

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-22364 Rev. *L

www.infineon.com 2023-12-08

Flash EEPROM Emulation user guide

TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration and usage of Flash EEPROM Emulation (FEE). This guide

also explains the functionality of the driver and provides references to the module’s API.

The installation, build process, and general information about the use of the EB tresos Studio are not within the

scope of this document. See the EB tresos Studio for ACG8 user’s guide [9] for detailed information of these

topics.

Intended audience

This document is intended for anyone using the Flash EEPROM Emulation software.

Document structure

The 1 General overview chapter gives a brief introduction to FEE, explains the embedding in the AUTOSAR

environment, and describes the supported hardware and development environment.

The 2 Using the Flash EEPROM Emulation chapter details the steps required to use the ADC driver in your

application.

The 3 Structure and dependencies chapter describes the file structure and the dependencies for the ADC driver.

The 4 EB tresos Studio configuration interface chapter describes the driver’s configuration with the EB tresos

Studio software.

The 5 Functional description chapter gives a functional description of all services offered by the ADC driver.

The 6 Hardware resources chapter gives a description of all hardware resources used.

The Appendix A and Appendix B chapters provides a complete API reference and access register table.

http://www.infineon.com/

User guide 2 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

About this document

Abbreviations and definitions

Table 1 Abbreviations

Abbreviations Description

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

Basic Software Standardized part of software which does not fulfill a vehicle functional job.

BSW Basic Software. Standardized part of software which does not fulfill a vehicle

functional job.

DET Default Error Tracer

DMA Direct Memory Access

EB tresos Studio Elektrobit Automotive configuration framework

ECC Error Checking Code

ECU Engine Control Unit

EEPROM Electrically erasable programmable ROM

FEE Flash EEPROM Emulation

FLS Flash driver module

Flash sector A flash sector is the smallest amount of flash memory that can be erased in one

pass. The size of the flash sector depends upon the flash technology and is

therefore, hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be programmed in

one pass. The size of the flash page depends upon the flash technology and is

therefore, hardware dependent.

GCE Generic Configuration Editor

GP RAM General purpose RAM

MPU Memory Protection Unit

µC Microcontroller

OS Operating System

SchM BSW Scheduler

SW Software

User guide 3 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Table of contents

Table of contents

About this document ... 1

Table of contents .. 3

1 General overview ... 6

1.1 Introduction to the Flash EEPROM Emulation ... 6

1.1.1 Features of FEE ... 6

1.2 User profile .. 6

1.3 Embedding in the AUTOSAR environment ... 7

1.4 Supported hardware ... 8

1.5 Development environment ... 8

1.6 Character set and encoding .. 8

2 Using the Flash EEPROM Emulation .. 9

2.1 Installation and prerequisites ... 9

2.2 Configuring the FEE ... 9

2.2.1 Architecture specifics ... 10

2.3 Adapting an application .. 10

2.4 Starting the build process ... 11

2.5 Memory mapping .. 11

2.5.1 Memory allocation keyword .. 11

3 Structure and dependencies .. 12

3.1 Static files .. 12

3.2 Configuration files ... 12

3.3 Generated files .. 12

3.4 Dependencies .. 12

3.4.1 Memory abstraction interface ... 13

3.4.2 Flash driver ... 13

3.4.3 DET .. 13

3.4.4 BSW scheduler .. 13

3.4.5 Error callout handler .. 13

4 EB tresos Studio configuration interface .. 14

4.1 General configuration ... 14

4.2 Vendor-specific configuration .. 14

4.2.1 Parameter constraints ... 14

4.2.1.1 Container FeeGeneral ... 14

4.2.1.2 Container FeeBlockConfiguration .. 16

4.2.1.3 Container FeePublishedInformation ... 18

4.2.2 Vendor and module specific parameters .. 18

4.2.2.1 Container FeeGeneral ... 18

4.2.2.2 Container ConfigEx ... 24

4.2.3 Other modules .. 26

4.2.3.1 FLS module .. 26

4.2.3.2 DET ... 28

5 Functional description .. 29

5.1 Function of the FEE ... 29

5.1.1 FEE state machine .. 29

5.1.2 FEE job result state ... 30

5.1.3 Initialization ... 31

5.1.4 Reading data from flash memory .. 31

User guide 4 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Table of contents

5.1.5 Writing data to the flash memory .. 32

5.1.6 Invalidate data of flash memory .. 32

5.1.7 Erase immediate data of flash memory .. 32

5.1.8 Erasing all data from flash memory .. 33

5.1.9 Canceling job prior to maturity ... 33

5.1.10 Getting a remaining page .. 33

5.1.11 Recycling a sector ... 33

5.1.12 Retrieving status information .. 34

5.1.13 Periodic_API_Implementation .. 34

5.1.14 Setting the driver operation mode .. 35

5.1.15 Timeout monitoring ... 35

5.1.16 Setting the call cycle mode .. 36

5.2 Virtual flash memory layout .. 37

5.3 Default error detection .. 37

5.4 Reentrancy ... 39

5.5 Debugging support .. 39

5.6 Note ... 40

6 Hardware resources ... 41

6.1 Interrupts ... 41

7 Appendix A – API reference .. 42

7.1 Data types .. 42

7.1.1 External data types .. 42

7.1.2 Std_ReturnType ... 42

7.1.3 Std_VersionInfoType .. 42

7.1.4 MemIf_ModeType ... 42

7.1.5 MemIf_StatusType ... 42

7.1.6 MemIf_JobResultType ... 42

7.2 Macros .. 42

7.2.1 Error codes ... 42

7.2.2 Version information ... 43

7.2.3 Module information ... 43

7.2.4 API service IDs .. 43

7.3 Functions ... 44

7.3.1 Fee_Init ... 44

7.3.2 Fee_SetMode .. 44

7.3.3 Fee_Read .. 45

7.3.4 Fee_Write .. 46

7.3.5 Fee_Cancel ... 47

7.3.6 Fee_GetStatus .. 48

7.3.7 Fee_GetJobResult .. 49

7.3.8 Fee_InvalidateBlock ... 50

7.3.9 Fee_GetVersionInfo .. 51

7.3.10 Fee_EraseImmediateBlock .. 51

7.3.11 Fee_Clear / Fee_ClearEx .. 52

7.3.12 Fee_GetRemainingPages/Fee_GetRemainingPagesEx .. 53

7.3.13 Fee_CleanupAndErase / Fee_CleanupAndEraseEx ... 54

7.3.14 Fee_SetCycleMode ... 55

7.4 Scheduled functions ... 56

7.4.1 Fee_MainFunction .. 56

User guide 5 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Table of contents

7.5 Expected interfaces (optional) .. 57

7.5.1 Det_ReportError ... 57

7.6 Configurable interfaces ... 58

7.6.1 NvM_JobEndNotification ... 58

7.6.2 NvM_JobErrorNotification ... 58

7.7 Required callback functions ... 59

7.7.1 Error callout API ... 59

8 Appendix B – Access register table ... 60

References ... 61

Revision history .. 62

Disclaimer .. 64

User guide 6 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

General overview

1 General overview

1.1 Introduction to the Flash EEPROM Emulation

The Flash EEPROM Emulation abstract from the device-specific addressing scheme and segmentation provides

the upper layers with a virtual addressing scheme and segmentation as well as a “virtually” unlimited number

of erase cycles.

1.1.1 Features of FEE

• Automatic recycling

If the sector is full, it is recycled automatically. FEE moves valid data to a new sector and creates free space.

• Robust against power down

If power goes down during writing (or erasing), data on the sector may be undefined. FEE checks the data

state (marker) of the sector during initialization. If indefinite data exists (due to power off, reset, and so on),

data is automatically recovered and only correct data is moved to a new sector. TRAVEO™ T2G family FEE’s

robustness against power down is based on a protocol with markers in flash memory that identify the last

valid entry.

• Availability of multiple configurations

FEE can manage sectors separately by two configurations. For example, you can manage boot data and Log

data in separate sectors.

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

• Flash memory

• Embedded systems

• The AUTOSAR terminology

• The C programming language

User guide 7 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

General overview

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. FEE (Figure 2) is one of the memory hardware

abstraction layer.

Figure 2 Flash EEPROM Emulation

User guide 8 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

General overview

1.4 Supported hardware

This version of the Flash EERPOM Emulation supports the TRAVEO™ T2G microcontroller. No further special

external hardware devices are required. See the resource module user guide for supported subderivative.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules Base, Make, Resource, and

FLS are needed for the proper functionality of FEE.

1.6 Character set and encoding

All source code files of FEE are restricted to the ASCII character set. The files are encoded in UTF-8 format, with

only the 7-bit subset (values 0x00 # 0x7F) being used.

User guide 9 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Using the Flash EEPROM Emulation

2 Using the Flash EEPROM Emulation

This chapter describes the necessary steps to incorporate FEE into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user’s guide [9] first. This

provides required basic information on the installation procedure of EB tresos AUTOSAR

components and the use of the EB tresos Studio and the EB tresos AUTOSAR build environment. In

particular, you will find an explanation on how to set up and integrate your own application within

the EB tresos AUTOSAR build environment.

The installation of FEE complies with the general installation procedure for EB tresos AUTOSAR components

given in the EB tresos Studio for ACG8 user’s guide [9]. If the driver has been successfully installed, the driver will

appear in the module list of the EB tresos Studio (see 4 EB tresos Studio configuration interface).

This guide assumes that the project is properly set up and is using the application template as described in the

EB tresos Studio for ACG8 user’s guide [9]. This template provides the necessary folder structure, project and

makefiles needed to configure and compile an application within the build environment. You must be familiar

with the usage of the command line shell.

2.2 Configuring the FEE

This section provides an overview of the configuration structure defined by AUTOSAR to use the FEE.

The following containers are used to configure common behavior.

• FeeBlockConfiguration: Configuration of block-specific parameters for the FEE.

• FeeBlockConfigurationEx: Extra configuration of block specific parameters for the FEE.

• FeeGeneral: Container for general parameters. These parameters are not specific to a block.

• FeePublishedInfomation: Additional published parameters not covered by the

CommonPublishedInfomation container.

Note that these parameters do not have any configuration class setting, since they are published information.

See 4.1 General configuration and 4.2 Vendor-specific configuration for the details of a configuration to be set

up.

Note: FEE can manage sectors separately by two configurations (FeeBlockConfiguration and

FeeBlockConfigurationEx) each configuration has the number of sectors and block

information used. In user configuration, each block is configured to FeeBlockConfiguration or

FeeBlockConfigurationEx. Blocks in FeeBlockConfiguration will never shift to

FeeBlockConfigurationEx. Figure 3 depicts the data structure.

User guide 10 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Using the Flash EEPROM Emulation

Figure 3 Relationship between FeeBlockConfiguration and FeeBlockConfigurationEx

2.2.1 Architecture specifics

• FeeErrorCalloutFunction: Specifies an error callout handler, which is called when any errors are

detected during runtime.

• FeeIncludeFile: Iincludes some definitions (declaration for error callout handler).

The name of job end notification is fixed by the configuration parameters FeeNvmJobEndNotification.

The name of job error notification is fixed by the configuration parameters FeeNvmJobErrorNotification.

2.3 Adapting an application

To use FEE in your application, include the FEE header file by adding the following line of code in your source

file:

#include "Fee.h" /* Fee Header */

This publishes all needed function/data prototypes and symbolic names of the configuration to the application.

You must also implement the error callout function for ASIL safety extension.

Declare the error callout function in the file specified by the FeeIncludeFile parameter and implement

the error callout function in your application (see Error Callout API in Required callback functions).

Then, add the source files Fee.c and Fee_Pub.c to your project.

In the next step, FEE needs to be initialized and configured. The FEE module will automatically be enabled if an

appropriate parameter configuration of the FEE module is available in the application.

The FEE module initialization can be done with the following function call and parameter:

Fee_Init(const Fee_ConfigType* ConfigPtr);

All other API calls might be used after successful initialization of the FEE whenever necessary.

FEE

ConfigurationEx Configuration

Sector1 Sector2 Sector Sn … … Sector Sn+1 Sector Sn+n

Enable/Disable by

User Configuration

Number of sectors

2 ~ number of sectors

User guide 11 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Using the Flash EEPROM Emulation

2.4 Starting the build process

Do the following to build your application:

Note: For a clean build, use the build command with target clean_all. before (make clean_all). On

the command shell, type the following command to generate the necessary configuration-

dependent files. See 3.2 Configuration files.
> make generate

1. Type the following command to resolve required file dependencies:

> make depend

2. Type the following command to compile and link the application

> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file which can be downloaded to the

target hardware.

2.5 Memory mapping

Fee_MemMap.h in the $(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0I0R0/include directory is a sample. This

sample file is replaced by the file generated by the MEMMAP module. Input to the MEMMAP module is

generated as Fee_Bswmd.arxml in the $(PROJECT_ROOT)/output/generated/swcd directory of your project

folder.

2.5.1 Memory allocation keyword

• FEE_START_SEC_CODE_ASIL_B / FEE_STOP_SEC_CODE_ASIL_B

The memory section type is CODE. All executable code is allocated in this section.

• FEE_START_SEC_CONST_ASIL_B_UNSPECIFIED / FEE_STOP_SEC_CONST_ASIL_B_UNSPECIFIED

The memory section type is CONST. All constants are allocated in this section.

• FEE_START_SEC_VAR_INIT_ASIL_B_UNSPECIFIED / FEE_ STOP_SEC_VAR_INIT_ASIL_B_UNSPECIFIED

The memory section type is VAR. All initialized variables are allocated in this section.

• FEE_START_SEC_VAR_NO_INIT_ASIL_B_UNSPECIFIED /

FEE_STOP_SEC_VAR_NO_INIT_ASIL_B_UNSPECIFIED

The memory section type is VAR. All uninitialized variables are allocated in this section.

User guide 12 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Structure and dependencies

3 Structure and dependencies

FEE consists of static, configuration, and generated files.

3.1 Static files

Static files of the FEE module are in the directory $(TRESOS_BASE)/plugins/Fee_TS_*. These files contain the

functionality of the driver, which does not depend on the current configuration.

All necessary source files will automatically be compiled and linked during the build process and all include

paths will be set.

3.2 Configuration files

The configuration of the FEE module is done using the EB tresos Studio. When saving a project, the

configuration description is written in the file Fee.epc, which is in $(PROJECT_ROOT)/config of your project

folder. This file serves as input for the generation of the configuration dependent source and header files during

the build process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description.

These files are in the folder output/generated of your project folder.

• include/Fee_Cfg.h contains the configuration declarations for FEE that are target independent.

Note: Generated source files must not be added to your application make file. They will be compiled and

linked automatically during the build process.

3.4 Dependencies

Figure 4 depicts how the Flash driver is embedded in the memory stack.

Note: To use the Flash EEPROM Emulation, the Flash driver (see Specification of Flash driver [2]), the

memory abstraction interface (see requirements of memory hardware abstraction layer [8]) and

the BSW scheduler Module (see specification of RTE [5]) have to be enabled and configured.

optionally the DET (see specification ofdDefault error tracer [4]) can be enabled and configured,

too.

Figure 4 Relationship between the Flash EEPROM Emulation and other AUTOSAR modules

User guide 13 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Structure and dependencies

3.4.1 Memory abstraction interface

The memory abstraction interface is part of the ECU abstraction layer which is located above FEE. The memory

abstraction interface is the only module that calls the FEE module functions and provides virtual memory

mapping.

3.4.2 Flash driver

The Flash driver is part of the microcontroller abstraction layer which is located below FEE and provides

services for reading, writing, and erasing flash memory and a configuration interface for setting/resetting the

write/erase protection if supported by the underlying hardware.

3.4.3 DET

The DET is optional and handles all default errors.

3.4.4 BSW scheduler

The BSW scheduler calls the main function and handles the critical sections that are used within the FEE

module.

3.4.5 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection

is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It

is configured via configuration FeeErrorCalloutFunction parameter.

User guide 14 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of the current delivery. For further information, see EB tresos Studio for ACG8 user’s guide [9].

Note: The ECU parameter description of the Elektrobit automotive FEE module basically corresponds to

the description defined by the AUTOSAR specification of the specification of ECU configuration [6].

However, as there are some vendor-specific extensions, use the ECU parameter description file

that is delivered with the FEE module, which is in

$(TRESOS_BASE)/plugins/Fee_TS_*/config/Fee.xdm.

4.1 General configuration

The FEE configuration, including different parameters and their meaning, is described in the AUTOSAR

specification of the Flash EEPROM Emulation [3] and the AUTOSAR specification of the ECU configuration [6].

4.2 Vendor-specific configuration

This section summarizes the differences between the configuration given in the AUTOSAR documentations and

the configuration necessary for this module.

4.2.1 Parameter constraints

The range of several parameters of the general FEE configuration was reduced to the meaningful value of FLS

(hardware specific values for the TRAVEO™ T2G microcontroller). These parameters are listed here. The

parameters are preconfigured by using default values for the selected derivate (when changing the derivate, a

manual update is possible by clicking Calc in EB tresos Studio). If a parameter is not used by the module or if

the parameter is not configurable, the field cannot be edited.

4.2.1.1 Container FeeGeneral

FeeDevErrorDetect

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable default error detection.

• TRUE: Default error detection is enabled.

• FALSE: Default error detection is disabled.

FeeNvmJobEndNotification

Range

TRUE (function name is fixed to NvM_JobEndNotification.)

Annotation

Pre-processor switch to enable and disable callback function.

User guide 15 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

• JobEndNotification - This switch is fixed to TRUE.

FeeNvmJobErrorNotification

Range

TRUE (function name is fixed to NvM_JobErrorNotification.)

Annotation

Pre-processor switch to enable and disable callback function.

• JobErrorNotification - This switch is fixed to TRUE.

FeePollingMode

Range

TRUE

Annotation

Pre-processor switch to enable and disable the polling mode for this module.

This module uses only the polling mode. Therefore, this switch is fixed to TRUE.

FeeSetModeSupported

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable the SetMode functionality of this module.

• TRUE: SetMode functionality is enabled.

• FALSE: SetMode functionality is disabled.

FeeVersionInfoApi

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable the API to read the version information of modules.

• TRUE: Version information API is enabled.

• FALSE: Version information API is disabled.

User guide 16 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

FeeVirtualPageSize

Range

4

Annotation

Size of logical blocks aligned in this module specified in bytes. The value is fixed to 4.

FeeMainFunctionPeriod

Range

0.01 to 1000

Annotation

The call cycle of the main function of this module. This parameter is given in milliseconds.

Note: Set values greater than 1.

FeeDelayRecycleOperation

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable or disable the delay for the recycle operation in FEE initialization.

The current FEE can be read after the initialization process. If a part of the data is corrupted, a recycle will occur

to fix the data block in the initialization process. During the recycle operation, sector erasing and data moving

are performed; normally these processes take longer to complete.

• TRUE: Recycle is not performed during initialization. Therefore, data read will start shortly. However, recycle

occurs in the write operation (Fee_MainFunction after Fee_Write). Thus, the first write operation may take

longer.

• FALSE: Recycle is performed during initialization. (default)

4.2.1.2 Container FeeBlockConfiguration

FeeBlockNumber

Range

1 to 65534

Annotation

Block identifier.

User guide 17 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

FeeBlockSize

Range

For the Config block: 1 - FeeBlockMaxsize

For the ConfigEx block: 1 - FeeBlockMaxsizeEx

Annotation

Size of logical block in bytes.

FeeImmediateData

Range

TRUE, FALSE

Annotation

Marker for high priority data.

• Handling of “immediate” data

FEE module ensures that it can write “immediate” blocks without the need to erase the corresponding

memory area.

In other words, the data of the block defined as immediate can be reserved and written without recycling.

However, when rewriting the immediate block, it is necessary to invalidate the target block using the

Fee_EraseImmediateBlock() API.

Fee_EraseImmediateBlock() invalidates the block and also calculates the free space in the sector to

determine whether the target block is writable.

If writing is not possible, recycling will occur.

• Handling of normal "not immediate" data

Calculates the free space in the sector when writing.

If there is a free space, data is written to the same sector. If not, recycling will occur.

Also, when rewriting, it is not necessary to invalidate the target block using the

Fee_EraseImmediateBlock() API.

You can rewrite the target block with Fee_Write. Therefore, recycling may occur when writing.

TRUE: Block contains immediate data.

FALSE: Block does not contain immediate data.

FeeNumberOfWriteCycles

Range

0 to 0xFFFFFFFF

Annotation

Expected number of erase/write cycles for each logical block.

(FeeNumberOfWriteCycles is unused in the FEE)

User guide 18 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

FeeDeviceIndex

Range

0

Annotation

Identifier of the flash device where the block data is stored. This module uses only one device. Therefore, this

index is fixed to 0.

FeeSelectConfigEx

Range

TRUE, FALSE

Annotation

Marker to indicate the location of the block.

• TRUE: Located on ConfigEx.

• FALSE: Located on Config.

4.2.1.3 Container FeePublishedInformation

FeeBlockOverhead

Range

20

Annotation

The size of block management area, which is fixed to 20.

FeePageOverhead

Range

16

Annotation

The size of page management area, which is fixed to 16.

4.2.2 Vendor and module specific parameters

4.2.2.1 Container FeeGeneral

FeeInitiallyEraseEmptySectors

Range

TRUE, FALSE

User guide 19 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

Annotation

Pre-processor switch to enable and disable the function to erase all sectors for brand new chip.

• TRUE: All sectors for brand new chip are erased when Fee_init() is executed.

• FALSE: The sectors for brand new chip are not erased when Fee_init() is executed.

Note: If you are using this value, erase the work flash area of FEE.

FeeUnmatchedBlockCheck

Range

TRUE, FALSE

Annotation

Consistency check is done in Fee_Init.

Pre-processor switch to enable and disable the consistency check of a block.

• TRUE: The consistency check of block ID and data length is enabled.

Note: When installing FEE in the product version, "TRUE” should be selected.

• FALSE: The consistency check of block ID and data length is disabled.

When FEE found the “undefined block ID” or “block ID with unmatched data length” on work flash, FEE

performs the following processing.

• If BlockID not defined in config exists on work flash.

− Delete the target BlockID on work flash.

• If data length is different between config and work flash

− [data length in config > data length in work flash]:

o Extend the data length of work flash according to config.

o Copy the original data to the above area.

o The FF is set in the increased area.

− [data length in config < data length in work flash]:

o Delete the target BlockID on work flash.

FeeSetCycleModeApi

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable the API to switch the cycle mode.

• TRUE: The API to set the cycle mode is enabled.

Note: While using the Setting the call cycle mode function, this value should be ”TRUE”.

User guide 20 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

• FALSE: The API to set the cycle mode is disabled.

FeeClearApi

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable the API to erase all sectors.

• TRUE: The API to erase all sectors is enabled.

• FALSE: The API to erase all sectors is disabled.

FeeCleanupAndEraseApi

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable the API to recycle sector.

• TRUE: Recycle API is enabled.

• FALSE: Recycle API is disabled.

FeeGetRemainingPagesApi

Range

TRUE, FALSE

Annotation

Pre-processor switch to enable and disable the API to read out the remaining number of pages. For more detail,

see 7.3.12 Fee_GetRemainingPages/Fee_GetRemainingPagesEx.

• TRUE: The API to read out the remaining number of pages is enabled.

• FALSE: The API to read out the remaining number of pages API disabled.

FeeWorkFlashRelativeEndAddress

Range

If Extra configuration is used:

0x4000 – final address of work flash

If Extra configuration is not used:

0x2000 – final address of work flash

User guide 21 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

Annotation

Specify the final address of the work flash used by FEE.

Default value: Final maximum address of work flash.

When this parameter is not specified, this address is calculated automatically using FLS memory mapping.

However, in this case, the memory map of FLS setting must be the same as FEE target area.

If the memory map is the difference between FLS and FEE, then in the tresos GUI, click the toggle button of the

FEE setting and specify the address. The address is specified as multiples of 0x1000. (For example: 0x2000,

0x3000, 0x4000, …)

FeeBlockMaxSize

Range

1 to 3072

Annotation

Maximum size of logical blocks specified in bytes.

FeeBlockMaxSize is vendor-specific parameter which is configured.

FeeSectorStartAddress

Range

0 – [depends on work flash size]

Annotation

Start address of sectors defined by Config.

The address is specified as multiples of 0x1000. (For example: 0x0000, 0x1000, 0x2000, …)

Note: The following addresses are the areas used by FEE.

FeeSectorStartAddress – FeeWorkFlashRelativeEndAddress

The number of sectors is automatically calculated by FEE based the total block length.

FeeDefaultCycleMode

Range

MEMIF_MODE_SLOW, MEMIF_MODE_FAST

Annotation

User guide 22 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

MEMIF_MODE_SLOW: Wait cycle time of MainFunction

MEMIF_MODE_FAST: No wait cycle time for MainFunction

For details on FeeDefaultCycleMode, see 5.1.15 Timeout monitoring.

ConfigIfUseThresholdPageSize

Range

TRUE, FALSE

Annotation

• TRUE: If recycle occurs during “immediate block” writing in Config area, “immediate block” is written to

 the current sector as “Theshold area” before recycle and then recycle is started.

 The following notes apply if this configuration is set to "TRUE".

 - The size of one sector should be set manually using FeeNormalPageSize.

 - The reserve area size for writing “immediate block” to the current sector before recycle must be

 manually set using FeeThresholdPageSize.

 - When an “immediate block” with the same number is written multiple times, it should be

 invalidated using the Fee_EraseImmediateBlock() API, but this invalidation process is no

 longer necessary. (Note that it is possible to write the same BlockID multiple times, and only the

 last written BlockID is valid).

• FALSE: In conventional function, if recycle occurs when data is written, then the data is written to a new

sector.

FeeNormalPageSize

Range

0x1000 – [depends on work flash size]

Annotation

Specify one sector size of Config area.

The one sector size is specified as multiples of 0x1000. (For example: 0x1000, 0x2000, …)

This configuration must be specified if ConfigIfUseThresholdPageSize is set to "TRUE".

FeeThresholdPageSize

Range

[Max block datasize] - [depends on FeeNormalPageSize]

Annotation

ThresholdPageSize is the reserve space area that is used for “immediate block”. If recycle occurs due to

writing “immediate block”, it will be written on threshold area first and then recycle will happen.

User guide 23 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

 One sector

This configuration must be specified if ConfigIfUseThresholdPageSize is set to "TRUE".

[Max block datasize]:

A value greater than or equal to the maximum data size defined in all BlockIDs should be specified.

[depends on FeeNormalPageSize]

It should be specified to satisfy the following formula.

(FeeNormalPageSize – FeeThresholdPageSize)

>= total block data size + total block id count × 16 + 40

FeeNormalPageSizeEx

FeeThresholdPageSizeEx

User guide 24 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.2.2.2 Container ConfigEx

ConfigEx

Range

TRUE, FALSE

Annotation

• TRUE: Extra configuration is used.

• FALSE: Extra configuration is not used.

FeeSectorStartAddressEx

Range

0 – [depends on work flash size]

Annotation

Start address of sectors defined by ConfigEx.

The address is specified as multiples of 0x1000. (For example: 0x0000, 0x1000, 0x2000, …)

Note: The interval between FeeSectorStartAddress and FeeSectorStartAddressEx must be 0x2000

or more.

The number of sectors is automatically calculated by FEE based the total block length.

Example 1:

• FeeSectorStartAddress = 0x0000

• FeeSectorStartAddressEx = 0x4000

• FeeWorkFlashRelativeEndAddress = 0x10000

0x0000 to 0x3FFF: Config area

0x4000 to 0xFFFF: ConfigEx area

Example 2:

• FeeSectorStartAddress = 0x6000

• FeeSectorStartAddressEx = 0x0000

• FeeWorkFlashRelativeEndAddress = 0x8000

0x6000 to 0x7FFF: Config area

0x0000 to 0x5FFF: ConfigEx area

User guide 25 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

FeeBlockMaxsizeEx

Range

1 to 3072

Annotation

Maximum size of logical blocks specified in bytes.

FeeBlockMaxSizeEx is vendor-specific parameter which is configured.

ConfigExIfUseThresholdPageSize

Range

TRUE, FALSE

Annotation

• TRUE: If recycle occurs during “immediate block” writing in ConfigEx area, “immediate block” is written

 to the current sector as “Theshold area” before recycle and then recycle is started.

 The following notes apply if this configuration is set to “TRUE”.

 - The size of one sector should be set manually using FeeNormalPageSizeEx.

 - The reserve area size for writing “immediate block” to the current sector before recycle must be

 manually set using FeeThresholdPageSizeEx.

 - When an “immediate block” with the same number is written multiple times, it should be

 invalidated using the Fee_EraseImmediateBlock() API, but this invalidation process is no

 longer necessary. (Note that it is possible to write the same BlockID multiple times, and only the

 last written BlockID is valid).

• FALSE: In conventional function, if recycle occurs when data is written, then the data is written to a new

sector.

FeeNormalPageSizeEx

Range

0x1000 – [depends on work flash size]

Annotation

Specify one sector size of ConfigEx area.

The one sector size is specified as multiples of 0x1000. (For example: 0x1000, 0x2000, …)

This configuration must be specified if ConfigExIfUseThresholdPageSize is set to “TRUE”.

FeeThresholdPageSizeEx

Range

[Max block datasize] – [depends on FeeNormalPageSizeEx]

User guide 26 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

Annotation

ThresholdPageSizeEx is the reserve space area that is used for “immediate block”. If recycle occurs due to

writing “immediate block”, it will be written on threshold area first and then recycle will happen.

 One sector

This configuration must be specified if ConfigExIfUseThresholdPageSize is set to “TRUE”.

[Max block datasize]:

A value greater than or equal to the maximum data size defined in all BlockIDs should be specified.

[depends on FeeNormalPageSize]

It should be specified to satisfy the following formula.

(FeeNormalPageSizeEx – FeeThresholdPageSizeEx)

>= total block data size + total block id count × 16 + 40

4.2.3 Other modules

4.2.3.1 FLS module

When using FEE, set the following for FLS. For details on FLS settings, see the FLS user guide.

General

Fee_Cfg.h is defined in the FLS module configuration "FlsIncludeFile".

Always set the following functions to TRUE:

• FlsBlankCheckApi

• FlsCompareApi

• FlsGetJobResultApi

• FlsCancelApi

• FlsGetStatusApi

• FlsSetModeApi

• FlsReadImmediateApi

• FlsWriteVerification

Always set the following functions to FALSE:

• FlsBeforeWriteVerificaion

 FeeNormalPageSizeEx

FeeThresholdPageSizeEx

User guide 27 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

FlsConfigSet->General

Call cycle

The value of FeeMainFunctionPeriod for FEE and FlsCallCycle for FLS should be set to the same value. If

not, the time out function will not operate correctly.

Example:

FeeMainFunctionPeriod = 1 (msec) FlsCallCycle = 0.001 (sec)

Note: Set the value of FeeMainFunctionPeirod to 1 or higher. If you want to set the value to less than

1, set the value of FlsCallCycle to “0”.

Error notification

Define this item only when operating FEE on Core® M4/M7. Definition is not required when operating FEE on

Core M0.

For FlsDedErrorNotification and FlsSedErrorNotification, specify the FEE callback function as

follows.

Figure 5 shows the description on tresos

[tresos item] [FEE callback function name]

− FlsDedErrorNotification => Fee_FlsDedErrorNotification

− FlsSedErrorNotification => Fee_FlsSedErrorNotification

Figure 5 Description on Tresos

User guide 28 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

FlsConfigSet->Fls Sector List

Sector

The FLS sectors used in FEE should be set continuously.

The total size of the sector required by FEE is:

• 8192 bytes or more (if ConfigEx is not used)

• 16,384 bytes or more (if ConfigEx is used)

Note: When the configuration variant is VARIANT-POST-BUILD (postbuild), Fls_Init must be called with a

parameter &Fls_Config_0 points first FlsConfigSet:

Fls_Init(&Fls_Config_0);

When the configuration variant is VARIANT-PRE-COMPILE (precompile), Fls_Init must be called i with a

parameter NULL_PTR points first FlsConfigSet:

Fls_Init(NULL_PTR);

4.2.3.2 DET

The DET must be configured according to DET user guide, if default error is activated.

User guide 29 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5 Functional description

5.1 Function of the FEE

FEE provides a hardware independent interface for the NVRAM manager.

5.1.1 FEE state machine

Figure 6 shows the Flash driver’s state machine.

Figure 6 State machine of FEE

State MEMIF_UNINIT

After power on, FEE is in the MEMIF_UNINIT state in which it has not yet been initialized.

State MEMIF_IDLE

After successful initialization, the MEMIF_IDLE state is reached and FEE is ready.

If an ongoing request (Read, Write, and so on) is finished or canceled, the driver is also in in the MEMIF_IDLE

state and is ready for the next request.

State MEMIF_BUSY

The MEMIF_BUSY state indicates that FEE has accepted some request except the initialization. FEE will change

the status to MEMIF_BUSY to execute this request during the next call of the function Fee_MainFunction().

Also, FEE will remain in this state until the request is finished or canceled by the user.

State MEMIF_BUSY_INTERNAL

The state MEMIF_BUSY_INTERNAL indicates that the FEE has accepted the initialization request, and this

request will be executed during the next call of the function Fee_MainFunction(). The FEE will remain in this

state until the request is finished or canceled by the user.

MEMIF_UNINIT

MEMIF_IDLE

MEMIF_BUSY

(Not Initializing)

Fee_MainFunction()

Fee_Read()
Fee_Write()

Fee_InvalidateBlock()

Fee_EraseImmediateBlock()
Fee_Clear()/Fee_ClearEx()

Fee_CleanupAndErase()/Fee_CleanupAndEraseEx()

Fee_Init()

Fee_MainFunctin() finished or

Fee_Cancel()

Fee_Init() failed

MEMIF_BUSY_INTERNAL

(Initializing)

User guide 30 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.2 FEE job result state

Figure 7 shows the Flash driver’s job result state machine.

Figure 7 State machine of the job result

MEMIF_JOB_OK

The last job finished successfully. This state is also used after initialization.

MEMIF_JOB_PENDING

Some requested job are pending and will be executed on the next call of Fee_MainFunction().

MEMIF_JOB_FAILED

The last job failed due to hardware error, timeout, and so on.

MEMIF_JOB_CANCELED

User cancelled the last job by calling the function Fee_Cancel().

MEMIF_JOB_INVALID

The requested block was already invalidated, or there is no data with requested ID.

MEMIF_ JOB_INCONSISTENT

The requested block was inconsistent. The compared data is not corresponding.

User guide 31 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.3 Initialization

The initialization is done via the function call:

Fee_Init(ConfigPtr);

The initialization will be executed on the next call of Fee_MainFunction().FEE is now in the

MEMIF_BUSY_INTERNAL state. On each call of Fee_MainFunction(), perform the specified processes (see

Behavior). After processing is successfully finished, the FEE module state is changed to MEMIF_IDLE and the

job result is set to MEMIF_JOB_OK. If a job end notification function was configured, the function will also be

called. If any error occurred during the process, the FEE module state is set back to MEMIF_UNINIT and the job

result is set to MEMIF_JOB_FAILED. If a job error notification function was configured, the function will also be

called.

Behavior:

The following are the behaviors of Fee_Init():

1. Fee_Init() is called for band new work flash.

In this case, whole sectors specified by configuration are initialized (erased) during the first operation.

Example: If 28 sectors are specified, the Fee_Init() time takes the erase time of 28 sectors.

2. Fee_Init() is called after power shutdown.

If the data of work flash is corrupted, recycling might occur for data correction. In this case, Fee_Init()

erases the corrupted sector. The Fee_Init() time takes the erase time of 1 sector.

3. All other scenarios:

Fee_Init() only creates index for data on work flash.

After initialization, the FEE module accepts a read, write, or erase job for the flash memory.

5.1.4 Reading data from flash memory

FEE supports reading data from the flash memory. A read job is set up via the command.

ReturnValue = Fee_Read (BlockNumber, BlockOffset, DataBufferPtr, Length);

If the function returns E_OK, the job was accepted and will be executed on the next call of

Fee_MainFunction(). FEE is now in the MEMIF_BUSY state and will not accept other commands. The job

result is set to MEMIF_JOB_PENDING. Then, the FEE module executes the physical address of flash memory by

the parameters BlockNumber and BlockOffset. On each call of Fee_MainFunction(), data is read from the

executed physical address of flash memory and copied to DataBufferPtr. After the number of bytes

corresponding to the e data length is successfully copied from flash memory, the FEE module state is set back

to MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. If a job end notification function was configured,

the function will also be called. If any error occurred during the read process, the driver will set the job result to

MEMIF_JOB_FAILED. If a job error notification function was configured, the function will also be called.

User guide 32 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.5 Writing data to the flash memory

FEE supports writing data to the flash memory. A write job is set up via the following command:

ReturnValue = Fee_Write (BlockNumber,DataBufferPtr);

If the function returns E_OK, it indicates that the job was accepted and will be executed on the next call of

Fee_MainFunction(). FEE is now in the MEMIF_BUSY state and will not accept other commands. The job

result is set to MEMIF_JOB_PENDING. Then, the FEE module executes the physical address of flash memory by

the parameter BlockNumber. On each call of Fee_MainFunction(),data from DataBufferPtr is written to

execute the physical address of flash memory. After the configured block's size of data is successfully written to

flash memory, the FEE module state is set back to MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. If a

job end notification function was configured, the function will also be called. If any error occurred during the

write process, the driver will set the job result to MEMIF_JOB_FAILED. If a job error notification function was

configured, the function will also be called.

5.1.6 Invalidate data of flash memory

 FEE supports invalidating data of the flash memory. An invalidate job is set up via the command:

ReturnValue = Fee_InvalidateBlock (BlockNumber);

If the function returns E_OK, it indicates that the job was accepted and will be executed on the next call of

Fee_MainFunction(). The FEE now in the MEMIF_BUSY state and will not accept other commands. The job

result is set to MEMIF_JOB_PENDING. Then, the FEE module executes the physical address of flash memory by

the parameter BlockNumber. C, data on the specified physical address of flash memory is invalidated. After the

successful invalidation of data, the FEE module state is set back to MEMIF_IDLE and the job result is set to

MEMIF_JOB_OK. If a job end notification function was configured, the function will also be called. If any error

occurred during the write process, the driver will set the job result to MEMIF_JOB_FAILED. If a job error

notification function was configured, the function will also be called.

5.1.7 Erase immediate data of flash memory

FEE can erase the immediate data of the flash memory. The Fee_EraseImmediateBlock is internally

mapped to the Fee_InvalidateBlock() function. An invalidate job is set up via the command:

ReturnValue = Fee_EraseImmediateBlock (BlockNumber);

If the function returns E_OK, it indicates that the job was accepted and will be executed on the next call of

Fee_MainFunction().FEE is now in the MEMIF_BUSY state and will not accept other commands. The job

result is set to MEMIF_JOB_PENDING. Then, the FEE module executes the physical address of flash memory by

the parameter BlockNumber. On each call of Fee_MainFunction(),data on the specified physical address of

flash memory is invalidated. After the invalidation of data successfully finishes, the FEE module state is set back

to MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. If a job end notification function was configured,

the function will also be called. If any error occurred during the write process, the driver will set the job result to

MEMIF_JOB_FAILED. If a job error notification function was configured, the function will also be called.

User guide 33 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.8 Erasing all data from flash memory

The FEE supports erase all data from the flash memory. An erase job is set up via either of the following

commands:

ReturnValue = Fee_Clear (); //To erase data from "Config" area

ReturnValue = Fee_ClearEx (); //To erase data from "ConfigEx" area

Since there are two configurations, Config and ConfigEx, can be set in FEE, both configuration can be

erased separately by Fee_Clear and Fee_ClearEx, respectively. If the function returns E_OK, it indicates that

the the job was accepted and will be executed on the next call of Fee_MainFunction().FEE is now in the

MEMIF_BUSY state and will not accept other commands. The job result is set to MEMIF_JOB_PENDING. On each

call of Fee_MainFunction data on flash memory is erased. After data is successfully erased, the FEE module

state is set back to MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. If a job end notification function

was configured, the function will also be called. If any error occurred during the erase process, the driver will

set the job result to MEMIF_JOB_FAILED. If a job error notification function was configured, the function will

also be called.

5.1.9 Canceling job prior to maturity

Any ongoing flash job can be canceled by calling the function:

Fee_Cancel ();

The function always cancels the ongoing job, sets the pending job result to MEMIF_JOB_CANCELLED, and sets

the driver back to idle mode. If an error notification function was configured, the function will be called. FEE is

ready for the next job immediately after returning from this function call.

5.1.10 Getting a remaining page

The writable remaining pages are returned by calling the following functions:

ReturnValue = Fee_GetRemainingPages (); //To get pages from "Config" area

ReturnValue = Fee_GetRemainingPagesEx (); //To get pages from "ConfigEx" area

The function can be executed when the driver is in idle mode. If data greater than the remaining pages is

written, sector is erased after recycling.

5.1.11 Recycling a sector

The recycling of a sector occurs by calling the functions:

ReturnValue = Fee_CleanupAndErase (); //To recycle a sector for "Config" area

ReturnValue = Fee_CleanupAndEraseEx (); //To recyle a sector for "ConfigEx" area

Recycling of a sector is usually automatic. By calling the functions, the sectors can be forcefully recycled.

The function can be executed when the driver is in idle mode.

User guide 34 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.12 Retrieving status information

Two API functions are offered to get the current state of the driver and the current state of the job result.

ModuleState = Fee_GetStatus ();

JobResult = Fee_GetJobResult ();

For more information on the module's state and job result, see FEE state machine and FEE job result state,

respectively.

Note: While the flash memory cells are being programmed or erased, the microcontroller will not be

transited to low power consumption modes. To know whether the flash memory processing is

ongoing, the function Fee_GetStatus is called and the microcontroller can be transited to the

modes only if Fee_GetStatus returns MEMIF_IDLE.

5.1.13 Periodic_API_Implementation

Fee_MainFunction()/Fls_MainFunction should be called periodically from the application to perform an

operation in progress1. When the operation is finished, FEE/FLS changes the job status from BUSY to IDLE and

calls the callback functions. If the operation is not completed until after the function is called as many times as

specified, a timeout process is performed. (For detailed information about the timeout process, see 5.1.15

Timeout monitoring).

Note: Fee_MainFunction()/Fls_MainFunction should be called periodically. The periodical time is

controlled by the API Fee_SetCycleMode. (For detailed information, see 5.1.16 Setting the call

cycle mode).

Figure 8 Operation sequence

1 For detailed information on operations performed by these functions, see 5.1.3 Initialization, 5.1.4 Reading data from flash memory,

5.1.5 Writing data to the flash memory, 5.1.6 Invalidate data of flash memory, 5.1.7 Erase immediate data of flash memory, 5.1.8

Erasing all data from flash memory, 5.1.9 Canceling job prior to maturity, 5.1.11Recycling a sector.

Fee/Fls_MainFunction() fnished.

-module status is

 MEMIF_IDLE

-Call Back Fucntions :

<normally end>:

 Call NvM_JobEndNotification ()
 <abnormally end>

 Call NvM_JobErrorNotification ()

Application

Fee_MainFunctin()

FEE FLS

Loop

Fee_MainFunctin()

Fls_MainFunctin()

Fls_MainFunctin()

Fee/Fls_MainFunction() on going.

module status is still MEMIF_BUSY

Need interval.

Interval time is more than or equal to

 “FeeMainFunctionPeriod” or

“FlsCallCycle” specified by configuration.

Fee_MainFunctin()

Fls_MainFunctin()

User guide 35 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.14 Setting the driver operation mode

The module can be switched between a slow and a fast operation mode. The default mode "slow" is used right

after initialization. To switch to the fast mode, the following function must be called.

Fee_SetMode (MEMIF_MODE_FAST);

To return to the slow mode, the Fee_SetMode function must be called with the parameter MEMIF_MODE_SLOW

while the FEE module is in idle mode. The function can be executed when the driver is in idle mode.

5.1.15 Timeout monitoring

The driver provides a timeout monitoring for the deadline of initialize, read, write, invalid and erase (invalidate)

functions.

The maximum timeout value is calculated based on FeeMainFunctionPeriod specified by configuration1 .

FeeMainFunctionPeriod means the periodic time at which Fee_MainFunction is called. If time out occurs,

FEE calls ErrorCallBackFunction2 and abnormally ends.

Example of Fee_Init() : FeeMainFunctionPeriod = 1ms

Fee_Init(NULL);

do

 {

 Fls_MainFunction();

 Fee_MainFunction(); ----------> Timeout monitoring

 wait_cycle(1ms); MaxIntCallCycle -=

FeeMainFunctionPeriod;

 } If(MaxIntCallCycle < 0){

while((Fee_GetStatus() != MEMIF_IDLE) Call ErrorCallBackFunction;

&& (Fee_GetStatus()!=MEMIF_UNINIT)); }

1 For detailed information, see 5.1.16 Setting the call cycle mode.
2 For detailed information, see 7.6 Configurable interfaces

User guide 36 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.1.16 Setting the call cycle mode

The module can be switched between a slow and a fast operation mode during the cycle time of

Fee_MainFunction/Fls_MainFunction. The default mode is set by FeeDefaultCycleMode. To switch

modes (slow <> fast), the following function should be called.

ReturnValue = Fee_SetCycleMode ([MEMIF_MODE_SLOW | MEMIF_MODE_FAST]);

• MEMIF_MODE_SLOW:

This mode is used when Fee_MainFunction/Fls_MainFunction is performed with wait cycle time.

The periodical time should be more than or equal to FeeMainFunctionPeriod or FlsCallCycle specified

by user configuration.

Consider the following example, where FeeMainFunctionPeriod and FlsCallCycle are set to 1 msec:

 do

 {

 Fls_MainFunction();

 Fee_MainFunction();

 wait_cycle(1msec); <- Wait cycle time is 1ms

 }

 while(Fee_GetStatus() != MEMIF_IDLE);

• MEMIF_MODE_FAST:

This mode is used when Fee_MainFucntion/Fls_MainFunction is performed with no wait cycle.

Consider the following example:

 do

 {

 Fls_MainFunction();

 Fee_MainFunction();

 <- no wait cycle time

 }

 while(Fee_GetStatus() != MEMIF_IDLE);

To switch to slow mode (fast mode), the Fee_SetCycleMode function must be called with the parameter

MEMIF_MODE_SLOW (MEMIF_MODE_FAST) while the FEE module is in idle state. The function can be executed

when the driver is in idle state.

If the function returns E_OK, the job was accepted and normally finished. If the function returns E_NOT_OK, the

job was not accepted and the mode was not switched. If it is E_NOT_OK, confirm whether the job state is idle.

User guide 37 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.2 Virtual flash memory layout

FEE provides upper layers with a 32-bit virtual linear address space and uniform segmentation scheme. This

virtual 32-bit address will consist of 16-bit block number and 16-bit block offset. The FEE always maps the

physical flash memory address to virtual linear address space. FEE uses the work flash memory only. For more

information of physical flash address space, see the FLS module User Guide. For more information on virtual

linear address space, see the AUTOSAR SWS (FEE).

5.3 Default error detection

The module's services perform regular error checks.

If default error detection is enabled, all errors are reported to DET, a central error hook function within the

AUTOSAR environment. The error hook routine is called and the error code, service ID, module ID, and instance

ID are passed as parameters. The checking itself cannot be deactivated for safety reasons.

Table 2 shows the default error checks that are performed by the service of FEE. 7.3 Functions explains which

error codes are reported by each API function.

Table 2 Default error codes occurring during development1

Related error code Value Type of error

FEE_E_UNINIT 0x01 FEE has not been initialized.

[How to handle]

Execute initialization (Fee_Init) before

executing each API (Fee_write, Fee_Read,

and so on).

FEE_E_INVALID_BLOCK_NO 0x02 Block number is different from the value that

has been set in the configuration.

[How to handle]

Check the block number specified for each API

(Fee_write, Fee_Read, and so on).

FEE_E_INVALID_BLOCK_OFS 0x03 Offset is out of the block size set in the

configuration.

[How to handle]

Check the block offset specified for API

(Fee_Read).

FEE_E_PARAM_POINTER 0x04 Top address of the storage destination of the

data is NULL.

[How to handle]

Check the data buffer pointer specified for API

(Fee_write, Fee_Read, and so on).

FEE_E_INVALID_BLOCK_LEN 0x05 The result of Length + BlockOffset is greater

than the configured BlockSize or the

parameter Length is 0 or less.

[How to handle]

Check the block length specified for Fee_Read.

1 Errors that would typically only occur during development.

User guide 38 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

Related error code Value Type of error

FEE_E_IMMEDIATEDATASPACE_UNAVAILABLE 0x12 Lack of immediate data reserve area error

information.

[How to handle]

The immediate target block has already been

written. Invalidate it using the

Fee_EraseImmediateBlock, API and try to

write again.

Table 3 Default error codes occurring during development and in the field1

Related error code Value Type of error

FEE_E_BUSY 0x06 FEE state is MEMIF_BUSY.

[How to handle]

Execute the API again after the status changes to

MEMIF_IDLE.

FEE_E_BUSY_INTERNAL 0x07 FEE state is MEMIF_BUSY_INTERNAL (Under Initializing).

[How to handle]

Execute the API again after the status changes to

MEMIF_IDLE.

FEE_E_INVALID_CANCEL 0x08 When processing cancel, FEE state is MEMIF_IDLE.

[How to handle]

Check the execution point of Fee_Cancel. Processing

can continue normally.

FEE_E_TIMEOUT_ERROR_OCCURRED 0x11 Time-out error information.

[How to handle]

Check the FEE CONFIGURATION in:

5.1.15 Timeout monitoring

5.1.16 Setting the call cycle mode

If the above does not work, try the following:

 (1) Execute the API again.

 (2) Initialize (execute Fee_Init) and execute the API

again.

(3) Erase all sectors.

FEE_E_1BIT_ECC_ERROR_OCCURRED 0x16 1-bit ECC error occurred during reading. [only for core

M4/M7, not for core M0]

[How to handle]

MEMIF_JOB_OK is returned for Fee_GetJobResult.

However, it may change to 2bit ECC error.

Recycle using Fee_CleanupAndErase. If you are using

ConfigEx, also execute Fee_CleanupAndEraseEx.

FEE_E_2BIT_ECC_ERROR_OCCURRED 0x17 2-bit ECC error occurred during reading. [only for core

M4/M7, not for core M0]

[How to handle]

1 Errors that may occur both during development and in the field.

User guide 39 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

Related error code Value Type of error

MEMIF_JOB_FAILED is returned for Fee_GetJobResult.

However, when 2bit ECC error is detected during

Fee_Init, MEMIF_IDLE is returned for Fee_GetStatus.

The status of Block ID with 2bit ECC error is changed to

invalid. (Unreadable).

- The block ID with 2bit ECC error which is detected

during Fee_Init cannot be notified to the upper

applications, so it is recommended to rewrite the

information of all blocks.

- For the block ID with 2bit ECC error which is detected

during Fee_Read, rewrite the data.

Table 4 Default error codes occurring in the field1

Related error code Value Type of error

FEE_E_HARDWARE_ERROR_OCCURRED 0x10 Hardware error information

[How to handle]

Try the following:

(1) Execute the API again.

(2) Initialize (Execute Fee_Init) and

execute the API again.

(3) Erase all sectors.

FEE_E_BLOCKID_UNMATCHED_ERROR_OCCURRED 0x14 Block ID does not match the configuration

when Fee is initializing.

[How to handle]

(1) Use the original configuration file. Set

"FeeUnmatchedBlockCheck" to "False".

Execute Fee_Init again.

(2) Erase all sectors.

FEE_E_BLOCKSIZE_UNMATCHED_ERROR_OCCURRED 0x15 Block size is not matched with

configuration when Fee is initializing.

[How to handle]

(1) Use the original configuration file. Set

"FeeUnmatchedBlockCheck" to "False".

Execute Fee_Init again.

(2) Erase all sectors.

5.4 Reentrancy

Fee_GetVersionInfo() is reentrant. All other API functions of FEE are non-reentrants.

5.5 Debugging support

The FEE does not support debugging.

1 Errors that may occur in the field.

User guide 40 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Functional description

5.6 Note

None.

User guide 41 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Hardware resources

6 Hardware resources

6.1 Interrupts

The FEE does not use any interrupt.

User guide 42 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7 Appendix A – API reference

7.1 Data types

7.1.1 External data types

Description

The FEE imports data types from the module MemIf and AUTOSAR standard data types.

7.1.2 Std_ReturnType

Description

AUTOSAR standard API return type.

7.1.3 Std_VersionInfoType

Description

This type is used to request the version of Fee using the Fee_GetVersionInfo() function.

7.1.4 MemIf_ModeType

Description

This type denotes the module operation mode. It is used as the parameter value of the Fee_SetMode()

function.

7.1.5 MemIf_StatusType

Description

This type denotes the current status of the underlying abstraction module and device driver. It is used as the

return value of the Fee_GetStatus() function.

7.1.6 MemIf_JobResultType

Description

This type denotes the result of the last job.

7.2 Macros

7.2.1 Error codes

See Table 5.

User guide 43 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.2.2 Version information

The version information listed in Table 5 is published in the module’s header file.

Table 5 Version information

Name Value Description

FEE_SW_MAJOR_VERSION See release notes Vendor-specific major version number

FEE_SW_MINOR_VERSION See release notes Vendor-specific minor version number

FEE_SW_PATCH_VERSION See release notes Vendor-specific patch version number

7.2.3 Module information

Table 6 Module information

Name Value Description

FEE_MODULE_ID 21 Module ID

FEE_VENDOR_ID 66 Vendor ID

7.2.4 API service IDs

Table 7 API service IDs

API name Value

Fee_Init() 0x00

Fee_SetMode() 0x01

Fee_Read() 0x02

Fee_Write() 0x03

Fee_Cancel() 0x04

Fee_GetStatus() 0x05

Fee_GetJobResult() 0x06

Fee_InvalidateBlock() 0x07

Fee_GetVersionInfo() 0x08

Fee_EraseImmediateBlock() 0x09

Fee_MainFunction() 0x12

Fee_Clear()/Fee_ClearEx() 0x30

Fee_GetRemainingPages()/Fee_GetRemainingPagesEx() 0x31

Fee_CleanupAndErase()/Fee_CleanupAndEraseEx() 0x33

Fee_SetCycleMode() 0x34

User guide 44 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.3 Functions

7.3.1 Fee_Init

Syntax

void Fee_Init(const Fee_ConfigType* ConfigPtr)

Service ID

0x00

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

NULL_PTR only

Parameters (out)

None

Return value

None

DET errors

None

Description

None

Caveats

None

7.3.2 Fee_SetMode

Syntax

void Fee_SetMode(MemIf_ModeType Mode)

Service ID

0x01

Sync/Async

Synchronous

Reentrancy

Non-reentrant

User guide 45 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

Parameters (in)

Mode:

Underlying FLS module operation mode (MEMIF_MODE_SLOW, MEMIF_MODE_FAST).

Parameters (out)

None

Return value

None

DET errors

FEE_E_UNINIT: Module is not yet initialized.

FFE_E_BUSY: Module is currently busy.

Description

Setting the FEE and the FLS operation mode

Caveats

FEE must be initialized before this function is called. FEE must be in IDLE state when this function is called.

7.3.3 Fee_Read

Syntax

Std_ReturnType Fee_Read(uint16 BlockNumber, uint16 BlockOffset , uint8*

DataBufferPtr, uint16 Length)

Service ID

0x02

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

BlockNumber: Target block’s number.

BlockOffset: Target block’s offset.

Length: Number of bytes to read.

Parameters (out)

DataBufferPtr: The pointer to read data buffer.

Return value

E_OK: Read request was accepted.

User guide 46 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

E_NOT_OK: Read request was not accepted.

DET errors

FEE_E_INVALID_BLOCK_NO: The parameter BlockNumber is an invalid number.

FEE_E_INVALID_BLOCK_OFS: The parameter BlockOffset is an invalid offset.

FEE_E_PARAM_POINTER: The parameter DataBufferPtr is NULL.

FEE_E_INVALID_BLOCK_LEN: The result of Length + BlockOffset is greater than the configured BlockSize

or the parameter Length is 0 or less

FEE_E_UNINIT: Module is not yet initialized.

FEE_E_BUSY: Module is currently busy.

Description

Sets up a read job for FEE. FEE executes physical address by BlockNumber and BlockOffset. FEE reads

Length bytes data from executed address, and copies it to DataBufferPtr.

Caveats

FEE must be initialized before this function is called.

Only one job can be accepted at the same time.

7.3.4 Fee_Write

Syntax

Std_ReturnType Fee_Write(uint16 BlockNumber, const uint8* DataBufferPtr)

Service ID

0x03

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

BlockNumber: Target block's number.

DataBufferPtr: The pointer to write data buffer.

Parameters (out)

None

Return value

E_OK: Write request was accepted.

E_NOT_OK: Write request was not accepted.

User guide 47 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

DET errors

FEE_E_INVALID_BLOCK_NO: The parameter BlockNumber is an invalid number.

FEE_E_PARAM_POINTER: The parameter DataBufferPtr is NULL.

FEE_E_UNINIT: Module is not yet initialized.

FEE_E_BUSY: Module is currently busy.

Description

Sets up a write job for FEE. FEE executes physical address by BlockNumber. FEE writes the configured length of

data from DataBufferPtr to executed address of flash memory.

Caveats

FEE must be initialized before this function is called.

Only one job can be accepted at the same time.

7.3.5 Fee_Cancel

Syntax

void Fee_Cancel(void)

Service ID

0x04

Sync/Async

Synchronous

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

FEE_E_UNINIT: Module is not yet initialized.

FEE_E_INVALID_CANCEL: Module has no jobs to cancel.

Description

This function cancels an ongoing job immediately. If there is no ongoing job, the function refreshes internal

data.

User guide 48 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

Caveats

FEE must be initialized before this function is called.

FEE must have jobs before this function is called.

7.3.6 Fee_GetStatus

Syntax

MemIf_StatusType Fee_GetStatus(void)

Service ID

0x05

Sync/Async

Synchronous

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

MEMIF_UNINIT: FEE has not been initialized.

MEMIF_IDLE: FEE is currently idle.

MEMIF_BUSY: FEE is currently busy.

DET errors

None

Description

This function returns the current state of FEE.

Caveats

None

User guide 49 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.3.7 Fee_GetJobResult

Syntax

MemIf_JobResultType Fee_GetJobResult(void)

Service ID

0x06

Sync/Async

Synchronous

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

MEMIF_JOB_OK: The last job has been finished successfully.

MEMIF_JOB_PENDING: The last job is waiting for execution or is currently being executed.

MEMIF_JOB_CANCELED: The last job has been canceled (the job failed).

MEMIF_JOB_FAILED: The last job has not been finished successfully (the job failed).

MEMIF_BLOCK_INVALID: The requested block has been invalidated; the requested read operation cannot be

performed.

DET errors

FEE_E_UNINIT: Module is not yet initialized.

Description

This function returns the last job result.

Caveats

FEE must be initialized before this function is called.

User guide 50 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.3.8 Fee_InvalidateBlock

Syntax

Std_ReturnType Fee_InvalidateBlock(uint16 BlockNumber)

Service ID

0x07

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

BlockNumber: Target block’s number

Parameters (out)

None

Return value

E_OK: Invalidate request was accepted.

E_NOT_OK: Invalidate request was not accepted.

DET errors

FEE_E_INVALID_BLOCK_NO: The parameter BlockNumber is invalid number.

FEE_E_UNINIT: Module is not yet initialized.

FEE_E_BUSY: Module is currently busy.

Description

Sets up an invalidate job for FEE. FEE executes physical address by BlockNumber. FEE invalidates the flash

memory data.

Caveats

FEE must be initialized before this function is called.

Only one job can be accepted at the same time.

User guide 51 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.3.9 Fee_GetVersionInfo

Syntax

void Fee_GetVersionInfo(Std_VersionInfoType* VersionInfoPtr)

Service ID

0x08

Sync/Async

Synchronous

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

VersionInfoPtr: The pointer of the version information copy.

Return value

None

DET errors

FEE_E_PARAM_POINTER: VersionInfoPtr is NULL

Description

This function returns the version information of the module.

Caveats

None

7.3.10 Fee_EraseImmediateBlock

Syntax

Std_ReturnType Fee_EraseImmediateBlock(uint16 BlockNumber)

Service ID

0x09

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

User guide 52 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

BlockNumber: Target block’s number

Parameters (out)

None

Return value

E_OK: Erase the block data request was accepted.

E_NOT_OK: Erase the block data request was not accepted.

DET errors

FEE_E_INVALID_BLOCK_NO: The parameter BlockNumber is an invalid number, or the block was not

configured to immediate block.

FEE_E_UNINIT: Module is not yet initialized.

FEE_E_BUSY: Module is currently busy.

Description

Sets up an erase (invalidate) immediate data job for FEE. It is internally mapped to the

FEE_InvalidateBlock() function. FEE executes physical address by BlockNumber. FEE invalidates the

target block of flash memory.

Caveats

FEE must be initialized before this function is called.

Only one job can be accepted at the same time.

The target block must be configured to the immediate block.

7.3.11 Fee_Clear / Fee_ClearEx

Syntax

Std_ReturnType Fee_Clear(void) / Std_ReturnType Fee_ClearEx(void)

Service ID

0x30

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

User guide 53 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

E_OK: Erase the all data request was accepted

E_NOT_OK: Erase the all data request was not accepted

DET errors

FEE_E_UNINIT: Module is not yet initialized

FEE_E_BUSY: Module is currently busy

Description

Sets up an all data erase job for the FEE module. The FEE erases all blocks of flash memory. The Config /

ConfigEx areas will be erased separately by Fee_Clear / Fee_ClearEx.

Caveats

The FEE must be initialized before this function is called.

7.3.12 Fee_GetRemainingPages/Fee_GetRemainingPagesEx

Syntax

uint32 Fee_GetRemainingPages(void)/uint32 Fee_GetRemainingPagesEx(void)

Service ID

0x31

Sync/Async

Synchronous

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

In case of Fee_GetRemainingPages

Number of Remaining page for Config:

((empty area size - Immediate Data area size - block management area size) / FeeVirtualPageSize).

In case of Fee_GetRemainingPagesEx

Number of Remaining page for ConfigEx:

((empty area size - Immediate Data area size - block management area size) / FeeVirtualPageSize).

DET errors

FEE_E_UNINIT: Module is not yet initialized

User guide 54 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

FEE_E_BUSY: Module is currently busy

Description

Acquire remainder pages of the FEE domain (Config / ConfigEx).

Caveats

The FEE has to be initialized before this function is called.

7.3.13 Fee_CleanupAndErase / Fee_CleanupAndEraseEx

Syntax

Std_ReturnType Fee_CleanupAndErase(void) /

Std_ReturnType Fee_CleanupAndEraseEx(void)

Service ID

0x33

Sync/Async

Asynchronous

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

E_OK: Recycle request was accepted

E_NOT_OK: Recycle request was not accepted

DET errors

FEE_E_UNINIT: Module is not yet initialized

FEE_E_BUSY: Module is currently busy

Description

The recycling a sector is usually automatically carried out. By calling the function, the recycling a sector can

occur forcibly.

Caveats

The FEE has to be initialized before this function is called.

User guide 55 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.3.14 Fee_SetCycleMode

Syntax

Std_ReturnType Fee_SetCycleMode(MemIf_ModeType Mode)

Service ID

0x34

Sync/Async

Synchronous

Reentrancy

Non-reentrant

Parameters (in)

Mode:

Timeout monitoring operation mode

(MEMIF_MODE_SLOW, MEMIF_MODE_FAST).

Parameters (out)

None

Return value

E_OK: Timeout monitoring operation mode request was accepted

E_NOT_OK: Timeout monitoring operation mode request was not accepted

DET errors

FEE_E_UNINIT: Module is not yet initialized

FFE_E_BUSY: Module is currently busy

Description

Sets FEE and FLS timeout monitoring operation modes.

Caveats

Fee must be initialized before this function is called.

Fee must be in IDLE state when this function is called.

User guide 56 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.4 Scheduled functions

7.4.1 Fee_MainFunction

Syntax

void Fee_MainFunction(void)

Service ID

0x12

Timing

FIXED_CYCLIC

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

None

Description

This function performs the asynchronous processing of the jobs.

Caveats

FEE must be initialized before this function is called.

User guide 57 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.5 Expected interfaces (optional)

If default error detection is enabled FEE uses the following callback function provided by the DET.

7.5.1 Det_ReportError

Syntax

Std_ReturnType Det_ReportError(uint16 ModuleId, uint8 InstanceId, uint8 ApiId, uint8

ErrorId)

Sync/Async

Synchronous

Reentrancy

Reentrant

Parameters (in)

ModuleId: Module ID of FEE.

InstanceId: Instance ID of FEE.

ApiId: ID of the API function that calls this function.

ErrorId: ID of the detected error.

Return value

Always returns E_OK

Description

Function for reporting default errors.

User guide 58 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.6 Configurable interfaces

The following callback functions are configurable and usually provided by the NVRAM manager.

7.6.1 NvM_JobEndNotification

Syntax

void NvM_JobEndNotification(void)

Reentrancy

Don’t care

Parameters (in)

None

Return value

None

Description

This callback function will be called when a job has been completed with a positive result.

Configurable

In this module, there are no configuration jobs.

7.6.2 NvM_JobErrorNotification

Syntax

void NvM_JobErrorNotification(void)

Reentrancy

Don’t care

Parameters (in)

None

Return value

None

Description

This callback function will be called when a job has been completed with a negative result.

Configurable

In this module, there are no configuration jobs.

User guide 59 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix A – API reference

7.7 Required callback functions

Callout functions

7.7.1 Error callout API

FEE requires an error callout handler. Each error is reported to this handler, and error checking cannot be

switched OFF. The name of the function to be called can be configured by the parameter

FeeErrorCalloutFunction.

Syntax

void Error_Handler_Name(uint16 ModuleId, uint8 InstanceId,uint8 ApiId, uint8 ErrorId)

Reentrancy

Reentrant

Parameters (in)

ModuleId: Module ID of calling module.

InstanceId: Instance ID of calling module.

ApiId: ID of the API function that calls this function.

ErrorId: ID of the detected error.

Return value

None

Description

Function for reporting errors.

User guide 60 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Appendix B – Access register table

8 Appendix B – Access register table

The FEE does not use any register.

Note: The underlying FLS uses hardware registers. (see FLS's user guide)

User guide 61 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

References

References

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Specification of flash driver, AUTOSAR release 4.2.2.

[3] Specification of flash EEPROM emulation, AUTOSAR release 4.2.2.

[4] Specification of default error tracer, AUTOSAR release 4.2.2.

[5] Specification of RTE, AUTOSAR release 4.2.2.

[6] Specification of ECU configuration, AUTOSAR release 4.2.2.

[7] Specification of NVRAM manager, AUTOSAR release 4.2.2.

[8] Requirements of memory hardware abstraction layer, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[9] EB tresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

Layered software architecture, AUTOSAR release 4.2.2.

User guide 62 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Revision history

Revision history

Document

revision

Date Description of changes

** 2018-01-23 Initial release.

*A 2019-01-16 Updated hardware documentation

Updated vendor and module specific parameters

- Added FeeUnmatchedBlockCheck

Removed FEE_E_BUSY_INTERNAL and MEMIF_BUSY_INTERNAL_state

- 5.1.1 FEE state machine

- 5.3 Default error detection

- A.3.2 Fee_SetMode

- A.3.3 Fee_Read

- A.3.4 Fee_Write

- A.3.5 Fee_Cancel

- A.3.6 Fee_GetStatus

- A.3.8 Fee_InvalidateBlock

- A.3.10 Fee_EraseImmediateBlock

- A.3.11 Fee_Clear / Fee_ClearEx

- A.3.12 Fee_GetRemainingPages / Fee_GetRemainingPageEx

- A.3.13 Fee_CleanupAndErase / Fee_CleanupAndEraseEx

- A.3.14 Fee_SetCycleMode

Updated the explanation of State MEMIF_BUSY of 5.1.1 FEE state

machine

Change the document name from users guide to user guide.

*B 2019-06-20 Updated hardware documentation information.

Updated 4.2.2 Vendor and module specific parameters

- Updated FeeUnmatchedBlockCheck

- Added FeeWorkFlashRelativeEndAddress

- Updated FeeSectorStartAddress

- Updated FeeSectorStartAddressEx

- Deleted FeeSectorSize

- Deleted FeeSectorSizeEx

Updated 4.3.2 Sector number and sector address

Updated 5.1.13 Periodic_API_Implementation

Updated 5.1.15 Timeout monitoring

*C 2020-01-09 Updated 1.1 Introduction to the Flash EEPROM Emulation.

- Added 1.1.1 Feature of FEE

*D 2020-06-25 Updated 4.2.2 Vendor and module specific parameters

- Updated FeeWorkFlashRelativeEndAddress

Added 4.2.3.1 FLS module

Updated 5.1.1 FEE state machine

Updated 5.3 Default error detection

User guide 63 002-22364 Rev. *L

 2023-12-08

Flash EEPROM Emulation user guide
TRAVEO™ T2G family

Revision history

Document

revision

Date Description of changes

Updated A.3.7 Fee_GetJobResult

*E 2020-09-05 Added 2.5 Memory mapping

Updated 4.2.1 Parameter constraints

- Updated FeeImmediateData

Updated 5.3 Default error detection

- Added FEE_E_1BIT_ECC_ERROR_OCCURRED

- Added FEE_E_2BIT_ECC_ERROR_OCCURRED

*F 2020-11-16 Updated to Infineon template.

*G 2021-04-15 Updated FeeUnmatchedBlockCheck

Updated General in FLS module

Updated 5.1.3 Initialization

Updated 5.1.8 Erasing all data from flash memory

Updated 5.1.10 Getting a remaining page

Updated 5.4 Reentrancy

*H 2021-12-23 Updated to Infineon style.

*I 2022-02-18 Updated 4.2.1 Parameter constraints

Added FeeDelayRecycleOperation

*J 2022-10-27 Update 4.2.2 Vendor and module specific parameters

Updated FeeUnmatchedBlockCheck

Added ConfigIfUseThresholdPageSize

Added FeeNormalPageSize

Added FeeThresholdPageSize

Added ConfigExIfUseThresholdPageSize

Added FeeNormalPageSizeEx

Added FeeThresholdPageSizeEx

*K 2023-06-01 Updated 5.4 Reentrancy

*L 2023-12-08 Web release. No content updates.

 Warnings

Edition 2023-12-08

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-22364 Rev. *L

Due to technical requirements products may contain
dangerous substances. For information on the types in
question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the Flash EEPROM Emulation
	1.1.1 Features of FEE

	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding

	2 Using the Flash EEPROM Emulation
	2.1 Installation and prerequisites
	2.2 Configuring the FEE
	2.2.1 Architecture specifics

	2.3 Adapting an application
	2.4 Starting the build process
	2.5 Memory mapping
	2.5.1 Memory allocation keyword

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 Memory abstraction interface
	3.4.2 Flash driver
	3.4.3 DET
	3.4.4 BSW scheduler
	3.4.5 Error callout handler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 Vendor-specific configuration
	4.2.1 Parameter constraints
	4.2.1.1 Container FeeGeneral
	4.2.1.2 Container FeeBlockConfiguration
	4.2.1.3 Container FeePublishedInformation

	4.2.2 Vendor and module specific parameters
	4.2.2.1 Container FeeGeneral
	4.2.2.2 Container ConfigEx

	4.2.3 Other modules
	4.2.3.1 FLS module
	4.2.3.2 DET

	5 Functional description
	5.1 Function of the FEE
	5.1.1 FEE state machine
	5.1.2 FEE job result state
	5.1.3 Initialization
	5.1.4 Reading data from flash memory
	5.1.5 Writing data to the flash memory
	5.1.6 Invalidate data of flash memory
	5.1.7 Erase immediate data of flash memory
	5.1.8 Erasing all data from flash memory
	5.1.9 Canceling job prior to maturity
	5.1.10 Getting a remaining page
	5.1.11 Recycling a sector
	5.1.12 Retrieving status information
	5.1.13 Periodic_API_Implementation
	5.1.14 Setting the driver operation mode
	5.1.15 Timeout monitoring
	5.1.16 Setting the call cycle mode

	5.2 Virtual flash memory layout
	5.3 Default error detection
	5.4 Reentrancy
	5.5 Debugging support
	5.6 Note

	6 Hardware resources
	6.1 Interrupts

	7 Appendix A – API reference
	7.1 Data types
	7.1.1 External data types
	7.1.2 Std_ReturnType
	7.1.3 Std_VersionInfoType
	7.1.4 MemIf_ModeType
	7.1.5 MemIf_StatusType
	7.1.6 MemIf_JobResultType

	7.2 Macros
	7.2.1 Error codes
	7.2.2 Version information
	7.2.3 Module information
	7.2.4 API service IDs

	7.3 Functions
	7.3.1 Fee_Init
	7.3.2 Fee_SetMode
	7.3.3 Fee_Read
	7.3.4 Fee_Write
	7.3.5 Fee_Cancel
	7.3.6 Fee_GetStatus
	7.3.7 Fee_GetJobResult
	7.3.8 Fee_InvalidateBlock
	7.3.9 Fee_GetVersionInfo
	7.3.10 Fee_EraseImmediateBlock
	7.3.11 Fee_Clear / Fee_ClearEx
	7.3.12 Fee_GetRemainingPages/Fee_GetRemainingPagesEx
	7.3.13 Fee_CleanupAndErase / Fee_CleanupAndEraseEx
	7.3.14 Fee_SetCycleMode

	7.4 Scheduled functions
	7.4.1 Fee_MainFunction

	7.5 Expected interfaces (optional)
	7.5.1 Det_ReportError

	7.6 Configurable interfaces
	7.6.1 NvM_JobEndNotification
	7.6.2 NvM_JobErrorNotification

	7.7 Required callback functions
	7.7.1 Error callout API

	8 Appendix B – Access register table
	References
	Revision history
	Disclaimer

