back to

converting VrefL.

Call Adc_ChangeCalibrationChannel(

Group=’AlternateCalibrationGroup’,

Signal=’VrefL’)

User guide 47 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

No. Calibration flow API to be called at each stage

9 Do several software triggered acquisitions using

different AGAIN values Z (ANA_CAL_ALT.AGAIN).

Do this until the AGAIN value Z is found for which

the converted value transitions from 0x001 to

0x000 (using averaging for the final acquisitions).

Call Adc_SetCalibrationValue(

HwUnit=’TargetHwUnit’, Offset=A, Gain=Z,

Update=’FALSE’)

Call Adc_StartGroupConversion(

Group=’AlternateCalibrationGroup’)

Call Adc_ReadGroup(

Group=’AlternateCalibrationGroup’,

DataBufferPtr=<DataBufferAddress>)

This operation is repeated until the appropriate Z

is found.

10 Calculate B = Z + 1 (by application code itself). –

11 Set the analog gain value (ANA_CAL_ALT_AGAIN)

to B and update the regular calibration register

with alternate calibration values.

Call Adc_SetCalibrationValue(

HwUnit=’TargetHwUnit’, Offset=A, Gain=B,

Update=’TRUE’)

After the correction values have been found by alternate calibration, the regular calibration register needs to be

updated with these values. After hardware accepts the request to be updated, it will do the calibration update

when the ADC is idle. In case of a continuous triggered group (that is, the channel group is configured as a

continuous conversion group and configured to use single-access-mode or enable limit-check-feature), the

channel group conversion is repeated. In this case, the HW will do the calibration update after the group

completes and before the group starts automatically again.

To check whether update is already finished, compare the regular calibration values read by

Adc_GetCalibrationValue() with the new calibration values set by Adc_SetCalibrationValue() and

confirm that the values are same.

Note: When an alternate calibration value is changed by Adc_SetCalibrationValue, the channel

group which uses the alternate calibration should be stopped in advance. If this procedure is not

obeyed, it will result in undefined results for that acquisition.

Note: Selecting the mean of correction values helps you to find more accurate correction values (that is,

an AOFFSET value X, an AOFFSET value Y, and an AGAIN value Z in Table 5).

Here’s an example to find more accurate correction values:

ADC channel group conversion needs to be repeated as described in Table 5 (3, 5, and 9) until each correction

value is found. For example, in case of point 3, you need to find an AOFFSET value X for which the converted

value transitions from 0x000 to 0x001. This conversion needs to be repeated while incrementing value X until

the value is found. Finally, you can find the value and use the value as a correction value, however you can find

the value by the same way again. If you repeat the operation to find an AOFFSET value X number of times, the

value of X might be different for each operation. The mean of correction values would deem an accurate

correction value. You can also find more accurate values of an AOFFSET value Y and an AGAIN value Z by using

the same method.

User guide 48 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.20 SelfDiag feature

Connectivity or correctness can be verified by using the SelfDiag feature. Connectivity of internal line related to

an ADC channel will be verified through SelfDiag APIs by checking the converted result to feed the internal Diag

voltage VrefL and VrefH, if the channel is configured as ADC_DIAGNOSIS_SIMPLE.

The correctness of the AD converter related to an ADC channel will be checked through the converted result to

feed the internal Diag VrefL, VrefH, VrefH/2, VrefH/3, VrefH/4, VrefH/5, VrefH/6, and VrefH/7, if the channel is

configured as ADC_DIAGNOSIS_FULL.

The acceptable range for correctness can be set at the AdcVoltageDeviation configuration parameter on the

General tab.

Note: The SelfDiag feature can be used after initialization (calling Adc_Init()).

Note: When the SelfDiag APIs return FALSE via the OutputPtr output argument, it is recommended to do

calibration.

5.21 Hardware prioritization

The hardware supports two types of prioritization:

1. Explicit hardware prioritization

2. Implicit hardware prioritization

5.21.1 Explicit hardware prioritization

The ADC hardware allows to configure a priority for each ADC channel group in the range of 0 to 7, where 7 has

the highest priority (converted first) and 0 has the lowest priority (converted last).

The ADC driver will always generate the same explicit hardware priority to all logical channels of the same

group.

The explicit hardware priority is stored as an element GroupHwPriority in the type Adc_GroupConfigType.

Note: When a group scan is ongoing and a new higher priority trigger arrives, then it can cause the

preemption of the ongoing lower priority group scan. The trigger preemption type can be specified

by the AdcGroupReplacement configuration parameter (see AdcChannel Configuration).

Note: The AdcGroupPriority configuration parameter and hardware have different priorities. For

hardware, 0 is the highest priority, whereas 7 is the highest priority for AdcGroupPriority.

AdcGroupPriority is changed to hardware priority inside the driver by inverting it (for instance,

0 to 7, 1 to 6, and so on).

User guide 49 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.21.2 Implicit hardware prioritization

The ADC hardware prioritizes all channels that have the same explicit hardware priority according to their index

of the logical channels, where lower index values take precedence.

Note: The driver does not allow to configure same priorities, because the implicit hardware prioritization

is always applied.

The AdcFirstLogicalChannel configuration parameter allows to influence the implicit

hardware priority.

Note: The AdcFirstLogicalChannel configuration parameter also affects the available hardware

triggers for the group.

Note: Implicit priority only determines which of the pending group scans will be executed first. It cannot

cause the preemption of the ongoing lower priority group scan.

5.22 Software prioritization

ADC provides software priority handling between AdcUseDynamicAllocate enabled groups. A maximum of

16 groups can have AdcUseDynamicAllocate enabled. For the group, AdcGroupTriggerSrc must be

ADC_TRIGG_SRC_SW.

Software priority mechanism internally has a SW queue, and the group called with

Adc_StartGroupConversion() is stored in the SW queue once. The groups with the highest priority in SW

queue will be registered in the hardware register. The groups registered in the hardware register will be

converted sequentially according to other group and hardware prioritization.

SW queue follows these rules:

• SW queue is processed in AdcSWPriority order

• AdcSWPriority ranges from 0 to 255. (255 is the highest priority)

• If AdcSWPriority is the same; groups registered by Adc_StartGroupConversion() will be processed

first.

• If there is a group that has been converted first and if a group with higher AdcSWPriority is started by

Adc_StartGroupConversion(), the group with higher AdcSWPriority will interrupt. Interrupted groups

are pushed to the SW queue. The interrupt is performed within the interrupt processing that has been

converted to the end of the group.

5.23 API parameter checking

The ADC driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via the AdcErrorCalloutFunction parameter) is

called and the error code, service ID, module ID, and instance ID are passed as parameters.

If a development error detection is enabled, all errors are also reported to DET, which is a central error hook

function within the AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The following development error checks are performed by the services of the ADC driver:

User guide 50 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

• The Adc_Init()function checks if the ConfigPtr parameter is within the scope of the post-build

configuration. In the case of invalid configuration pointer, the error code ADC_E_PARAM_CONFIG will be

reported.

• The Adc_DeInit(), Adc_StartGroupConversion(), Adc_StopGroupConversion(),

Adc_ReadGroup(), Adc_EnableHardwareTrigger(), Adc_DisableHardwareTrigger(),

Adc_EnableGroupNotification(), Adc_DisableGroupNotification(),

Adc_SetupResultBuffer(), Adc_GetStreamLastPointer(), Adc_GetGroupStatus(),

Adc_GetCurrentPowerState(), Adc_GetTargetPowerState(), Adc_PreparePowerState(), and

Adc_SetPowerState() functions check if the driver has already been initialized. In case of an uninitialized

driver, the error code ADC_E_UNINIT will be reported.

• The Adc_Init() function checks if the driver has already been initialized. In case of an already initialized

driver, the error code ADC_E_ALREADY_INITIALIZED will be reported.

• The Adc_DeInit() function checks whether there is a running conversion. The

Adc_StartGroupConversion(), Adc_EnableHardwareTrigger(), and Adc_SetupResultBuffer()

check if the given group has been started for conversion and has not yet finished. If any of the above cases

applies, the error code ADC_E_BUSY will be reported.

• The Adc_StartGroupConversion(), Adc_StopGroupConversion(), Adc_ReadGroup(),

Adc_EnableHardwareTrigger(), Adc_DisableHardwareTrigger(),

Adc_EnableGroupNotification(), Adc_DisableGroupNotification(),

Adc_GetStreamLastPointer(), Adc_SetupResultBuffer(), and Adc_GetGroupStatus() functions

check whether a valid group parameter is passed on as an input parameter. If an invalid group occurs, the

error code ADC_E_PARAM_GROUP will be reported.

• The Adc_StartGroupConversion(), Adc_StopGroupConversion(),

Adc_EnableHardwareTrigger(), and Adc_DisableHardwareTrigger() functions check whether a

group with a valid trigger source is specified. If the group has an invalid trigger source, the error code

ADC_E_WRONG_TRIGG_SRC will be reported.

• The Adc_StopGroupConversion(), Adc_DisableHardwareTrigger(), Adc_ReadGroup(), and

Adc_GetStreamLastPointer() functions check whether a conversion has been started. If the group’s

status is ADC_IDLE, the error code ADC_E_IDLE will be reported.

• The Adc_EnableHardwareTrigger() and Adc_DisableHardwareTrigger() functions check whether

the group is configured for one-shot conversion. If the group is configured for continuous conversion, the

error code ADC_E_WRONG_CONV_MODE will be reported.

• The Adc_EnableGroupNotification() and Adc_DisableGroupNotification() functions check if a

notification function is configured for the group. If not, the error code ADC_E_NOTIF_CAPABILITY will be

reported.

• The Adc_StartGroupConversion() and Adc_EnableHardwareTrigger() functions check whether the

result buffer for the group is valid (has been set up). If the group’s result buffer is NULL, the error code

ADC_E_BUFFER_UNINIT will be reported.

• The Adc_GetVersionInfo() and Adc_SetupResultBuffer() functions check if the function is called

with NULL pointer. In case of NULL pointer, the error code ADC_E_PARAM_POINTER will be reported.

• The Adc_PreparePowerState() and Adc_SetPowerState() functions check if unsupported power state

is required. In this case, the error code ADC_E_POWER_STATE_NOT_SUPPORTED will be reported.

• The Adc_SetPowerState() function checks if one or more ADC group/channel is not in IDLE state. If one

or more ADC groups/channels are running, the error code ADC_E_NOT_DISENGAGED will be reported.

Also, see Functions for a description of API functions and the associated error codes.

User guide 51 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.24 Vendor-specific error checking

The ADC driver also performs vendor-specific error checks.

When an error occurs, the same error hook routine (configured via the AdcErrorCalloutFunction

parameter) is called as for other error checks.

The following vendor specific development error checks are performed by the services of the ADC driver:

• The Adc_ChangeSamplingTime(), Adc_ChangeCalibrationChannel(),

Adc_SetCalibrationValue(), Adc_GetCalibrationAlternateValue(),

Adc_GetCalibrationValue(), Adc_GetDiagnosticResult(), Adc_SelectChannelThreshold(),

Adc_StartDiagnostic(), and Adc_StartDiagnosticFull(), Adc_DisableChannel(),

Adc_EnableChannel(), Adc_GetADCAddr(), Adc_ReadChannelValue(),

Adc_GetGroupLimitCheckState(), Adc_EnableHwTrigger() and Adc_DisableHwTrigger()

functions check if the driver has already been initialized. In the case of an uninitialized driver, the

ADC_E_UNINIT error code will be reported.

• The Adc_ChangeSamplingTime(), Adc_ChangeCalibrationChannel(),

Adc_SelectChannelThreshold(), Adc_DisableChannel(), Adc_EnableChannel(), and

Adc_EnableHwTrigger() functions check whether the given group is not running. If it’s ongoing, the

ADC_E_BUSY error code will be reported.

• The Adc_StartDiagnosticFull() function checks whether the all groups in the given HW unit are not

running. If any group is ongoing, the ADC_E_BUSY error code will be reported.

• The Adc_GetDiagnosticResult() and Adc_StartDiagnostic() functions check whether the all

groups in the HW unit, to which the given channel belongs, are not running. If any group is ongoing, the

ADC_E_BUSY error code will be reported.

• The Adc_ChangeSamplingTime(), Adc_ChangeCalibrationChannel(),

Adc_SelectChannelThreshold(), Adc_DisableChannel(), Adc_EnableChannel(),

Adc_GetADCAddr(), Adc_ReadChannelValue(), Adc_GetGroupLimitCheckState(),

Adc_DisableHwTrigger(), and Adc_EnableHwTrigger() functions check whether a valid group

parameter is passed as an input parameter. If an invalid group is detected, the ADC_E_PARAM_GROUP error

code will be reported.

• The Adc_EnableHwTrigger() and Adc_DisableHwTrigger() functions check whether a group with a

valid trigger source is specified. If the group has an invalid trigger source, the ADC_E_WRONG_TRIGG_SRC

error code will be reported.

• The Adc_GetStreamLastPointer(), Adc_ReadGroup(), Adc_SetPowerState(),

Adc_GetCurrentPowerState(), Adc_GetTargetPowerState(), Adc_PreparePowerState(),

Adc_GetCalibrationAlternateValue(), Adc_GetCalibrationValue(),

Adc_GetDiagnosticResult(), Adc_GetGroupLimitCheckState(), Adc_ReadChannelValue(),

ADC_API_START_DIAGNOSTIC(), and ADC_API_START_DIAGNOSTIC_FULL() functions check if the

pointers passed as parameters are valid (not a NULL pointer). In the case of an invalid pointer, the

ADC_E_PARAM_POINTER error code will be reported.

• The Adc_ChangeSamplingTime(), Adc_ReadChannelValue(), and Adc_SelectChannelThreshold()

functions check if the ADC channel passed as parameter is included in the group. If the group does not

include the ADC channel, the ADC_E_PARAM_CHANNEL error code will be reported.

• The Adc_GetDiagnosticResult() and Adc_StartDiagnostic() functions check whether the ADC

channel passed as a parameter is currently on-going for diagnosis. If it is on-going, the

ADC_E_PARAM_CHANNEL error code will be reported.

User guide 52 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

• The Adc_GetDiagnosticResult() and Adc_StartDiagnostic() functions check if the ADC channel

passed as a parameter is included in the HW unit. If the ADC channel is not included in the HW unit, the

ADC_E_PARAM_CHANNEL error code will be reported.

• The Adc_ChangeSamplingTime() function checks if the sampling time passed as parameter is valid. If it is

out of range, the ADC_E_PARAM_SAMPLING_TIME error code will be reported.

• The Adc_GetGroupLimitCheckState(), Adc_GetStreamLastPointer(), Adc_ReadChannelValue()

and Adc_ReadGroup()functions check if DMA error is detected during the ADC conversion. If the error is

detected, the ADC_E_CONVERSION_ERROR error code will be reported.

• The Adc_ChangeCalibrationChannel()function checks whether the given signal is valid. If invalid, the

ADC_E_PARAM_SIGNAL error code will be reported.

• The Adc_ChangeCalibrationChannel() function checks whether the alternate calibration is enabled in

the given group. If it is disabled, the ADC_E_PARAM_GROUP error code will be reported.

• The Adc_SetCalibrationValue() function checks whether the given gain is within the range. If out of

range, the ADC_E_PARAM_GAIN error code will be reported.

• The Adc_SetCalibrationValue() function checks whether the given update value is valid. If invalid, the

ADC_E_PARAM_UPDATE error code will be reported.

• The Adc_GetCalibrationAlternateValue(), Adc_GetCalibrationValue(),

Adc_SetCalibrationValue(), and Adc_StartDiagnosticFull() functions check whether the given

HW unit is valid. If invalid, the ADC_E_PARAM_HWUNIT error code will be reported.

• The Adc_ReadChannelValue(), Adc_GetGroupLimitCheckState(), and Adc_DisableHwTrigger()

functions check whether a conversion has been started. If the group’s status is ADC_IDLE, the ADC_E_IDLE

error code will be reported.

• The Adc_EnableHwTrigger() and Adc_DisableHwTrigger() functions check whether the group is

configured for one-shot conversion. If the group is configured for continuous conversion, the

ADC_E_WRONG_CONV_MODE error code will be reported.

• The Adc_EnableHwTrigger() function checks whether the result buffer for the group is valid (has been set

up). If the group’s result buffer is NULL, the ADC_E_BUFFER_UNINIT error code will be reported.

• The Adc_GetStreamLastPointer(), Adc_ReadGroup(), and Adc_ReadChannelValue() functions

check if the result buffer and redundancy buffer match. If there is a mismatch, the

ADC_E_REDUNDANCY_ERROR error code will be reported.

• The Adc_DisableChannel() and Adc_EnableChannel() functions check if the channel is already

enabled or disabled. In this case, the ADC_E_CHANNEL_ID_NG error code will be reported.

• The Adc_EnableHwTrigger() function checks whether the argument is outside the range of generic

trigger. In this case, the ADC_E_PARAM_SELECT_TRIGG error code will be reported.

• The Adc_SelectChannelThreshold() function checks if the threshold value passed as parameter is valid.

If invalid, the ADC_E_PARAM_THRESHOLD_VALE error code will be reported.

• The Adc_Init() function checks whether the specified configuration is same between master core and

satellite core. If the configuration is dirrerent, the ADC_E_DIFFERENT_CONFIG error code will be reported.

• The Adc_ChangeCalibrationChannel(), Adc_ChangeSamplingTime(), Adc_DeInit(),

Adc_DisableChannel(), Adc_DisableGroupNotification(), Adc_DisableHardwareTrigger(),

Adc_DisableHwTrigger(), Adc_EnableChannel(), Adc_EnableGroupNotification(),

Adc_EnableHardwareTrigger(), Adc_EnableHwTrigger(), Adc_GetADCAddr(),

Adc_GetCalibrationAlternateValue(), Adc_GetCalibrationValue(),

Adc_GetCurrentPowerState(), Adc_GetDiagnosticResult(), Adc_GetGroupStatus(),

Adc_GetGroupLimitCheckState(), Adc_GetStreamLastPointer(), Adc_GetTargetPowerState(),

Adc_Init(), Adc_PreparePowerState(), Adc_ReadChannelValue(), Adc_ReadGroup(),

User guide 53 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

Adc_SelectChannelThreshold(), Adc_SetCalibrationValue(), Adc_SetPowerState(),

Adc_SetupResultBuffer(), Adc_StartDiagnostic(), Adc_StartDiagnosticFull(),

Adc_StartGroupConversion(), and Adc_StopGroupConversion() functions check whether the API is

called in an expected core. If the API is called in unexpected core, the ADC_E_INVALID_CORE error code will

be reported.

• The Adc_DisableHardwareTrigger(), Adc_DisableHwTrigger(), Adc_GetLimitCheckState(),

Adc_GetStreamLastPointer(), Adc_ReadChannelValue(), Adc_ReadGroup(), and

Adc_StopGroupConversion() functions check whether the given group status is the same as ADC_DIAG.

In this case, the ADC_E_DIAG error code will be reported.

Also, see Functions for a description of API functions and the associated error codes.

5.25 Reentrancy

Adc_Init(), Adc_DeInit(), Adc_ChangeSamplingTime(), Adc_SetPowerState(),

Adc_GetCurrentPowerState(), Adc_GetTargetPowerState(), Adc_PreparePowerState(),

Adc_SelectChannelThreshold(), Adc_DisableChannel(), Adc_EnableChannel(),

Adc_GetADCAddr(), Adc_ReadChannelValue(), and Adc_GetGroupLimitCheckState() are not

reentrant. Adc_GetCalibrationAlternateValue(), Adc_GetCalibrationValue(),

Adc_GetVersionInfo(), Adc_StartDiagnosticFull(), Adc_GetDiagnosticResult() and

Adc_StartDiagnostic() are reentrant.

Adc_SetCalibrationValue() is reentrant if called on different HW units. It is non-reentrant if called on the

same HW unit. The service may be accessed by different tasks or interrupts simultaneously if the tasks or

interrupts access disjunct sets of HW units.

All other services are reentrant if called on different groups. They are non-reentrant if called on the same group.

The services may be accessed by different tasks or interrupts simultaneously as long as the tasks or interrupts

access disjunct sets of groups.

5.26 Configuration checking

ADC groups are defined as a group of channels. All channels of the group must be configured.

Additional hardware dependent checks are implemented.

5.27 Sleep mode

The ADC driver and the hardware controlled by the ADC driver do not provide a dedicated Sleep mode.

Note: After entering DeepSleep mode, the ADC hardware does not save the value of the result register. If

a conversion has already been completed but the result has not yet been read, the user

application must get the result before entering the DeepSleep mode.

5.28 Debugging support

The ADC driver does not support debugging.

User guide 54 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

5.29 Execution-time dependencies

Table 6 lists the dependencies of API functions and ISRs.

Table 6 Execution-time dependencies

Affected function Dependency

Adc_Init()

Adc_DeInit()

Runtime depends on the number of hardware units,

configured groups, and logical channels configured for each

group.

The runtime also depends on the usage of DMA feature.

Adc_DmaDone_*() Runtime depends on whether the group is completed. If the

group is finished, it needs more time because all logical

channels need to be disabled. The duration depends on the

number of logical channels configured for the group.

The runtime also depends on the mode that is used (HW

trigger or SW trigger, continuous conversion or one-shot

conversion, single access or streaming access).

Furthermore, if software priority is enabled, priority

processing is performed, so the runtime depends on the

groups in which software priority is enabled.

Adc_IsrConversionDone_*() Runtime depends on the number of logical channels

configured for the group, group access mode, and current

group status.

The runtime also depends on the mode that is used (HW

trigger or SW trigger, continuous conversion or one-shot

conversion, single access or streaming access).

Furthermore, if software priority is enabled, priority

processing is performed, so the runtime depends on the

groups in which software priority is enabled.

Adc_EnableHardwareTrigger()

Adc_DisableHardwareTrigger()

Adc_EnableHwTrigger()

Adc_DisableHwTrigger()

Runtime depends on the number of logical channels

configured for the group that is given as input parameter.

The runtime also depends on the usage of DMA feature and

the mode that is used (HW trigger or SW trigger, continuous

conversion or one-shot conversion, single access or

streaming access, and DMA).

Adc_GetGroupStatus() Runtime depends on whether interrupt or polling mode is

used. Interrupt mode is faster than polling mode. The access

to a status register is necessary in case of polling mode,

because no interrupt updates the current status. Whereas,

the register access is not necessary in case of interrupt mode,

because the status is always updated in the interrupts.

The runtime also depends on the mode that is used (HW

trigger or SW trigger, continuous conversion or one-shot

conversion, single access or streaming access, and DMA).

User guide 55 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

Affected function Dependency

Adc_DisableGroupNotification()

Adc_EnableGroupNotification()

Adc_GetVersionInfo()

Adc_SetupResultBuffer()

Adc_Main_PowerTransitionManager()

Adc_GetCurrentPowerState()

Adc_GetTargetPowerState()

Adc_PreparePowerState()

Adc_GetADCAddr()

Adc_GetGroupLimitCheckState()

Runtime does not depend on any configuration setting.

Adc_SetPowerState() Runtime depends on the number of configured hardware

units and groups.

Adc_ChangeSamplingTime()

Adc_ChangeCalibrationChannel()

Adc_SelectChannelThreshold()

Adc_DisableChannel()

Adc_EnableChannel()

Adc_GetDiagnosticResult()

Runtime depends on the number of logical channels included

in the specified channel group.

Adc_SetCalibrationValue()

Adc_GetCalibrationAlternateValue()

Adc_GetCalibrationValue()

Runtime depends on the number of HW units defined in the

configuration set and the position of the HW unit in the

configuration set.

Adc_StartGroupConversion()

Adc_StopGroupConversion()

Runtime depends on the number of logical channels

configured for the group that is given as input parameter.

The runtime also depends on the usage of DMA feature and

the mode that is used (HW trigger or SW trigger, continuous

conversion or one-shot conversion, single access or

streaming access, and DMA).

Furthermore, if software priority is enabled, priority

processing is performed, so the runtime depends on the

groups in which software priority is enabled.

Adc_ReadGroup()

Adc_GetStreamLastPointer()

Adc_ReadChannelValue()

Runtime depends on the number of logical channels

configured for the group that is given as input parameter.

The runtime also depends on the usage of DMA feature and

the mode that is used (HW trigger or SW trigger, continuous

conversion or one-shot conversion, single access or

streaming access, and DMA).

Furthermore, if AdcUseRedundancy is enabled, the runtime

depends on it to compare the result buffer with the

redundancy buffer.

Adc_StartDiagnosticFull()

Adc_StartDiagnostic()

Runtime depends on the number of logical channels included

in the specified HW unit or group.

Note: Adc_GetVersionInfo(), Adc_Init(), Adc_GetCurrentPowerState(),

Adc_GetTargetPowerState(), and Adc_Main_PowerTransitionManager() do not use a

critical section inside. Other than these APIs (including ISRs) use a critical section inside. The

duration of critical section is proportional to the execution time which is listed in Table 6. But it is

User guide 56 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

not proportional in case of Adc_GetCalibrationAlternateValue() and

Adc_GetCalibrationValue().

5.30 Important notes on the ADC driver’s environment

Table 7 lists some important notes for the usage of the ADC driver within the environment specified by

AUTOSAR.

Table 7 Important notes on the ADC driver’s environment

No. Short title Description

1 Maintaining

consistency

The ADC driver’s environment guarantees the consistency of data that has

been read by checking the return value of Adc_GetGroupStatus().

2 Starting a

conversion

To guarantee consistent values, it is assumed that you have started an ADC

group conversion (or enabled in case of HW triggered group) successfully

before status polling via Adc_GetGroupStatus() begins.

3 Preparing result

buffer before

starting a

conversion

The ADC driver’s environment ensures that the application buffer, whose

address is passed as argument of Adc_SetupResultBuffer(), has sufficient

size to hold all group channel conversion results, and if streaming access is

selected, can hold these results multiple times as specified by the

AdcStreamingNumSamples configuration parameter. In addition, if

AdcUseRedundancy is enabled, the redundancy buffer is placed after the

result buffer.

It also guarantees that result buffer is aligned at memory address which is

multiples of 2 bytes regardless of whether DMA is enabled.

Regarding a sub-derivative which supports cache feature, the CPU has an

individual cache that is not shared with the DMA bus master. Therefore, ensure

that all result buffers used by the ADC channel groups in which DMA is enabled

reside in a non-cacheable memory area. This can be achieved by placing the

buffer in a user-specific memory region configured by the CPU's memory

protection unit (MPU) as non-cache-able.

The ADC driver does not support use of DMA for the result buffer placed in CPUs

tightly coupled memories (TCMs). If used, the ADC driver reports to DEM error

by DMA transfer.

4 Concurrent

conversions on a

same HW unit

The ADC driver’s environment guarantees that no concurrent conversions take

place on the same HW unit (that is, ADC hardware cannot handle more than

two ADC channel groups in same HW unit concurrently). The ADC module can

only handle one group conversion request per HW unit at the same time. In

case of concurrent HW conversion requests, the HW prioritization mechanism

controls the conversion order.

If AdcUseDynamicAllocate is enabled, before a conversion request is issued

to the hardware, the ADC module determines witch SW priority to convert a

valid group to hardware based on software priority. This means priority control

within SW queue using SW priority. The ADC module issues conversion requests

to the hardware with the highest priority group within SW queue.

User guide 57 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

5 Functional description

No. Short title Description

5 Capability of

handling ADC group

conversion

When single access mode and continuous conversion are used, next group

conversion might be completed before the interruption of the current group

conversion is finished.

When HW trigger is used and the HW trigger frequently comes in for too short a

period, the next group conversion might be completed before the interruption

of the current group conversion is finished.

It might cause unexpected behavior (for example, exception or hardware fault).

The ADC driver’s environment needs to take care of it.

6 Swap conversion

order by SW priority

If there is a group of low priority of SW priority with

StreamingMode(AdcStreamingNumSamples is more than 1) and a group of

high priority of SW priority with SingleMode, even if the low priority group is

undergoing conversion, the group with the highest priority that was

StartGroupConversoin later will be finished first. This happens by

exchanging SW queue every time stream ends.

5.31 Functions available without core dependency

Some APIs can be called on any core regardless of resource assignment.

The following function is available on any core without any restriction:

• Adc_GetVersionInfo()

The following function is available on any cores with a specific section allocation described in the Note:

• Adc_GetADCAddr()

This function can get the address of the conversion result register in the first ADC channel of the requested

ADC channel group.

Note: The section VAR_[INIT_POLICY]_ASIL_B_GLOBAL_[ALIGNMENT] must be allocated to the

memory which can be read from any core to call this API on any cores.

For the details of INIT_POLICY and ALIGNMENT, see the specification of memory mapping [7].

User guide 58 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

6 Hardware resources

6 Hardware resources

6.1 Peripheral clocks

The following peripheral clocks can be used to drive SAR ADCs.

SAR[n] clock (“n” represents SAR number and it depends on hardware which be used.)

6.2 Analog input signals

Table 8 shows analog input signals, which can be inputted into an ADC physical channel. GPIO and internal

special signals are available. GPIO signals connect to certain pins, whereas internal special signals do not

connect.

Make sure that pins to which GPIO signals connect are correctly set in the PORT driver’s configuration.

Table 8 Analog input signals

Signal type Signals Address of

the analog

signal

Needed to be

initialized by

PORT driver?

Description

GPIO signals AN0…AN31 0…31 Yes ADC analog input (32 inputs for signals

from I/O pins)

Special signals Vmotor 32 Yes Motor input (This is an I/O pin.)

Vaut 33 No Auxiliary input

AmuxbusA 34 Yes “long-reach” signals to other input pads

through GPIO AMUXBUS-A

AmuxbusB 35 Yes “long-reach” signals to other input pads

through GPIO AMUXBUS-B

Vccd 36 No Digital power supply (Vccd)

Vdda 37 No Analog power supply (Vdda)

Vdb 38 No Bandgap voltage from SRSS (band-gap

reference)

Vtemp 39 No Temperature sensor.

VrefL 62 No VREFL

VrefH 63 No VREFH

Note: One temperature sensor is shared by all ADCs. The temperature sensor must only be connected to

one ADC at a time.

Note: For the temperature sensor, see the device datasheet for temperature sensor sampling time.

Note: For the temperature sensor, the following procedure is applicable for the TRAVEO™ T2G-B-E i.e.,

Body Entry devices in order to gain the accuracy of the temperature sensor. After a reset or

DeepSleep wakeup, set bit 9, 8, and 6 of PASS_TEST_CTL register to 1 while keeping the other bits

unchanged.

User guide 59 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

6 Hardware resources

The ADC driver does not use any hardware timers, but can be triggered via hardware timers. TCPWM timers can

be used to start HW triggered ADC channel group conversion. These timers are controlled by GPT, PWM, and

OCU modules.

6.3 Interrupts

The ADC driver uses the interrupts associated with the configured hardware resource. The ISR should be

allocated to the same core as allocated to HwUnit. The ISR must be declared in the AUTOSAR OS as Category 1

Interrupt or Category 2 Interrupt.

The interrupt that occurs after ADC conversion will appear after the last ADC channel in an ADC channel group

is completed.

The interrupt that occurs after the completion of DMA transfer is only used when DMA feature is enabled. The

interrupt will appear after DMA transfer, which copies the result to result buffer, is completed. The interrupt will

also appear when DMA transfer has failed.

Note: Vector numbers depend on the subderivative.

You can define the ISR; The ISR and IRQ-Name for each ADC is specified as:

ISR_NATIVE(Adc_IsrConversionDone_<Interrupt vector>_Cat1)

ISR(Adc_IsrConversionDone_<Interrupt vector>_Cat2)

ISR_NATIVE(Adc_DmaDone_<Interrupt vector>_Cat1)

ISR(Adc_DmaDone_<Interrupt vector>_Cat2)

Note: <Interrupt vector> represents numeric of interrupt vector, which depends on the logical

channel of the group. If the last channel in the group is disabled by Adc_DisableChannel(), the

last enable logical channel interrupt will occur.

The interrupt that occurs after ADC conversion is related to

Adc_IsrConversionDone_<Interrupt vector>_Cat1/Cat2, whereas the interrupt that

occurs after DMA transfer is related to Adc_DmaDone_<Interrupt vector>_Cat1/Cat2.

Note: Adc_IsrConversionDone_<Interrupt vector>_Cat2 and Adc_DmaDone_<Interrupt vector>_Cat2

must be called from the (OS) interrupt service routine.

In the case of Category-1 usage, the address of Adc_IsrConversionDone_<Interrupt

vector>_Cat1 and Adc_DmaDone_<Interrupt vector>_Cat1 must be the entry in the (OS)

interrupt vector table.

Example: Category-1 ISR for ADC channel 3 is in the generated file generate/src/Adc_Irq.c:

ISR_NATIVE(Adc_IsrConversionDone_86_Cat1)

{

...

}

Example: Category-2 ISR for the ADC channel 3 is in the generated file generate/src/Adc_Irq.c:

ISR(Adc_IsrConversionDone_86_Cat2)

{

...

}

Example: Category-1 ISR for DMA channel 53 is in the generated file generate/src/Adc_Irq.c:

User guide 60 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

6 Hardware resources

ISR_NATIVE(Adc_DmaDone_204_Cat1)

{

...

}

Example: Category-2 ISR for DMA channel 53 is in the generated file generate/src/Adc_Irq.c:

ISR_NATIVE(Adc_DmaDone_204_Cat2)

{

...

}

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing

conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following

errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:

“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at

the end of the interrupt function to avoid the priority inversion.

TRAVEO™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.

Thus, if necessary, the DSB instruction should be added just before the end of the handler by the

integrator.

6.4 Triggers

There are two types of trigger, which might be used in ADC conversion. The type of trigger needs to be

configured if HW trigger is used for a certain ADC channel group, DMA support is enabled, or both. These trigger

settings are done by PORT driver.

Table 9 lists all triggers and their connections.

Table 9 All triggers related to ADC conversion

Connection Trigger group

One-to-one trigger input from a corresponding

TCPWM

One-to-one trigger group

Generic input trigger from timer, pins or system

triggers

Multiplexer-based trigger group

One-to-one trigger output to a corresponding DW One-to-one trigger group

Generic output trigger to DW Multiplexer-based trigger group

Trigger group number depends on the subderivative. Generic trigger inputs are shared between ADCs.

User guide 61 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7 Appendix A – API reference

7.1 Include files

The only file that needs to be included to use functions of the ADC driver is the Adc.h file.

7.2 Data types

7.2.1 Adc_ChannelType

Type

uint16

Description

Numeric ID of an ADC channel.

7.2.2 Adc_GroupType

Type

uint16

Description

Numeric ID of an ADC channel group.

7.2.3 Adc_ValueGroupType

Type

uint16

Description

This type represents the converted values for a channel group.

7.2.4 Adc_StreamNumSampleType

Type

uint16

Description

This type represents the number of group conversions in streaming access mode (in single access mode, value

of relevant parameter, AdcStreamingNumSamples is 1).

User guide 62 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.2.5 Adc_StatusType

Type

typedef enum

{

 ADC_IDLE,

 ADC_BUSY,

 ADC_COMPLETED,

 ADC_STREAM_COMPLETED,

 ADC_ERROR,

 ADC_DIAG

} Adc_StatusType;

Description

Current status of the conversion of the ADC channel group.

• ADC_IDLE: The conversion of the group has not been started, and results are unavailable.

• ADC_BUSY: The conversion of the group has been started and is ongoing, and results are unavailable.

• ADC_COMPLETED: A conversion round (not the final round) of the group has been finished. A result is

available for all channels of the group.

• ADC_STREAM_COMPLETED: The result buffer is completely filled. For each channel of the group, the number

of samples to be acquired is available.

• ADC_ERROR: A DMA transmission error occurred, and results are unavailable.

• ADC_DIAG: The conversion of the group has been on-going for doing SelfDiag.

7.2.6 Adc_SamplingTimeType

Type

uint16

Description

Type of sampling time, that is, the time during which the value is sampled (in clock-cycles).

7.2.7 Adc_PowerStateRequestResultType

Type

typedef enum adc_pwerstaterequestresulttype_enum

{

 ADC_SERVICE_ACCEPTED,

 ADC_NOT_INIT,

 ADC_SEQUENCE_ERROR,

 ADC_HW_FAILURE,

 ADC_POWER_STATE_NOT_SUPP,

 ADC_TRANS_NOT_POSSIBLE

} Adc_PowerStateRequestResultType

User guide 63 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Description

Result of the requests related to power state transitions.

• ADC_SERVICE_ACCEPTED: Power state change executed.

• ADC_NOT_INIT: ADC module not initialized.

• ADC_SEQUENCE_ERROR: Wrong API call sequence.

• ADC_HW_FAILURE: The HW module has a failure which prevents it from entering the required power state.

• ADC_POWER_STATE_NOT_SUPP: ADC module does not support the requested power state.

• ADC_TRANS_NOT_POSSIBLE: ADC module cannot transition directly from the current power state to the

requested power state or the HW peripheral is still busy.

7.2.8 Adc_PowerStateType

Type

typedef enum adc_powerstatetype_enum

{

 ADC_FULL_POWER,

 ADC_OFF_POWER

} Adc_PowerStateType;

Description

Power state currently active or set as target power state.

• ADC_FULL_POWER: Full Power (0).

• ADC_OFF_POWER: Off Power (1).

7.2.9 Adc_ConfigType

Type

typedef struct

Description

This type describes the driver initialization structure. Architecture specific and global driver settings are saved.

7.2.10 Adc_ChannelRangeSelectType

Type

typedef enum

{

 ADC_RANGE_UNDER_LOW,

 ADC_RANGE_BETWEEN,

 ADC_RANGE_OVER_HIGH,

 ADC_RANGE_ALWAYS,

 ADC_RANGE_NOT_UNDER_LOW,

 ADC_RANGE_NOT_BETWEEN,

 ADC_RANGE_NOT_OVER_HIGH

User guide 64 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

} Adc_ChannelRangeSelectType;

Description

Type for configuring the range of limit checking and how the conversion result is taken into account for

updating result buffer.

• ADC_RANGE_UNDER_LOW: Range below low limit – low limit value included.

• ADC_RANGE_BETWEEN: Range between low limit and high limit – high limit value included.

• ADC_RANGE_OVER_HIGH: Range above high limit.

• ADC_RANGE_ALWAYS: Complete range – independent of channel limit settings.

• ADC_RANGE_NOT_UNDER_LOW: Range above low limit.

• ADC_RANGE_NOT_BETWEEN: Range above high limit or below low limit – low limit value included.

• ADC_RANGE_NOT_OVER_HIGH: Range below high limit – high limit value included.

Note: The configured range select is managed by a value to set directly to the hardware register instead

of this type, so this type is not used by ADC driver.

7.2.11 Adc_PrescaleType

Type

uint32

Description

Type of clock prescaler factor.

Note: The hardware controlled by ADC module does not support the prescale feature, so this type is not

used by ADC driver.

7.2.12 Adc_ConversionTimeType

Type

uint8

Description

Type of conversion time, that is, the time during which the sampled analog value is converted into digital

representation.

Note: The conversion time is fixed by hardware, so this type is not used by ADC driver.

7.2.13 Adc_ResolutionType

Type

uint8

Description

Type of channel resolution in number of bits.

User guide 65 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Note: Only 12-bit resolution is available, so this type is not used by ADC driver.

7.2.14 Adc_TriggerSourceType

Type

typedef enum adc_triggersourcetype_enum

{

 ADC_TRIGG_SRC_SW,

 ADC_TRIGG_SRC_HW

} Adc_TriggerSourceType;

Description

Type for configuring the trigger source for an ADC channel group.

• ADC_TRIGG_SRC_SW: Group is triggered by a software API call.

• ADC_TRIGG_SRC_HW: Group is triggered by a hardware event.

7.2.15 Adc_GroupConvModeType

Type

typedef enum adc_groupconvmodetype_enum

{

 ADC_CONV_MODE_ONESHOT,

 ADC_CONV_MODE_CONTINUOUS

} Adc_GroupConvModeType;

Description

Type for configuring the conversion mode of an ADC channel group.

• ADC_CONV_MODE_ONESHOT: Exactly one conversion of each channel in an ADC channel group is performed

after the configured trigger event. In case of "group trigger source" software, an ongoing One-Shot

conversion can be stopped by a software API call. In case of "group trigger source hardware", an ongoing

One-Shot conversion can be stopped by disabling the trigger event (if supported by hardware).

• ADC_CONV_MODE_CONTINUOUS: Repeated conversions of each ADC channel in an ADC channel group are

performed. "Continuous conversion mode" is only available for "group trigger source software". An ongoing

"Continuous conversion" can be stopped by a software API call.

7.2.16 Adc_GroupPriorityType

Type

uint8

Description

Priority level of the channel.

User guide 66 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.2.17 Adc_GroupDefType

Type

uint32

Description

Type for assignment of channels to a channel group.

Note: The ADC driver can control the assignment of channels to a group without using this type, so this

type is not used by ADC Driver.

7.2.18 Adc_StreamBufferModeType

Type

typedef enum adc_streambuffermodetype_enum

{

 ADC_STREAM_BUFFER_LINEAR,

 ADC_STREAM_BUFFER_CIRCULAR

} Adc_StreamBufferModeType;

Description

Type for configuring the streaming access mode buffer type.

• ADC_STREAM_BUFFER_LINEAR: The ADC driver stops the conversion as soon as the stream buffer is full

(number of samples reached).

• ADC_STREAM_BUFFER_CIRCULAR: The ADC driver continues the conversion even if the stream buffer is full

(number of samples reached) by wrapping around the stream buffer itself.

7.2.19 Adc_GroupAccessModeType

Type

typedef enum adc_groupaccessmodetype_enum

{

 ADC_ACCESS_MODE_SINGLE,

 ADC_ACCESS_MODE_STREAMING

} Adc_GroupAccessModeType;

Description

Type for configuring the access mode to group conversion results.

• ADC_ACCESS_MODE_SINGLE: Single value access mode.

• ADC_ACCESS_MODE_STREAMING: Streaming access mode.

User guide 67 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.2.20 Adc_HwTriggerSignalType

Type

typedef enum adc_hwtriggersignaltype_enum

{

 ADC_HW_TRIG_RISING_EDGE,

 ADC_HW_TRIG_FALLING_EDGE,

 ADC_HW_TRIG_BOTH_EDGES

} Adc_HwTriggerSignalType;

Description

Type for configuring the edge of the hardware trigger signal the driver that should react, that is, start the

conversion.

• ADC_HW_TRIG_RISING_EDGE: React on the rising edge of the hardware trigger signal.

• ADC_HW_TRIG_FALLING_EDGE: React on the falling edge of the hardware trigger signal.

• ADC_HW_TRIG_BOTH_EDGES: React on both edges of the hardware trigger signal.

Note: The hardware controlled by ADC driver does not have this feature, so this type is not used by ADC

Driver.

7.2.21 Adc_HwTriggerTimerType

Type

uint32

Description

Type for the reload value of the ADC module embedded timer.

Note: The hardware controlled by ADC driver does not have this feature, so this type is not used by ADC

Driver.

7.2.22 Adc_PriorityImplementationType

Type

typedef enum adc_priorityimplementationtype_enum

{

 ADC_PRIORITY_NONE,

 ADC_PRIORITY_HW,

 ADC_PRIORITY_HW_SW

} Adc_PriorityImplementationType;

Description

Type for configuring the prioritization mechanism.

• ADC_PRIORITY_NONE: Priority mechanism is not available.

• ADC_PRIORITY_HW: Hardware priority mechanism is available only.

User guide 68 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

• ADC_PRIORITY_HW_SW: Hardware and software priority mechanism is available.

Note: Only ADC_PRIORITY_HW is supported and HW priority mechanism is used for all groups (including

SW triggered), so this type is not used by ADC Driver.

7.2.23 Adc_GroupReplacementType

Type

typedef enum adc_groupreplacementtype_enum

{

 ADC_GROUP_REPL_ABORT_RESTART = 1U,

 ADC_GROUP_REPL_ABORT_RESUME,

 ADC_GROUP_REPL_SUSPEND_RESUME

} Adc_GroupReplacementType;

Description

Replacement mechanism used on ADC group level if a group conversion is interrupted by a group that has a

higher priority.

• ADC_GROUP_REPL_ABORT_RESTART: Abort/Restart mechanism is used on group level, if a group is

interrupted by a higher priority group. The complete conversion round of the interrupted group (all group

channels) is restarted after the higher priority group conversion is finished. If the group is configured in

streaming access mode, only the results of the interrupted conversion round are discarded. Results of

previous conversion rounds, which are already written to the result buffer are not affected.

• ADC_GROUP_REPL_ABORT_RESUME: Abort/Resume mechanism is used on group level, if a group is

interrupted by a higher priority group. The conversion round of the interrupted group is completed after the

higher priority group conversion is finished. Results of previous conversion rounds, which are already

written to the result buffer are not affected. Immediately abort the ongoing acquisition and on return

resume the group scan starting with the aborted channel.

• ADC_GROUP_REPL_SUSPEND_RESUME: Suspend/Resume mechanism is used on group level, if a group is

interrupted by a higher priority group. The conversion round of the interrupted group is completed after the

higher priority group conversion is finished. Results of previous conversion rounds, which are already

written to the result buffer are not affected. Before preempting, complete the ongoing acquisition and on

return resume the group scan from the next channel.

7.2.24 Adc_ResultAlignmentType

Type

typedef enum adc_resultalignmenttype_enum

{

 ADC_ALIGN_LEFT,

 ADC_ALIGN_RIGHT

} Adc_ResultAlignmentType;

Description

Type for alignment of ADC raw results in ADC result buffer (left/right alignment).

• ADC_ALIGN_LEFT: Left alignment.

User guide 69 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

• ADC_ALIGN_RIGHT: Right alignment.

Note: The configured result alignment is managed by a value to set directly to the hardware register

instead of this type, so this type is not used by ADC driver.

7.2.25 Adc_HwUnitType

Type

uint8

Description

This type represents a hardware unit ID.

7.2.26 Adc_OffsetValueType

Type

sint8

Description

This type represents an analog offset correction value and is used for calibration setting.

7.2.27 Adc_GainValueType

Type

sint8

Description

This type represents an analog gain correction value and is used for calibration setting.

7.2.28 Adc_SignalType

Type

uint8

Description

This type represents an input analog signal.

7.2.29 Adc_DataReadType

Type

typedef enum adc_datareadtype_enum

{

 ADC_DATA_READ,

 ADC_DATA_UNREAD

} Adc_DataReadType;

User guide 70 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Description

This type represents "read" or "unread" from data of buffer.

• ADC_DATA_READ: Data from buffer was read.

• ADC_DATA_UNREAD: Data from buffer was unread.

7.2.30 Adc_GroupHwTriggSrcType

Type

typedef enum adc_grouphwtriggsrctype_enum

{

 ADC_HWTRIGG_SRC_OFF,

 ADC_HWTRIGG_SRC_TCPWM,

 ADC_HWTRIGG_SRC_GENERIC0,

 ADC_HWTRIGG_SRC_GENERIC1,

 ADC_HWTRIGG_SRC_GENERIC2,

 ADC_HWTRIGG_SRC_GENERIC3,

 ADC_HWTRIGG_SRC_GENERIC4,

 ADC_HWTRIGG_SRC_CONTINUOUS

} Adc_GroupHwTriggSrcType;

Description

Type for specifying which hardware trigger is used.

• ADC_HWTRIG_SRC_OFF: Not used as a hardware trigger. it is used in the case of software trigger.

• ADC_HWTRIG_SRC_TCPWM: Use TCPWM hardware trigger.

• ADC_HWTRIG_SRC_GENERIC0: Use GENERIC0 hardware trigger.

• ADC_HWTRIG_SRC_GENERIC0: Use GENERIC1 hardware trigger.

• ADC_HWTRIG_SRC_GENERIC0: Use GENERIC2 hardware trigger.

• ADC_HWTRIG_SRC_GENERIC0: Use GENERIC3 hardware trigger.

• ADC_HWTRIG_SRC_GENERIC0: Use GENERIC4 hardware trigger.

• ADC_HWTRIG_SRC_CONTINUOUS: Not used as a hardware trigger. It is used in the case of software trigger.

7.2.31 Adc_CoreIdType

Type

Uint8

Description

Numeric ID of a core.

User guide 71 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.2.32 Adc_DriverStatusType

Type

typedef enum adc_driverstatustype_enum

{

 ADC_DIVER_UNINIT,

 ADC_DIVER_INITIALIZED

} Adc_DriverStatusType;

Description

Type for specifying which driver status is used.

• ADC_DRIVER_UNINIT: Uninitialized state.

• ADC_DRIVER_INITIALIZED: Initialized state.

7.3 Constants

7.3.1 Error codes

A service may return one of the error codes, listed in Table 10, if development error detection is enabled.

Table 10 Error codes

Name Value Description

ADC_E_UNINIT 0x0A Driver is not initialized.

ADC_E_BUSY 0x0B Analog-to-digital conversion is already started.

ADC_E_IDLE 0x0C Analog-to-digital conversion is not started.

ADC_E_ALREADY_INITIALIZED 0x0D Driver is already initialized.

ADC_E_PARAM_CONFIG 0x0E Configuration pointer is non-NULL pointer.

ADC_E_PARAM_POINTER 0x14 NULL pointer is given.

ADC_E_PARAM_GROUP 0x15 Invalid group ID is given.

ADC_E_WRONG_CONV_MODE 0x16 Group in continuous conversion mode is given.

ADC_E_WRONG_TRIGG_SRC 0x17 Group with wrong trigger source is given.

ADC_E_NOTIF_CAPABILITY 0x18 Group notification capability is not activated.

ADC_E_BUFFER_UNINIT 0x19 Buffer is not set up.

ADC_E_NOT_DISENGAGED 0x1A ADC groups are not in IDLE state.

ADC_E_POWER_STATE_NOT_SUPPORTED 0x1B Unsupported power state is requested.

ADC_E_TRANSITION_NOT_POSSIBLE 0x1C Requested power state cannot be reached directly.

ADC_E_PERIPHERAL_NOT_PREPARED 0x1D ADC is not prepared for target power state yet.

ADC_E_PARAM_CHANNEL 0x2A Channel is not in the group.

ADC_E_PARAM_HWUNIT 0x2B HW unit is out of valid range.

ADC_E_PARAM_SAMPLING_TIME 0x2C Sampling time is not in valid range.

ADC_E_CONVERSION_ERROR 0x2D Conversion is an error.

ADC_E_HARDWARE_ERROR_FOR_CALLOU

T
0x2E Hardware product error occurs (this id is for callout).

User guide 72 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Name Value Description

ADC_E_PARAM_GAIN 0x30 Analog gain correction value is out of range.

ADC_E_PARAM_UPDATE 0x31 Update value is incorrect.

ADC_E_PARAM_SIGNAL 0x32 Invalid input signal.

ADC_E_INVALID_CORE 0x33 Invalid core ID was passed on as parameter.

ADC_E_INIT_FAILED 0x34 Satellite core is initialized before master core.

ADC_E_DIFFERENT_CONFIG 0x35 Mismatch between the configuration of master core

and satellite core.

ADC_E_REDUNDANCY_ERROR 0xA0 Mismatch between buffer and redundancy buffer

ADC_E_CHANNEL_ID_NG 0xA1 Invalid channel ID

ADC_E_PARAM_SELECT_TRIGG 0xA2 Invalid select trigger

ADC_E_PARAM_THRESHOLD_VALE 0xA3 Threshold value is not in valid range.

ADC_E_DIAG 0xA4 SelfDiag is already started.

7.3.2 Version information

Table 11 Version information

Name Value Description

ADC_SW_MAJOR_VERSION See release notes Vendor specific major version number.

ADC_SW_MINOR_VERSION See release notes Vendor specific minor version number.

ADC_SW_PATCH_VERSION See release notes Vendor specific patch version number.

7.3.2.1 Module information

Table 12 Module information

Name Value Description

ADC_MODULE_ID 123 Module ID (ADC).

ADC_VENDOR_ID 66 Vendor ID.

7.3.3 API service IDs

The API service IDs, listed in Table 13, are used when reporting errors via DET or via the error callout function:

Table 13 API service IDs

Name Value API name

ADC_API_INIT 0x00 Adc_Init

ADC_API_DEINIT 0x01 Adc_DeInit

ADC_API_START_GROUP_CONVERSION 0x02 Adc_StartGroupConversion

ADC_API_STOP_GROUP_CONVERSION 0x03 Adc_StopGroupConversion

ADC_API_READ_GROUP 0x04 Adc_ReadGroup

ADC_API_ENABLE_HARDWARE_TRIGGER 0x05 Adc_EnableHardwareTrigger

ADC_API_DISABLE_HARDWARE_TRIGGER 0x06 Adc_DisableHardwareTrigger

User guide 73 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Name Value API name

ADC_API_ENABLE_GROUP_NOTIFICATION 0x07 Adc_EnableGroupNotification

ADC_API_DISABLE_GROUP_NOTIFICATION 0x08 Adc_DisableGroupNotification

ADC_API_GET_GROUP_STATUS 0x09 Adc_GetGroupStatus

ADC_API_GET_VERSION_INFO 0x0A Adc_GetVersionInfo

ADC_API_GET_STREAM_LAST_POINTER 0x0B Adc_GetStreamLastPointer

ADC_API_SETUP_RESULT_BUFFER 0x0C Adc_SetupResultBuffer

ADC_API_SET_POWER_STATE 0x10 Adc_SetPowerState

ADC_API_GET_CURRENT_POWER_STATE 0x11 Adc_GetCurrentPowerState

ADC_API_GET_TARGET_POWER_STATE 0x12 Adc_GetTargetPowerState

ADC_API_PREPARE_POWER_STATE 0x13 Adc_PreparePowerState

ADC_API_MAIN_POWER_TRANSITION_MANAGER 0x14 Adc_Main_PowerTransitionManager

ADC_API_CHANGE_SAMPLING_TIME 0x30 Adc_ChangeSamplingTime

ADC_API_CHANGE_CALIBRATION_CHANNEL 0x31 Adc_ChangeCalibrationChannel

ADC_API_SET_CALIBRATION_VALUE 0x32 Adc_SetCalibrationValue

ADC_API_GET_CALIBRATION_ALTERNATE_VALUE 0x33 Adc_GetCalibrationAlternateValue

ADC_API_GET_CALIBRATION_VALUE 0x34 Adc_GetCalibrationValue

ADC_API_ISR 0x40 Interrupt service for ADC

ADC_API_DISABLE_CHANNEL 0x50 Adc_DisableChannel

ADC_API_ENABLE_CHANNEL 0x51 Adc_EnableChannel

ADC_API_GET_ADC_ADDR 0x52 Adc_GetADCAddr

ADC_API_READ_CHANNEL_VALUE 0x53 Adc_ReadChannelValue

ADC_API_GET_LIMIT_CHECK_STATE 0x54 Adc_GetGroupLimitCheckState

ADC_API_SELECT_CHANNEL_THRESHOLD 0x55 Adc_SelectChannelThreshold

ADC_API_ENABLE_HW_TRIGGER 0x56 Adc_EnableHwTrigger

ADC_API_DISABLE_HW_TRIGGER 0x57 Adc_DisableHwTrigger

ADC_API_START_DIAGNOSTIC_FULL 0x58 Adc_StartDiagnosticFull

ADC_API_GET_DIAGNOSTIC_RESULT 0x59 Adc_GetDiagnosticResult

ADC_API_START_DIAGNOSTIC 0x5A Adc_StartDiagnostic

7.3.4 Invalid core ID value

Table 14 Invalid core ID

Name Value Description

ADC_INVALID_CORE 0xFF Invalid core ID

User guide 74 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4 Functions

7.4.1 Adc_Init

Syntax

void Adc_Init

(

 const Adc_ConfigType* ConfigPtr

)

Service ID

0x0

Parameters (in)

• ConfigPtr – Pointer to configuration set.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_ALREADY_INITIALIZED – The ADC driver has already been initialized.

• ADC_E_PARAM_CONFIG – The configuration pointer points to an invalid configuration.

• ADC_E_INIT_FAILED –Satellite core is initialized before master core

• ADC_E_DIFFERENT_CONFIG – The configuration pointer is different from the initialized configuration of

the master core.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

The function initializes the hardware ADC according to the post build configuration.

Note: This service only affects ADC HwUnits assigned to the current core.

7.4.2 Adc_DeInit

Syntax

void Adc_DeInit

(

 void

)

User guide 75 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Service ID

0x1

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – driver is not initialized yet.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

The function reinitializes all ADC hardware conversion units to a state comparable with the power-on reset

state.

Note: This service only affects ADC HwUnits assigned to the current core.

7.4.3 Adc_StartGroupConversion

Syntax

void Adc_StartGroupConversion

(

 Adc_GroupType Group

)

Service ID

0x2

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

None

User guide 76 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_WRONG_TRIGG_SRC – The group is not configured for SW triggered group.

• ADC_E_BUFFER_UNINIT – The group’s result buffer is not set up.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

The function starts the conversion of all channels within the specified group, if the group is configured for SW

triggered group.

7.4.4 Adc_StopGroupConversion

Syntax

void Adc_StopGroupConversion

(

 Adc_GroupType Group

)

Service ID

0x3

Parameters (in)

• Group – Numeric ID of required ADC channel group.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_IDLE – No current ongoing conversion for the group.

• ADC_E_WRONG_TRIGG_SRC – The group is not configured for SW triggered group.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

User guide 77 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

DEM errors

None

Description

This function stops the conversion of all channels within the specified group.

7.4.5 Adc_ReadGroup

Syntax

Std_ReturnType Adc_ReadGroup

(

 Adc_GroupType Group,

 Adc_ValueGroupType* DataBufferPtr

)

Service ID

0x4

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• DataBufferPtr – ADC results of all channels of the selected group are stored in the data buffer addressed

by the pointer.

Parameters (out)

• None

Return value

• E_OK – Results are available and written to the data buffer.

• E_NOT_OK – No results are available or development error occurred.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_IDLE – No current ongoing conversion for the group.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_CONVERSION_ERROR – The group’s status is ADC_ERROR (conversion is an error).

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

• ADC_E_REDUNDANCY_ERROR – Result buffer and redundancy buffer do not match.

DEM errors

None

User guide 78 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Description

Reads the group conversion result of the last completed conversion round of the requested group and stores

the conversion result at the address pointed by DataBufferPtr.

7.4.6 Adc_EnableHardwareTrigger

Syntax

void Adc_EnableHardwareTrigger

(

 Adc_GroupType Group

)

Service ID

0x5

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_WRONG_CONV_MODE – The group is configured in continuous mode.

• ADC_E_WRONG_TRIGG_SRC – The group is not configured for HW triggered group.

• ADC_E_BUFFER_UNINIT – The group’s result buffer is not set up.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

The function enables the hardware trigger capability of a group configured in one-shot mode.

User guide 79 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.7 Adc_DisableHardwareTrigger

Syntax

void Adc_DisableHardwareTrigger

(

 Adc_GroupType Group

)

Service ID

0x6

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_WRONG_CONV_MODE – The group is configured for continuous mode.

• ADC_E_WRONG_TRIGG_SRC – The group is not configured for HW triggered group.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

• ADC_E_IDLE – No current ongoing conversion for the group.

DEM errors

None

Description

The function disables the hardware trigger capability of a group configured for one-shot mode.

7.4.8 Adc_EnableGroupNotification

Syntax

void Adc_EnableGroupNotification

(

 Adc_GroupType Group

)

Service ID

0x7

User guide 80 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_NOTIF_CAPABILITY – The group notification function is NULL or notification capability is inactive.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

The function enables the group notification during runtime, if the notification capability is activated.

7.4.9 Adc_DisableGroupNotification

Syntax

void Adc_DisableGroupNotification

(

 Adc_GroupType Group

)

Service ID

0x8

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_NOTIF_CAPABILITY – The group notification function is NULL or notification capability is inactive.

User guide 81 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

The function disables the group notification during runtime, if the notification capability is activated.

7.4.10 Adc_GetGroupStatus

Syntax

Adc_StatusType Adc_GetGroupStatus

(

 Adc_GroupType Group

)

Service ID

0x9

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

Conversion status for the requested group. ADC_IDLE is always returned when DET error is detected.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

• ADC_E_HARDWARE_ERROR – Hardware product error occurs. ADC_E_HARDWARE_ERROR_FOR_CALLOUT will

be passed instead of ADC_E_HARDWARE_ERROR in case of the error callout handler.

Description

Returns the conversion status of the requested group.

User guide 82 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.11 Adc_GetVersionInfo

Syntax

void Adc_GetVersionInfo

(

 Std_VersionInfoType* versioninfo

)

Service ID

0xA

Parameters (in)

None

Parameters (out)

• versioninfo – Pointer to store the version information of this module.

Return value

None

DET errors

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

DEM errors

None

Description

Returns the version of the ADC driver in a Std_VersionInfoType structure.

7.4.12 Adc_GetStreamLastPointer

Syntax

Adc_StreamNumSampleType Adc_GetStreamLastPointer

(

 Adc_GroupType Group,

 Adc_ValueGroupType** PtrToSamplePtr

)

Service ID

0xB

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

• PtrToSamplePtr – Pointer to a pointer that will be set to point to the last sampled value.

User guide 83 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Return value

Number of valid samples per channel. The value 0 is always returned when DET error is detected or the group is

in ADC_BUSY.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_IDLE – No current ongoing conversion for the group.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_CONVERSION_ERROR – The group’s status is ADC_ERROR (conversion is an error).

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

• ADC_E_REDUNDANCY_ERROR – Result buffer and redundancy buffer do not match.

DEM errors

None

Description

Returns the number of valid samples per channel, stored in the result buffer. Reads a pointer, pointing to a

position in the group result buffer. With the pointer and the return value, all valid group conversion results can

be accessed.

User guide 84 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.13 Adc_SetupResultBuffer

Syntax

Std_ReturnType Adc_SetupResultBuffer

(

 Adc_GroupType Group,

 Adc_ValueGroupType* DataBufferPtr

)

Service ID

0xC

Parameters (in)

• Group – Numeric ID of the requested ADC channel group.

• DataBufferPtr – Pointer to result buffer.

Parameters (out)

None

Return value

• E_OK – Result buffer pointer initialized successfully.

• E_NOT_OK – Operation failed or development error occurred.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Initializes the group-specific ADC result buffer pointer as configured to point to the DataBufferPtr address,

which is passed as parameter. The ADC driver stores all group conversion results in the result buffer addressed

by the result buffer pointer. Adc_SetupResultBuffer() determines the address of the result buffer. After

reset, before a group conversion can be started, ADC result buffer pointer must be initialized.

User guide 85 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.14 Adc_SetPowerState

Syntax

Std_ReturnType Adc_SetPowerState

(

 Adc_PowerStateRequestResultType* Result

)

Service ID

0x10

Parameters (in)

None

Parameters (out)

• Result – Pointer to store the result (one of the following definitions is stored):

− ADC_SERVICE_ACCEPTED – Power state change executed (return value is E_OK).

− ADC_NOT_INIT – ADC driver is not initialized.

− ADC_POWER_STATE_NOT_SUPP – ADC driver does not support the requested power state.

− ADC_TRANS_NOT_POSSBILE – The ADC HW peripheral is still busy.

Return value

• E_OK – Power mode changed.

• E_NOT_OK – Request rejected.

DET errors

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_POWER_STATE_NOT_SUPPORTED – Unsupported power state request.

• ADC_E_NOT_DISENGAGED – ADC group/channel not in IDLE state.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

This API configures the ADC driver so that it enters the already prepared power state; chosen from a predefined

set of configured states.

Note: This service only affects ADC HwUnits assigned to the current core.

User guide 86 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.15 Adc_GetCurrentPowerState

Syntax

Std_ReturnType Adc_GetCurrentPowerState

(

 Adc_PowerStateType* CurrentPowerState,

 Adc_PowerStateRequestResultType* Result

)

Service ID

0x11

Parameters (in)

None

Parameters (out)

• CurrentPowerState – Returns the current power mode of the ADC HW unit.

Parameters (out)

• Result – Pointer to store the result (one of the following definitions is stored):

− ADC_SERVICE_ACCEPTED – Power state change executed (return value is E_OK).

− ADC_NOT_INIT – ADC driver is not initialized or the given parameter is a NULL pointer.

Return value

• E_OK – Mode could be read.

• E_NOT_OK – Service is rejected.

DET errors

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

This API returns the current power state of the ADC HW unit.

Note: This service only affects ADC HwUnits assigned to the current core.

User guide 87 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.16 Adc_GetTargetPowerState

Syntax

Std_ReturnType Adc_GetTargetPowerState

(

 Adc_PowerStateType* TargetPowerState,

 Adc_PowerStateRequestResultType* Result

)

Service ID

0x12

Parameters (in)

None

Parameters (out)

• TargetPowerState – Returns the target power mode of the ADC HW unit

Parameters (out)

• Result – Pointer to store the result (one of the following definitions is stored):

− ADC_SERVICE_ACCEPTED – Power state change executed (return value is E_OK).

− ADC_NOT_INIT – ADC driver is not initialized and the given parameter is a NULL pointer.

Return value

• E_OK – Mode could be read.

• E_NOT_OK – Service is rejected.

DET errors

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

This API returns the target power state of the ADC HW unit.

Note: This service only affected ADC HwUnits assigned to the current core.

User guide 88 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.17 Adc_PreparePowerState

Syntax

Std_ReturnType Adc_PreparePowerState

(

 Adc_PowerStateType PowerState,

 Adc_PowerStateRequestResultType* Result

)

Service ID

0x13

Parameters (in)

• PowerState – The target power state intended to be attained.

Parameters (out)

• Result – Pointer to store the result (one of the following definitions is stored):

− ADC_SERVICE_ACCEPTED – Power state change executed (return value is E_OK).

− ADC_NOT_INIT – ADC driver is not initialized.

− ADC_POWER_STATE_NOT_SUPP – ADC driver does not support the requested power state.

Return value

• E_OK – Preparation process started.

• E_NOT_OK – Service is rejected.

DET errors

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_POWER_STATE_NOT_SUPPORTED – Unsupported power state request.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

This API starts the process required to allow the ADC HW module to enter the requested power state.

Note: This service only affects ADC HwUnits assigned to the current core.

User guide 89 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.18 Adc_Main_PowerTransitionManager

Syntax

void Adc_Main_PowerTransitionManager

(

 void

)

Service ID

0x14

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

None

DEM errors

None

Description

This API is cyclically called to supervise the power state transitions, check for the readiness of the module, and

issue the callbacks.

This service is not supported because hardware does not support it.

7.4.19 Adc_ChangeSamplingTime

Syntax

Std_ReturnType Adc_ChangeSamplingTime

(

 Adc_GroupType Group,

 Adc_ChannelType Channel,

 Adc_SamplingTimeType SamplingTime

)

Service ID

0x30

User guide 90 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Parameters (in)

• Group – Numeric ID of the requested ADC channel group.

• Channel – Numeric ID of the requested ADC channel.

• SamplingTime – Sampling time in clock cycles that is set to the ADC channel.

Parameters (out)

None

Return value

• E_OK – Sampling time changed.

• E_NOT_OK – Request rejected.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_PARAM_SAMPLING_TIME – Sampling time is not in valid range.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_PARAM_CHANNEL – Channel is not in the group.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

This API is used to change a sampling time for ADC channel, if a group to which the channel belongs is not

running.

7.4.20 Adc_ChangeCalibrationChannel

Syntax

Std_ReturnType Adc_ChangeCalibrationChannel

(

 Adc_GroupType Group,

 Adc_SignalType Signal

)

Service ID

0x31

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• Signal – Calibration measurement analog signal (ADC_PIN_VREFL or ADC_PIN_VREFH).

User guide 91 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Parameters (out)

• None

Return value

• E_OK – Analog input signal is changed correctly.

• E_NOT_OK – Request is rejected.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_SIGNAL – Invalid input signal.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Changes calibration measurement analog signal (VrefL / VrefH) for the group converted by using alternate

calibration values.

7.4.21 Adc_SetCalibrationValue

Syntax

Std_ReturnType Adc_SetCalibrationValue

(

 Adc_HwUnitType HwUnit,

 Adc_OffsetValueType Offset,

 Adc_GainValueType Gain,

 boolean Update

)

Service ID

0x32

Parameters (in)

• HwUnit – Numeric ID of requested ADC HW unit.

• Offset – Analog offset correction value for alternate calibration.

• Gain – Analog gain correction value for alternate calibration.

• Update – Flag indicates whether to update regular calibration value with alternate calibration values (TRUE:

update regular calibration values with alternate calibration values, FALSE: do not update regular calibration

values).

Parameters (out)

User guide 92 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

• None

Return value

• E_OK – Alternate calibration values are set correctly, and regular calibration values are updated if the

parameter update is set to true.

• E_NOT_OK – Request is rejected.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GAIN – Analog gain correction value is out of range.

• ADC_E_PARAM_UPDATE – Update value is incorrect.

• ADC_E_PARAM_HWUNIT – HW unit ID is invalid.

• ADC_E_INVALID_CORE – The current core and HwUnit assignment core are different. The core ID is invalid.

DEM errors

None

Description

Sets alternate calibration values for the requested ADC HW unit. If the Update parameter is true, triggers

update regular calibration values with alternate calibration values.

7.4.22 Adc_GetCalibrationAlternateValue

Syntax

Std_ReturnType Adc_GetCalibrationAlternateValue

(

 Adc_HwUnitType HwUnit,

 Adc_OffsetValueType* OffsetPtr,

 Adc_GainValueType* GainPtr

)

Service ID

0x33

Parameters (in)

• HwUnit – Numeric ID of requested ADC HW unit.

Parameters (out)

• OffsetPtr – A pointer to the buffer used to store analog offset correction value for alternate calibration.

• GainPtr – A pointer to the buffer used to store analog gain correction value for alternate calibration.

Return value

• E_OK – Alternate calibration values are read correctly.

• E_NOT_OK – Request is rejected.

User guide 93 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_PARAM_HWUNIT – HW unit ID is invalid.

• ADC_E_INVALID_CORE – The current core and HwUnit assignment core are different. The core ID is invalid.

DEM errors

None

Description

Gets alternate calibration values of the requested ADC HW unit.

7.4.23 Adc_GetCalibrationValue

Syntax

Std_ReturnType Adc_GetCalibrationValue

(

 Adc_HwUnitType HwUnit,

 Adc_OffsetValueType* OffsetPtr,

 Adc_GainValueType* GainPtr

)

Service ID

0x34

Parameters (in)

• HwUnit – Numeric ID of requested ADC HW unit.

Parameters (out)

• OffsetPtr – A pointer to the buffer used to store analog offset correction value for regular calibration.

• GainPtr – A pointer to the buffer used to store analog gain correction value for regular calibration.

Return value

• E_OK – Regular calibration values of the requested ADC HW unit.

• E_NOT_OK – Request is rejected.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_PARAM_HWUNIT – HW unit ID is invalid.

• ADC_E_INVALID_CORE – The current core and HwUnit assignment core are different. The core ID is invalid.

DEM errors

None

User guide 94 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Description

Gets regular calibration values of the requested ADC HW unit.

7.4.24 Adc_DisableChannel

Syntax

void Adc_DisableChannel

(

 Adc_GroupType Group,

 Adc_ChannelType Channel

)

Service ID

0x50

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• Channel – Numeric ID of requested ADC channel.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_CHANNEL_ID_NG – Channel ID is invalid.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Disables one channel in group.

User guide 95 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.25 Adc_EnableChannel

Syntax

void Adc_EnableChannel

(

 Adc_GroupType Group,

 Adc_ChannelType Channel

)

Service ID

0x51

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• Channel – Numeric ID of requested ADC channel.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_CHANNEL_ID_NG – Channel ID is invalid.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Enables one channel in group.

User guide 96 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.26 Adc_GetADCAddr

Syntax

uint32 Adc_GetADCAddr

(

 Adc_GroupType Group

)

Service ID

0x52

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

Address of the conversion result register.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_INVALID_CORE – The core ID is invalid.

DEM errors

None

Description

Returns the address of the conversion result register of the first ADC channel of the requested ADC channel

group.

7.4.27 Adc_ReadChannelValue

Syntax

Adc_DataReadType Adc_ReadChannelValue

(

 Adc_GroupType Group,

 Adc_ChannelType Channel,

 uint16 Adc_ChannelDataPtr

)

Service ID

0x53

User guide 97 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• Channel – Numeric ID of requested ADC channel.

Parameters (out)

• Adc_ChannelDataPtr – Pointer to ADC channel result buffer.

Return value

• ADC_DATA_READ – Data from buffer was read.

• ADC_DATA_UNREAD – Data from buffer was unread.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

• ADC_E_IDLE – No current ongoing conversion for the group.

• ADC_E_CONVERSION_ERROR – The group’s status is ADC_ERROR (conversion is an error).

• ADC_E_PARAM_CHANNEL – Channel is not in the group.

• ADC_E_REDUNDANCY_ERROR – Mismatch between buffer and redundancy buffer

DEM errors

None

Description

Indicates whether the conversion result was already read.

7.4.28 Adc_GetGroupLimitCheckState

Syntax

Std_ReturnType Adc_GetGroupLimitCheckState

(

 Adc_GroupType Group,

 uint32 GroupIntrStatePtr

)

Service ID

0x54

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

• GroupIntrStatePtr – Pointer to where to store the result.

User guide 98 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Return value

• E_OK – Results are available and getting result of limit check from group.

• E_NOT_OK – No results are available, or development error occurred.

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_IDLE – No current ongoing conversion for the group.

• ADC_E_CONVERSION_ERROR – The group’s status is ADC_ERROR (conversion is an error).

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Returns the result of limit check from group.

7.4.29 Adc_SelectChannelThreshold

Syntax

Std_ReturnType Adc_SelectChannelThreshold

(

 Adc_GroupType Group,

 Adc_ChannelType Channel,

 uint16 UpperLimit,

 uint16 LowerLimit

)

Service ID

0x55

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• Channel – Numeric ID of requested ADC channel.

• UpperLimit – Upper threshold for range comparator.

• LowerLimit – Lower threshold for range comparator.

Parameters (out)

None

Return value

• E_OK – Threshold changed.

• E_NOT_OK – Request rejected.

User guide 99 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_PARAM_CHANNEL – Channel is not in the group.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

• ADC_E_PARAM_THRESHOLD_VALUE – UpperLimit, LowerLimit, or both are invalid.

DEM errors

None

Description

Changes a threshold for ADC channel, if a group belonging to the channel is not running.

7.4.30 Adc_EnableHwTrigger

Syntax

void Adc_EnableHwTrigger

(

 Adc_GroupType Group,

 Adc_HwTriggerTimerType SelectTrigger

)

Service ID

0x56

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

• SelectTrigger – HW trigger source. The value to be set is a value that can be used as a hardware trigger in

"Adc_GroupHwTriggSrcType".

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_WRONG_CONV_MODE – The group is configured in continuous mode.

• ADC_E_WRONG_TRIGG_SRC – The group is not configured for HW triggered group.

• ADC_E_BUFFER_UNINIT – The group’s result buffer is not set up.

User guide 100 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

• ADC_E_PARAM_SELECT_TRIGG – The select trigger is invalid.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Enables the hardware trigger for the requested ADC channel group and uses specified HW trigger.

7.4.31 Adc_DisableHwTrigger

Syntax

void Adc_DisableHwTrigger

(

 Adc_GroupType Group

)

Service ID

0x57

Parameters (in)

• Group – Numeric ID of requested ADC channel group.

Parameters (out)

None

Return value

None

DET errors

• ADC_E_UNINIT – Driver is not initialized yet.

• ADC_E_PARAM_GROUP – Group ID is invalid.

• ADC_E_WRONG_CONV_MODE – The group is configured for continuous mode.

• ADC_E_WRONG_TRIGG_SRC – The group is not configured for HW triggered group.

• ADC_E_IDLE – No current ongoing conversion for the group.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Disables the hardware trigger for the requested ADC channel group.

User guide 101 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.32 Adc_StartDiagnosticFull

Syntax

Std_ReturnType Adc_StartDiagnosticFull

(

 Adc_HwUnitType HwUnit,

 uint32 * DiagResultPtr,

 boolean * OutputPtr

)

Service ID

0x58

Parameters (in)

• HwUnit – Numeric ID of the requested ADC HW unit.

Parameters (out)

• DiagResultPtr – Pointer to the result of the DiagnosticFull function (for Adc_GetDiagnosticResult).

Buffer needs 32bit * 6.

• OutputPtr – Pointer to the SelfDiag result buffer. TRUE means that all channels are correct. FALSE means

that at least one channel is NG.

Return value

• E_OK – Service has been performed.

• E_NOT_OK – Service has been rejected for reasons such as a bad parameter or status.

DET errors

• ADC_E_UNINIT – Driver is not yet initialized.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_PARAM_HWUNIT – HW unit ID is invalid.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Diagnostics for all channels of the HW unit. All channels dedicated with the group of the HW unit are verified

through converting internal DIAG to determine whether connectivity and correctness are within acceptable

deviation.

User guide 102 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.33 Adc_GetDiagnosticResult

Syntax

Std_ReturnType Adc_GetDiagnosticResult

(

 Adc_ChannelType Channel,

 uint32 * DiagResultPtr,

 boolean * OutputPtr

)

Service ID

0x59

Parameters (in)

• Channel – Numeric ID of the requested ADC channel.

Parameters (out)

• DiagResultPtr – Pointer to the result of the DiagnosticFull function.

• OutputPtr – Pointer to the SelfDiag result buffer. TRUE means that a specific channel is correct. FALSE

means that a specific channel is NG.

Return value

• E_OK – Service has been performed.

• E_NOT_OK – Service has been rejected for reasons such as a bad parameter or status.

DET errors

• ADC_E_UNINIT – Driver is not yet initialized.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_PARAM_CHANNEL – Channel is not in the group, or the channel is currently running for diagnosis.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with HwUnit are different.

The core ID is invalid.

DEM errors

None

Description

Identify the ADC channel from the detailed information. The SelfDiag result of a specific channel of group is

returned. If a specific channel is configured as DIAGNOSIS_NO, the return value is E_NOT_OK.

User guide 103 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.4.34 Adc_StartDiagnostic

Syntax

Std_ReturnType Adc_StartDiagnostic

(

 Adc_ChannelType Channel,

 boolean * OutputPtr

)

Service ID

0x5A

Parameters (in)

• Channel – Numeric ID of the requested ADC channel.

Parameters (out)

• OutputPtr – Pointer to SelfDiag result buffer. TRUE means that a specific channel is correct. FALSE means

that a specific channel is NG.

Return value

• E_OK – Service has been performed.

• E_NOT_OK – Service has been rejected for reasons such as a bad parameter or status.

DET errors

• ADC_E_UNINIT – Driver is not yet initialized.

• ADC_E_PARAM_POINTER – The given parameter is a NULL pointer.

• ADC_E_PARAM_CHANNEL – Channel is not in the group, or the channel is currently running for diagnosis.

• ADC_E_BUSY – The conversion is currently ongoing.

• ADC_E_INVALID_CORE – The current core and group assignment core associated with the HwUnit are

different. The core ID is invalid.

DEM errors

None

Description

Diagnostic-specific channel of the HW unit. A specific channel dedicated with the group is verified through

converting internal DIAG to determine whether connectivity and correctness are within acceptable deviation.

User guide 104 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.5 Required callback functions

7.5.1 Default error tracer (DET)

If development error detection is enabled, the ADC driver uses the following callback function provided by DET.

If you do not use DET, you must implement this function within your application.

7.5.1.1 Det_ReportError

Syntax

Std_ReturnType Det_ReportError

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId – Module ID of calling module.

• InstanceId – AdcCoreConfigurationId of the core that calls this function or ADC_INVALID_CORE.

• ApiId – ID of the API service that calls this function.

• ErrorId – ID of the detected development error.

Return value

Returns always E_OK (is required for services).

Description

Service for reporting development errors.

7.5.2 Diagnostic event manager (DEM)

If DEM notifications are enabled, the ADC driver uses the following callback function provided by DEM. If you do

not use DEM, you must implement this function within your application.

7.5.2.1 Dem_ReportErrorStatus

Syntax

void Dem_ReportErrorStatus

(

 Dem_EventIdType EventId,

 Dem_EventStatusType EventStatus

)

Reentrancy

Reentrant

User guide 105 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

Parameters (in)

• EventId – Identification of an event which is assigned by DEM.

• EventStatus – Monitor test result of given event.

Return value

None

Description

Service for reporting diagnostic events.

7.5.3 Callout functions

7.5.3.1 Error callout API

The AUTOSAR ADC module requires an error callout handler. Each error is reported to this handler, error

checking cannot be switched OFF. The name of the function to be called can be configured by the

AdcErrorCalloutFunction parameter.

Syntax

void Error_Handler_Name

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId – Module ID of calling module.

• InstanceId – AdcCoreConfigurationId of the core that calls this function or ADC_INVALID_CORE.

• ApiId – ID of the API service that calls this function.

• ErrorId – ID of the detected error.

Return value

None

Description

Service for reporting errors.

User guide 106 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

7 Appendix A – API reference

7.5.3.2 Get core ID API

The AUTOSAR ADC module requires a function to get the valid core ID. This function is being used to determine

the core from which the code is getting executed. The name of the function to be called can be configured by

AdcGetCoreIdFunction parameter.

Syntax

uint8 GetCoreID_Function_Name (void)

Reentrancy

Reentrant

Parameters (in)

None

Return value

• CoreId - ID of the current core.

Description

Service for getting valid core ID.

Note: This function will return the core ID configured in AdcCoreId on AdcConreConfiguration

within AdcMulticore.

For example, two cores are configured in AdcCoreConfiguration.

Executing core AdcCoreConfigurationId AdcCoreId

CM7_0 0 15

CM7_1 1 16

Upon calling this function from core CM7_0, it shall return 15.

Upon calling this function from core CM7_1, it shall return 16.

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
107

002-30828
 R

ev. *H

20
23

-12
-08

8 Appendix B – Access register table

8.1 SAR ADC

Table 15 SAR ADC access register table

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SARn_CTL 31:0 Word

(32 bits)

0x00000000

or

0xE0000400

This register

globally

controls the

SAR setting.

Adc_Init

Adc_DeInit

Adc_SetPowerState

0x000007FF 0x*0000400
(After

Adc_Init

Digit *

depends on

configuration

value.)

0x00000000
(After

Adc_DeInit.)

SARn_DIAG_CTL 31:0 Word

(32 bits)

0x00000000 |

SAR IP

enabled/disabled

<< 31 |

diagnostic

reference selection

(These items

depend on

configuration.)

This register

controls the

diagnostic

reference

function.

Adc_Init

Adc_SetPowerState

Adc_DeInit

0x0000000F 0x0000000*

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000000

(After

Adc_DeInit.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
108

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SARn_PRECOND_

CTL
31:0 Word

(32 bits)

0x00000000 |

preconditioning

time

(These items

depend on

configuration.)

This register

sets

preconditio

ning time in

clock cycles.

Adc_Init

Adc_DeInit

0x0000000F 0x0000000*

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000000

(After

Adc_DeInit.)

SARn_ANA_CAL 31:0 Word

(32 bits)

0x00000000 |

Gain value << 16 |

Offset value<< 0

Current

analog

calibration

values

Adc_Init

Adc_DeInit

Adc_SetCalibrationValue (not

writing directly)

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_DIG_CAL 31:0 Word

(32 bits)

0x00000000 Current

digital

calibration

values

Adc_Init

Adc_DeInit

0x003F0FFF 0x00000000

SARn_ANA_CAL_

ALT
31:0 Word

(32 bits)

0x00000000 |

Gain value << 16 |

Offset value << 0

Alternate

analog

calibration

values

Adc_Init

Adc_DeInit

Adc_SetCalibrationValue

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_DIG_CAL_

ALT
31:0 Word

(32 bits)

0x00000000 Alternate

digital

calibration

values

Adc_Init

Adc_DeInit

0x003F0FFF 0x00000000

SARn_CAL_UPD_

CMD
31:0 Word

(32 bits)

0x00000001

or

0x00000000

Calibration

update

command

Adc_SetCalibrationValue 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_TR_PEND 31:0 Word

(32 bits)

- Trigger

pending

status

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
109

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SARn_WORK_VAL

ID
31:0 Word

(32 bits)

- Channel

working

data register

'valid' bits

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_WORK_RAN

GE
31:0 Word

(32 bits)

- Range

detected

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_WORK_RAN

GE_HI
31:0 Word

(32 bits)

- Range

detect

above Hi

flag

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_WORK_PUL

SE
31:0 Word

(32 bits)

- Pulse

detected

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_RESULT_V

ALID
31:0 Word

(32 bits)

- Channel

result data

register

'valid' bits

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_RESULT_R

ANGE_HI
31:0 Word

(32 bits)

- Channel

range above

Hi flags

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_STATUS 31:0 Word

(32 bits)

- Current

status of

internal SAR

registers

(mostly for

debug)

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_AVG_STAT 31:0 Word

(32 bits)

- Current

averaging

status (for

debug)

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
110

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SARn_CHx_STRU

CT_TR_CTL
31:0 Word

(32 bits)

0x00000000 |

last channel of a

group << 11 |

preemption type <<

8 |

channel priority <<

4 |

trigger select

(These items

depend on

configuration.)

This register

controls the

trigger

function for

the channel.

Adc_Init

Adc_DeInit

Adc_DisableChannel

Adc_EnableChannel

Adc_EnableHardwareTrigger

Adc_EnableHwTrigger

Adc_StartGroupConversion

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x80000B77 0x00000***

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000800

(After

Adc_DeInit.)

SARn_CHx_STRU

CT_SAMPLE_CTL
31:0 Word

(32 bits)

0x00000000 |

alternate

calibration << 31 |

sample time << 16 |

overlap mode or

SARMUX

diagnostics << 14 |

preconditioning

mode << 12 |

external_mul << 8

|external_mul_en

<< 11 |

physical port (only

ADC0) << 6 |

address of the

analog signal (pin)

This register

controls the

sampling

function for

the channel.

Adc_Init

Adc_DeInit

Adc_ChangeSamplingTime

Adc_ChangeCalibrationChannel

Adc_StartGroupConversion

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x8000F0FF 0x*000*0**

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000000

(After

Adc_DeInit.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
111

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

(These items

depend on

configuration.)

SARn_CHx_STRU

CT_POST_CTL
31:0 Word

(32 bits)

0x00000000 |

range detect mode

<< 22 |

sign extended << 7 |

left or right align <<

6 |

post processing

(These items

depend on

configuration.)

This register

controls

post

processing.

Adc_Init

Adc_DeInit

Adc_StartGroupConversion

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00DFFFC7 0x00*000**

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000000

(After

Adc_DeInit.)

SARn_CHx_STRU

CT_RANGE_CTL
32:0 Word

(32 bits)

0x00000000 |

range detect high

thresholds << 15 |

range detect low

thresholds

(These items

depend on

configuration.)

This register

sets range

detect

thresholds.

Adc_Init

Adc_DeInit

0xFFFFFFFF 0x********

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000000

(After

Adc_DeInit.)

SARn_CHx_STRU

CT_INTR
31:0 Word

(32 bits)

0x00000707 This register

indicates

and clears

interrupt

request.

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_Init

Adc_DeInit

Adc_StartGroupConversion

Adc_DisableHardwareTrigger

Adc_StopGroupConversion

Adc_GetStreamLastPointer

Adc_ReadGroup

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
112

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

Adc_EnableHardwareTrigger

Adc_SelectChannelThreshold

Adc_DisableHardwareTrigger

Adc_EnableHardwareTrigger

Adc_EnableHwTrigger

Adc_DisableHwTrigger

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

SARn_CHx_STRU

CT_INTR_SET
31:0 Word

(32 bits)

- Interrupt set

request

register

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_CHx_STRU

CT_INTR_MASK
31:0 Word

(32 bits)

0x00000000 |

range detect

interrupt mask << 8|

done interrupt

mask

This register

enables/disa

bles ADC

group

interrupt.

Adc_Init

Adc_DisableHardwareTrigger

Adc_StopGroupConversion

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_StartGroupConversion

Adc_StopGroupConversion

Adc_EnableHwTrigger

Adc_DisableHwTrigger

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

SARn_CHx_STRU

CT_INTR_MASKE

D

31:0 Word

(32 bits)

- Interrupt

masked

request

register

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
113

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SARn_CHx_STRU

CT_WORK
31:0 Word

(32 bits)

- Working

data register

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_CHx_STRU

CT_RESULT
31:0 Word

(32 bits)

0x00000000 |

conversion result

This register

holds the

conversion

result of the

channel.

Read only. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_CHx_STRU

CT_GRP_STAT
31:0 Word

(32 bits)

- Group status

register

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

SARn_CHx_STRU

CT_ENABLE
31:0 Word

(32 bits)

0x0000000 |

channel

enable/disable

This register

enables/disa

bles the

correspondi

ng channel.

Adc_DisableHardwareTrigger

Adc_StopGroupConversion

Adc_Init

Adc_DeInit

Adc_EnableHardwareTrigger

Adc_DisableChannel

Adc_EnableChannel

Adc_StartGroupConversion

Adc_StopGroupConversion

Adc_GetStreamLastPointer

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
114

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

SARn_CHx_STRU

CT_TR_CMD
31:0 Word

(32 bits)

0x00000001 This register

starts

software

trigger.

Adc_StartGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

PASS_CTL 31:0 Word

(32 bits)

0xF0000000 |

Reference mode <<

21 |

Supply monitor

level for

AMUXBUS_B << 5 |

Supply monitor

enable for

AMUXBUS_B << 4 |

Supply monitor

level for

AMUXBUS_A << 1 |

Supply monitor

enable for

AMUXBUS_A

(These items

depend on

configuration.)

This register

controls

supply

monitoring

function and

enables/disa

bles debug

pause.

Adc_Init

Adc_DeInit

0xF0600033 0xF0*000**

(After Adc_Init

Digit * depends

on configuration

value.)

0x00000000

(After

Adc_DeInit.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
115

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

PASS_SARn_TR_

IN_SEL
31:0 Word

(32 bits)

0x00000000 |

generic trigger 4 <<

16 |

generic trigger 3 <<

12 |

generic trigger 2 <<

8 |

generic trigger 1 <<

4 |

generic trigger 0

(These items

depend on

configuration.)

This register

selects

generic

trigger for

SAR generic

trigger

input.

Adc_Init

Adc_DeInit

0x000FFFFF 0x000*****

(After Adc_Init

Digit * depends

on configuration

value.)

0x00043210

(After

Adc_DeInit.)

PASS_SARn_TR_

OUT_SEL
31:0 Word

(32 bits)

0x00000000 |

generic trigger

output 1 << 8 |

generic trigger

output 0

(These items

depend on

configuration.)

This register

selects SAR

output

trigger for

generic

trigger

output.

Adc_StartGroupConversion

Adc_EnableHardwareTrigger

Adc_DeInit

Adc_StopGroupConversion

Adc_EnableHwTrigger

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

Note: 'n' is SAR ADC number, and 'x' is logical channel number.

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
116

002-30828
 R

ev. *H

20
23

-12
-08

8.2 DW

Table 16 DW access register table

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_CTL 31:0 Word

(32 bits)

- Control Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_STATUS 31:0 Word

(32 bits)

- Status Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_DESCR

_CTL
31:0 Word

(32 bits)

- Active

descriptor

control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_DESCR

_SRC
31:0 Word

(32 bits)

- Active

descriptor

source

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_DESCR

_DST
31:0 Word

(32 bits)

- Active

descriptor

destination

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_DESCR

_X_CTL
31:0 Word

(32 bits)

- Active

descriptor X

loop control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_DESCR

_Y_CTL
31:0 Word

(32 bits)

- Active

descriptor Y

loop control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_DESCR

_NEXT_PTR
31:0 Word

(32 bits)

- Active

descriptor

next pointer

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ACT_SRC 31:0 Word

(32 bits)

- Active

source

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
117

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_ACT_DST 31:0 Word

(32 bits)

- Active

destination

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_ECC_CTL 31:0 Word

(32 bits)

- ECC control Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CRC_CTL 31:0 Word

(32 bits)

- CRC control Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CRC_DATA_

CTL
31:0 Word

(32 bits)

- CRC data

control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CRC_POL_C

TL
31:0 Word

(32 bits)

- CRC

polynomial

control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CRC_LFSR_

CTL
31:0 Word

(32 bits)

- CRC LFSR

control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CRC_REM_C

TL
31:0 Word

(32 bits)

- CRC

remainder

control

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CRC_REM_R

ESULT
31:0 Word

(32 bits)

- CRC

remainder

result

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
118

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_CHi_STRUC

T_CH_CTL
31:0 Word

(32 bits)

0x80000002

or

0x00000002

This register

globally

controls DW

channel.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_DisableHardwareTrigger

Adc_StopGroupConversion

Adc_Init

Adc_EnableHwTrigger

Adc_DisableHwTrigger

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CHi_STRUC

T_CH_STATUS
31:0 Word

(32 bits)

0x00000000 |

source of the

interrupt cause

This register

specifies the

source of

the interrupt

cause.

Read only. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CHi_STRUC

T_CH_IDX
31:0 Word

(32 bits)

0x00000000 This register

specifies the

X&Y loop

index.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
119

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_CHi_STRUC

T_CH_CURR_PTR
31:0 Word

(32 bits)

0x00000000 |

address of current

descriptor

This register

sets the

address of

current

descriptor.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

DWm_CHi_STRUC

T_INTR
31:0 Word

(32 bits)

0x00000001 This register

indicates

whether

event is

detected

and clears

interrupt

flag.

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

Adc_Init

Adc_DeInit

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_DisableHardwareTrigger

Adc_StopGroupConversion

Adc_ReadGroup

Adc_GetStreamLastPointer

Adc_EnableHwTrigger

Adc_DisableHwTrigger

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

DWm_CHi_STRUC

T_INTR_SET
31:0 Word

(32 bits)

- Interrupt set Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
120

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_CHi_STRUC

T_INTR_MASK
31:0 Word

(32 bits)

0x00000001

0x00000000

This register

enables/disa

bles DW

interrupt.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_Init

Adc_DeInit

Adc_DisableHardwareTrigger

Adc_StopGroupConversion

Adc_EnableHwTrigger

Adc_DisableHwTrigger

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

DWm_CHi_STRUC

T_INTR_MASKED
31:0 Word

(32 bits)

- Interrupt

masked

Do not use. 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CHi_STRUC

T_SRAM_DATA0
31:0 Word

(32 bits)

0x00000000 SRAM data 0 Adc_Init

Adc_DeInit
0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_CHi_STRUC

T_SRAM_DATA1
31:0 Word

(32 bits)

0x00000000 SRAM data 1 Adc_Init

Adc_DeInit
0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is

not needed.)

DWm_DESCR_STR

UCT_DESCR_CTL
31:0 Word

(32 bits)

Depends on

configuration value

This register

sets DW

descriptors.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
121

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_DESCR_STR

UCT_DESCR_SRC
31:0 Word

(32 bits)

0x00000000 |

base address of

source location

This register

sets the

base

address of

source

location.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

DWm_DESCR_STR

UCT_DESCR_DST
31:0 Word

(32 bits)

0x00000000 |

base address of

destination location

This register

sets the

base

address of

destination

location.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

DWm_DESCR_STR

UCT_DESCR_X_C

TL

31:0 Word

(32 bits)

Depends on

configuration value

This register

controls X

loop.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

A
D

C
 (E

X
p

a
n

sio
n

 p
a

ck
) 4

.0
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
122

002-30828
 R

ev. *H

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

DWm_DESCR_STR

UCT_DESCR_Y_C

TL

31:0 Word

(32 bits)

Depends on

configuration value

This register

controls Y

loop.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

DWm_DESCR_STR

UCT_DESCR_NEX

T_PTR

31:0 Word

(32 bits)

0x00000000 |

address of next

descriptor in

descriptor list

This register

sets address

of next

descriptor in

descriptor

list.

Adc_EnableHardwareTrigger

Adc_StartGroupConversion

Adc_EnableHwTrigger

Adc_StopGroupConversion

Adc_IsrConversionDone_[ADC

Irq number]_Cat1

Adc_IsrConversionDone_[ADC

Irq number]_Cat2

Adc_DmaDone_[Dma Irq

number]_Cat1

Adc_DmaDone_[Dma Irq

number]_Cat2

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is

not needed.)

Note: 'm' is DW controller number, and 'i' is DW channel number.

User guide 123 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

Revision history

Revision history

Revision Issue date Description of change

** 2020-09-04 Initial release.

*A 2020-11-20 Changed a memmap file include folder (Memory Mapping).

Updated information regarding memory section (Memory Allocation

Keyword).

MOVED TO INFINEON TEMPLATE.

*B 2021-05-21 Added new configuration parameters (AdcChannelPulseDetect,

AdcChannelPulsePositiveCount, and AdcChannelPulseNegativeCount)

in section 2.2.1 Architecture Specifics.

Added a note in section 4.7 AdcGroup Configuration.

Added a note in section 5.14 DMA Transfer.

Added a note in section 5.9 Notification.

Added SARMUX in Glossary.

Added configuration parameters (AdcSarMux1ConnectToAdc0,

AdcSarMux2ConnectToAdc0, AdcSarMux3ConnectToAdc0,

AdcSarMux1DiagnosticReference, AdcSarMux2DiagnosticReference,

AdcSarMux3DiagnosticReference, AdcSarMux1DiagnoseEnable,

AdcSarMux2DiagnoseEnable, and AdcSarMux3DiagnoseEnable) in

Architecture Specifics section and AdcHwUnit Configuration section.

Modified configuration parameters (AdcDiagnoseEnable and

AdcDiagnosticReference) in AdcHwUnit Configuration section.

Modified configuration parameter (AdcChannelId) in section 4.6

AdcChannel Configuration.

Added section 5.16 Port Selection.

Added a comment in section 5.18 Diagnostic Feature.

Modified a part of the description of SAR ADC in Access Register Table.

*C 2021-08-27 Added new configuration parameters (AdcDiagnosisMode,

AdcSelfDiagApi, AdcVoltageDeviation, and

AdcDiagConvertTimeout) in the “AdcChannel” section.

Added new configuration parameters (AdcSelfDiagApi,

AdcVoltageDeviation, and AdcDiagConvertTimeout) in the

“AdcCustomFunction” section.

Added a new configuration parameter (AdcDiagnosisMode) in the

“AdcChannel configuration” section.

Added a new section for the SelfDiag feature.

Updated a new section for API parameter checking.

Updated a new section for vendor-specific error checking.

Updated a new section for reentrancy (added 3 new APIs).

Updated a new section for execution-time dependencies (added 3 new

APIs).

Updated a new section for Adc_StatusType (added a status

ADC_DIAG).

User guide 124 002-30828 Rev. *H

 2023-12-08

ADC (EXpansion pack) 4.0 driver user guide

Revision history

Revision Issue date Description of change

Updated a new section for error codes (added an error code

ADC_E_DIAG).

Updated a new section for API service IDs (added

Adc_StartDiagnosticFull, Adc_GetDiagnosticResult, and

Adc_StartDiagnostic).

Added a new section for Adc_StartDiagnosticFull.

Added a new section for Adc_GetDiagnosticResult.

Added a new section for Adc_StartDiagnostic.

Added a note in the “Interrupts” section.

*D 2021-12-07 Updated to the latest branding guidelines

*E 2023-03-03 Updated the title.

Updated the Hardware documentation.

Updated analog calibration flow in 5.19 Analog calibration feature.

Added a note in 5.27 Sleep mode.

*F 2023-06-06 Added a note in 6.2 Analog input signals.

Updated the description in chapter 2.6.1.

*G 2023-10-06 Updated register information in Table 16.

Corrected core identification keyword in section 2.6and 5.31.

*H 2023-12-08 Web release. No content updates.

 Warnings

Edition 2023-12-08

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document reference

002-30828 Rev. *H

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the ADC driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding
	1.7 Multicore support
	1.7.1 Multicore type
	1.7.1.1 Single core only (Multicore type I)
	1.7.1.2 Core dependent instances (Multicore type II)
	1.7.1.3 Core independent instances (Multicore type III)

	1.7.2 Virtual core support

	2 Using the ADC driver
	2.1 Installation and prerequisites
	2.2 Configuring the ADC driver
	2.2.1 Architecture specifics

	2.3 Adapting an application
	2.4 Starting the build process
	2.5 Measuring the stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Memory allocation and constraints

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 MCU driver
	3.4.2 PORT driver
	3.4.3 AUTOSAR OS
	3.4.4 DET
	3.4.5 DEM
	3.4.6 GPT, PWM, and OCU driver (hardware trigger sources)
	3.4.7 Error callout handler
	3.4.8 BSW scheduler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 AdcPublishedInformation configuration
	4.3 AdcCustomFunction
	4.4 AdcPowerStateConfig configuration
	4.5 AdcConfigSet configuration
	4.6 AdcHwUnit configuration
	4.7 AdcChannel configuration
	4.8 AdcGroup configuration
	4.9 AdcGenericHWTriggerSelectConfiguration
	4.10 AdcMulticore
	4.11 AdcCoreConfiguration

	5 Functional description
	5.1 Module function
	5.2 Inclusion
	5.3 Initialization and de-initialization
	5.4 Runtime reconfiguration
	5.5 Channels and channel groups
	5.6 Start/stop SW-triggered group conversion
	5.7 Enable or disable hardware-triggered group conversion
	5.8 Read services
	5.9 Notification
	5.10 Limit checking
	5.11 Power management
	5.12 Interrupt and polling mode
	5.13 Triggered by HW
	5.14 DMA transfer
	5.15 Changing the sampling time during runtime
	5.16 Port selection
	5.17 Sample mode
	5.18 Diagnostic feature
	5.19 Analog calibration feature
	5.20 SelfDiag feature
	5.21 Hardware prioritization
	5.21.1 Explicit hardware prioritization
	5.21.2 Implicit hardware prioritization

	5.22 Software prioritization
	5.23 API parameter checking
	5.24 Vendor-specific error checking
	5.25 Reentrancy
	5.26 Configuration checking
	5.27 Sleep mode
	5.28 Debugging support
	5.29 Execution-time dependencies
	5.30 Important notes on the ADC driver’s environment
	5.31 Functions available without core dependency

	6 Hardware resources
	6.1 Peripheral clocks
	6.2 Analog input signals
	6.3 Interrupts
	6.4 Triggers

	7 Appendix A – API reference
	7.1 Include files
	7.2 Data types
	7.2.1 Adc_ChannelType
	7.2.2 Adc_GroupType
	7.2.3 Adc_ValueGroupType
	7.2.4 Adc_StreamNumSampleType
	7.2.5 Adc_StatusType
	7.2.6 Adc_SamplingTimeType
	7.2.7 Adc_PowerStateRequestResultType
	7.2.8 Adc_PowerStateType
	7.2.9 Adc_ConfigType
	7.2.10 Adc_ChannelRangeSelectType
	7.2.11 Adc_PrescaleType
	7.2.12 Adc_ConversionTimeType
	7.2.13 Adc_ResolutionType
	7.2.14 Adc_TriggerSourceType
	7.2.15 Adc_GroupConvModeType
	7.2.16 Adc_GroupPriorityType
	7.2.17 Adc_GroupDefType
	7.2.18 Adc_StreamBufferModeType
	7.2.19 Adc_GroupAccessModeType
	7.2.20 Adc_HwTriggerSignalType
	7.2.21 Adc_HwTriggerTimerType
	7.2.22 Adc_PriorityImplementationType
	7.2.23 Adc_GroupReplacementType
	7.2.24 Adc_ResultAlignmentType
	7.2.25 Adc_HwUnitType
	7.2.26 Adc_OffsetValueType
	7.2.27 Adc_GainValueType
	7.2.28 Adc_SignalType
	7.2.29 Adc_DataReadType
	7.2.30 Adc_GroupHwTriggSrcType
	7.2.31 Adc_CoreIdType
	7.2.32 Adc_DriverStatusType

	7.3 Constants
	7.3.1 Error codes
	7.3.2 Version information
	7.3.2.1 Module information

	7.3.3 API service IDs
	7.3.4 Invalid core ID value

	7.4 Functions
	7.4.1 Adc_Init
	7.4.2 Adc_DeInit
	7.4.3 Adc_StartGroupConversion
	7.4.4 Adc_StopGroupConversion
	7.4.5 Adc_ReadGroup
	7.4.6 Adc_EnableHardwareTrigger
	7.4.7 Adc_DisableHardwareTrigger
	7.4.8 Adc_EnableGroupNotification
	7.4.9 Adc_DisableGroupNotification
	7.4.10 Adc_GetGroupStatus
	7.4.11 Adc_GetVersionInfo
	7.4.12 Adc_GetStreamLastPointer
	7.4.13 Adc_SetupResultBuffer
	7.4.14 Adc_SetPowerState
	7.4.15 Adc_GetCurrentPowerState
	7.4.16 Adc_GetTargetPowerState
	7.4.17 Adc_PreparePowerState
	7.4.18 Adc_Main_PowerTransitionManager
	7.4.19 Adc_ChangeSamplingTime
	7.4.20 Adc_ChangeCalibrationChannel
	7.4.21 Adc_SetCalibrationValue
	7.4.22 Adc_GetCalibrationAlternateValue
	7.4.23 Adc_GetCalibrationValue
	7.4.24 Adc_DisableChannel
	7.4.25 Adc_EnableChannel
	7.4.26 Adc_GetADCAddr
	7.4.27 Adc_ReadChannelValue
	7.4.28 Adc_GetGroupLimitCheckState
	7.4.29 Adc_SelectChannelThreshold
	7.4.30 Adc_EnableHwTrigger
	7.4.31 Adc_DisableHwTrigger
	7.4.32 Adc_StartDiagnosticFull
	7.4.33 Adc_GetDiagnosticResult
	7.4.34 Adc_StartDiagnostic

	7.5 Required callback functions
	7.5.1 Default error tracer (DET)
	7.5.1.1 Det_ReportError

	7.5.2 Diagnostic event manager (DEM)
	7.5.2.1 Dem_ReportErrorStatus

	7.5.3 Callout functions
	7.5.3.1 Error callout API
	7.5.3.2 Get core ID API

	8 Appendix B – Access register table
	8.1 SAR ADC
	8.2 DW

	Revision history
	Disclaimer

