

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-23407 Rev. *T

www.infineon.com 2023-12-08

Flash driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This user guide describes the architecture, configuration, and usage of the flash driver. It helps you to

understand the functionality of the driver and provides a reference for the driver's API.

The installation, build process, and general information about the use of the EB tresos Studio are not within the

scope of this document. See the EB tresos Studio for ACG8 user’s guide [7] for detailed information of these

topics.

Intended audience

This document is intended for anyone who uses the flash driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the flash driver, explains the embedding in the

AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the flash driver details the steps required to use the flash driver in your application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the flash driver.

Chapter 4 EB tresos Studio configuration interface describes the configuration of the flash driver.

Chapter 5 Functional description gives a functional description of all services offered by the flash driver.

Chapter 6 Hardware resources gives a description of all hardware resources used.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table 1 Abbreviation

Abbreviation Description

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

Basic Software (BSW) Standardized part of software which does not fulfill a vehicle functional

job.

CM0+ Arm® Cortex® M0+ CPU core

CM4 Arm® Cortex® M4 CPU core

CM7_0 Arm® Cortex® M7 CPU first core

CM7_1 Arm® Cortex® M7 CPU second core

CM7_2 Arm® Cortex® M7 CPU third core

http://www.infineon.com/

User guide 2 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

About this document

Abbreviation Description

CM7_3 Arm® Cortex® M7 CPU fourth core

Data buffer A RAM area in memory which flash driver APIs access

DEM Diagnostic Event Manager

DET Default Error Tracer

DMA Direct Memory Access

EB tresos ECU AUTOSAR Suite A collection of AUTOSAR Basic Software modules and a Runtime

Environment integrated in a common configuration and build

environment.

EB tresos Studio Elektrobit Automotive configuration framework

ECC Error Checking Code

EEPROM Electrically erasable programmable ROM

FLS Flash driver module

FEE Flash EEPROM Emulation

Flash sector A flash sector is the smallest amount of flash memory that can be

erased in one pass. The size of the flash sector depends upon the flash

technology and is therefore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be

programmed in one pass. The size of the flash page depends upon the

flash technology and is therefore hardware dependent.

GHS Green Hills Software

HSM Hardware Security Module

HW Hardware

IPC Inter Processor Communication

ISR Interrupt Service Routine

µC Microcontroller

MCAL Microcontroller Abstraction Layer

MCU Microcontroller Unit

MPU Memory Protection Unit

Non-blocking mode Mode that does not block CM0+ while flash memory operation is

running.

OS Operating System

SchM BSW Scheduler

S-LLD Security Low Level Driver

Work Flash Application flash (Flash memory for storing user’s data by such as FEE)

Work flash block#0 First flash area in two separate work flash. Refer to data sheet to know

the mounted devices and address mappings.

Work flash block#1 Second flash area in two separate work flash. Refer to data sheet to

know the mounted devices and address mappings.

User guide 3 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

About this document

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Specification of flash driver, AUTOSAR release 4.2.2.

[3] Specification of flash EEPROM emulation, AUTOSAR release 4.2.2.

[4] Specification of default error tracer, AUTOSAR release 4.2.2.

[5] Specification of RTE, AUTOSAR release 4.2.2.

[6] Specification of ECU configuration parameters, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[7] EB tresos Studio for ACG8 user's guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[8] Layered software architecture, AUTOSAR release 4.2.2.

User guide 4 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 4

1 General overview ... 8

1.1 Introduction to the AUTOSAR flash driver .. 8

1.2 User profile .. 8

1.3 Embedding in the AUTOSAR environment ... 8

1.4 Supported hardware ... 9

1.5 Development environment ... 9

1.6 Character set and encoding .. 9

1.7 HSM support .. 9

2 Using the flash driver .. 10

2.1 Installation and prerequisites ... 10

2.2 Configuring the flash driver .. 10

2.2.1 Architecture details .. 11

2.3 Adapting your application .. 12

2.4 Starting the build process ... 13

2.5 Measuring stack consumption .. 14

2.6 Memory mapping .. 14

2.6.1 Memory allocation keyword .. 14

3 Structure and dependencies .. 16

3.1 Static files .. 16

3.2 Configuration files ... 16

3.3 Generated files .. 16

3.4 Dependencies .. 17

3.4.1 Flash EEPROM emulation (FEE) ... 17

3.4.2 DET .. 17

3.4.3 BSW scheduler .. 17

3.4.4 Error callout handler .. 17

4 EB tresos Studio configuration interface .. 18

4.1 General configuration ... 18

4.2 Vendor specific configuration ... 18

4.2.1 Parameter constraints ... 18

4.2.1.1 Container FlsGeneral .. 18

4.2.1.2 Container FlsConfigSet ... 22

4.2.1.3 Container FlsDemEventParameterRefs ... 25

4.2.1.4 Container FlsExternalDriver.. 25

4.2.1.5 Container FlsSector ... 25

4.2.1.6 Container FlsPublishedInformation ... 26

4.2.2 Vendor and driver specific parameters ... 29

4.2.2.1 Container FlsGeneral .. 29

4.2.2.2 Container FlsConfigSet ... 39

4.2.2.3 Container FlsSector ... 41

4.2.3 Other modules .. 41

4.2.3.1 Flash EEPROM emulation ... 41

4.2.3.2 DET ... 41

4.2.3.3 BSW scheduler .. 41

5 Functional description .. 42

User guide 5 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Table of contents

5.1 Function of the flash driver ... 42

5.1.1 Flash driver state machine ... 42

5.1.1.1 State MEMIF_UNINIT ... 42

5.1.1.2 State MEMIF_IDLE ... 42

5.1.1.3 State MEMIF_BUSY .. 43

5.1.2 Flash driver job result state ... 43

5.1.2.1 MEMIF_JOB_OK... 43

5.1.2.2 MEMIF_JOB_PENDING .. 43

5.1.2.3 MEMIF_JOB_CANCELED .. 43

5.1.2.4 MEMIF_JOB_FAILED .. 43

5.1.2.5 MEMIF_BLOCK_INCONSISTENT ... 43

5.1.3 Initialization ... 44

5.1.4 Reading data from the flash memory .. 44

5.1.5 Writing data to the flash memory .. 45

5.1.6 Erasing data from the flash memory ... 47

5.1.7 Comparing data from the flash memory ... 48

5.1.8 Checking blank for the flash memory ... 49

5.1.9 Canceling a job prior to maturity ... 50

5.1.10 Retrieving the status information ... 50

5.1.11 Setting the driver operation mode .. 51

5.1.12 Suspending a job .. 51

5.1.13 Resuming a suspended job .. 52

5.1.14 Timeout supervision .. 52

5.1.15 eCT flash safety mechanism .. 53

5.1.15.1 Related configurations ... 53

5.1.15.2 IPC lock acquisition and release ... 53

5.1.15.3 Arbitration sequences ... 55

5.1.15.4 Assumptions of use ... 60

5.1.15.5 Limitations .. 60

5.2 Virtual flash memory layout .. 60

5.3 Parallel flash operations for separate work flash memories ... 61

5.4 Default error detection .. 62

5.5 Runtime error detection ... 63

5.6 Reentrancy ... 63

5.7 Debugging support .. 63

6 Hardware resources ... 64

6.1 Registers .. 64

6.2 Interrupts ... 64

6.3 Fault ... 65

6.4 IPC .. 66

6.5 System call ... 67

6.6 Memory protection unit (MPU) ... 67

6.7 DMA .. 70

7 Appendix A – API reference .. 71

7.1 Data types .. 71

7.1.1 Flash driver data types ... 71

7.1.1.1 Fls_AddressType ... 71

7.1.1.2 Fls_LengthType ... 71

7.1.1.3 Fls_ConfigType .. 71

User guide 6 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Table of contents

7.1.1.4 External data types ... 71

7.1.1.5 Std_ReturnType .. 71

7.1.1.6 Std_VersionInfoType .. 71

7.1.1.7 MemIf_ModeType ... 72

7.1.1.8 MemIf_StatusType .. 72

7.1.1.9 MemIf_JobResultType .. 72

7.2 Macros .. 73

7.2.1 Error codes ... 73

7.2.2 Version information ... 74

7.2.3 Module information ... 74

7.2.4 API service IDs .. 74

7.3 Functions ... 75

7.3.1 Fls_Init .. 75

7.3.2 Fls_Erase ... 76

7.3.3 Fls_Write ... 77

7.3.4 Fls_Cancel .. 78

7.3.5 Fls_GetStatus ... 79

7.3.6 Fls_GetJobResult ... 80

7.3.7 Fls_Read ... 81

7.3.8 Fls_Compare .. 82

7.3.9 Fls_SetMode ... 83

7.3.10 Fls_GetVersionInfo ... 83

7.3.11 Fls_BlankCheck .. 85

7.3.12 Fls_ReadImmediate ... 86

7.3.13 Fls_Suspend ... 87

7.3.14 Fls_Resume .. 88

7.3.15 Fls_SetCycleMode .. 89

7.4 Scheduled functions ... 90

7.4.1 Fls_MainFunction ... 90

7.5 Expected interfaces ... 91

7.5.1 Mandatory interface ... 91

7.5.2 Optional interfaces ... 91

7.5.2.1 Det_ReportError .. 91

7.5.2.2 Det_ReportRuntimeError.. 92

7.5.3 Configurable interfaces .. 93

7.5.3.1 Fee_JobEndNotification ... 93

7.5.3.2 Fee_JobErrorNotification ... 94

7.5.3.3 Fee_DedErrorNotification ... 95

7.5.3.4 Fee_SedErrorNotification ... 95

7.5.3.5 Systemcall callout function .. 96

7.5.3.6 Erase callout API .. 96

7.6 Required callback functions ... 97

7.6.1 Callout functions .. 97

7.6.2 Error callout API ... 97

8 Appendix B – Access register table ... 98

8.1 FLASHC .. 98

8.2 FLASHC_FM_CTL_ECT ... 100

8.3 FLASHC1 .. 101

8.4 FLASHC1_FM_CTL_ECT ... 103

8.5 FAULT ... 106

User guide 7 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Table of contents

8.6 IPC .. 108

8.7 CPUSS .. 110

8.8 M-DMA (DMAC) ... 110

8.9 DMAC_CH ... 111

Revision history ... 113

Disclaimer ... 119

User guide 8 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

1 General overview

1 General overview

1.1 Introduction to the AUTOSAR flash driver

The flash driver abstracts the hardware internal flash controller of the TRAVEO™ T2G microcontroller and

provides API functions for writing, erasing, reading, and comparing data from or to the flash memory.

1.2 User profile

This guide presumes the reader has a basic knowledge of the following:

• Flash memory

• Embedded systems

• The AUTOSAR terminology

• The C programming language

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 shows the layered AUTOSAR software architecture. The FLS driver (Figure 2) is one of the memory

drivers in the microcontroller abstraction layer (see Layered software architecture [8]).

User guide 9 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

1 General overview

Figure 2 Flash driver in MCAL layer

1.4 Supported hardware

This version of the flash driver supports the TRAVEO™ T2G microcontroller family. No further special external

hardware devices are required. The supported derivatives are listed in the release notes.

Additional derivatives that contain only a subset of the capabilities of one derivative mentioned above can be

implemented or supported by providing a resource file with its properties.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The Base, Platforms, Make, and

Resource modules are required for proper functionality of the flash driver.

1.6 Character set and encoding

All source code files of the flash driver are restricted to the ASCII character set. The files are encoded in UTF-8

format, with only the 7-bit subset (values 0x00 … 0x7F) being used.

1.7 HSM support

The flash driver is provided to handle flash memory from HSM on CM0+ in addition to the driver for application.

The plugin of the driver for HSM (on CM0+) is called Fls_TS_T40D13M2I0R0. Whereas, the plugin of the driver for

application (on CM4, CM7_0, CM7_1, CM7_2, or CM7_3) is called Fls_TS_T40D13M1I0R0.

This document describes the common and plugin-specific features of both plugins.

User guide 10 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

2 Using the flash driver

2 Using the flash driver

This chapter describes the necessary steps to incorporate the flash driver into your application.

2.1 Installation and prerequisites

Note: Before you start, see the EB tresos Studio for ACG8 user’s guide [7] for the following information.

1. Installation procedure of EB tresos ECU AUTOSAR components

2. Usage of the EB tresos Studio software

3. Usage of the EB tresos ECU AUTOSAR build environment (it includes an explanation of how to set up and

integrate your application within the EB tresos ECU AUTOSAR build environment)

The installation of the flash driver complies with the general installation procedure for EB tresos ECU AUTOSAR

components given in the documents mentioned above. If the driver is successfully installed, the driver will

appear in the module list of the EB tresos Studio.

In the following sections, it is assumed that the project is properly set up and is using the application template

as described in the EB tresos Studio for ACG8 user’s guide [7]. This template provides the necessary folder

structure, project and makefiles needed to configure and compile an application within the build environment.

You also have to be familiar with the usage of the command line shell.

2.2 Configuring the flash driver

This section provides a short overview about the configuration structure defined by AUTOSAR to use the flash

driver.

The following three basic containers are used to configure common behavior.

1. FlsConfigSet: Container for runtime configuration parameters of the flash driver.

Implementation type: Fls_ConfigType.

2. FlsGeneral: Container for general parameters of the flash driver. These parameters are always

precompiled.

3. FlsPublishedInformation: Container for published parameters. These parameters do not have any

configuration class setting because they are published information.

For detailed information and description, see EB tresos Studio configuration interface.

Note: Ensure that the application also includes an AUTOSAR-compliant default error tracer when default

error detection and/or runtime error detection are enabled. If not, the application will not compile.

See EB tresos Studio configuration interface for details of a configuration to be set up.

User guide 11 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

2 Using the flash driver

2.2.1 Architecture details

• FlsErrorCalloutFunction: Specifies an error callout handler, which is called when any errors are

detected during runtime.

• FlsIncludeFile: Specifies the file name, which is used to include definitions (such as declaration for error

callout handler).

• FlsEraseVerification, FlsBeforeWriteVerification, and FlsWriteVerification: Specifies

whether each verification at writing or erasing is enabled or disabled.

• FlsEraseCalloutFunction: Specifies an erase callout handler, which is called when an erase job set up

by Fls_Erase() is accepted.

• FlsDedErrorNotification: Specifies a DED error notification, which is called when a double-bit error

(DED) is detected.

• FlsSedErrorNotification: Specifies a SED error notification, which is called when a single-bit error

(SED) is detected.

• FlsDmaChannel: Specifies a DMA channel used for reading from work flash.

• FlsAuxiliaryBufferSize: The size of the auxiliary buffer that stores data read from work flash by DMA

transfer at a time, for reading, verifying, or comparing process.

• FlsSetFlashCtlRegister: Specifies the bit fields of FLASH_CTL register that are set by the flash driver.

• FlsSetWorkFlashSafetyRegister: Specifies whether WORK_FLASH_SAFETY register is set by the flash

driver.

• FlsSetWorkFlashFaultMaskRegister: Specifies whether the fault mask 1 (MASK1) and mask 2 (MASK2)

registers for work flash are set by the flash driver.

• FlsDefineWdgClear: Specifies whether the function Fls_WdgClear (described later) to clear the

watchdog timer is defined by the flash driver.

• FlsUseNonBlockingWrite: Specifies whether the flash driver writes to work flash in non-blocking mode.

This parameter is not applied for the write operation to work flash block#1.

• FlsUseDmaForRead: Specifies whether the flash driver reads from work flash with DMA transfer.

• FlsReportErrorIfNotBlank: Specifies whether the flash driver calls the error callout function when a

blank check job detects non-blank.

• FlsUseSafetyMechanism: Specifies whether eCT flash safety mechanism for write/erase is enabled or

disabled. The mechanism is used to inform another flash driver (for application or HSM) of flash embedded

(write or erase) operations or to be notified of flash embedded operations by them.

• FlsHsmPresent: Specifies whether the hardware security module (HSM) is present. If HSM exists, it will

perform setting of important registers.

• FlsArbitrationTimeout: Specifies tolerant time for arbitration (waiting for) to finish the flash operation

that was started from another core, typically maximum time to erase one flash sector. For more details on

the maximum time, see the device datasheet.

• FlsSystemcallCalloutFunction: Specifies a callout function, which is called whenever the flash driver

calls the system-call.

• FlsSetCycleModeApi: Specifies whether the Fls_SetCycleMode function is enabled or disabled.

The job end notification is configurable on configuration parameter FlsJobEndNotification. The job error

notification is configurable on configuration parameter FlsJobErrorNotification.

To avoid the watchdog timer trigger reset, you may have to clear the watchdog timer from the flash driver in

the following cases:

User guide 12 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

2 Using the flash driver

• The following parameters are high value: FlsConfigSet/FlsMaxReadFastMode,

FlsConfigSet/FlsMaxReadNormalMode, FlsConfigSet/FlsMaxWriteFastMode, and

FlsConfigSet/FlsMaxWriteNormalMode.

• The execution time of Fls_MainFunction() takes longer than the timeout of the watchdog timer due to

low CPU operating frequency and so on.

In such cases, you must implement Fls_WdgClear(). The template of Fls_WdgClear() is defined in

Fls_CfgDer.c. If the configuration parameter FlsDefineWdgClear is TRUE, implement it directly in

Fls_CfgDer.c. Otherwise, you must define the function in any of your source file.

For example, in the case of configuring the WDG module:

#include <Wdg.h> /* Wdg Driver header file */

FUNC(void, FLS_CODE) Fls_WdgClear(void)

{

 /* This function is implemented for clearing the watchdog timer by user. */

 Wdg_SetTriggerCondition(xxxx);

 return;

}

2.3 Adapting your application

To use the flash driver in your application, you first have to include the flash driver header file by adding the

following code line to your source file:

#include "Fls.h" /* Fls Driver */

This publishes all the required function/data prototypes and symbolic names of the configuration to the

application.

In addition, you should also implement the error callout function for ASIL safety extension.

Declare the error callout function in the specified file by the FlsIncludeFile parameter and implement in

your application (see Required callback functions, Error callout API).

The error callout function name can be configured by the FlsErrorCalloutFunction parameter.

The erase callout function name can be optionally configured by the FlsEraseCalloutFunction parameter.

The DED error notification name can be optionally configured by the FlsDedErrorNotification parameter.

The SED error notification name can be optionally configured by the FlsSedErrorNotification parameter.

The callout function for invocation of system-call can be optionally configured by the

FlsSystemcallCalloutFunction parameter.

In the next step, the FLS should be initialized and configured. The configuration of the FLS with the flash driver

using EB tresos Studio is explained in EB tresos Studio for ACG8 user's guide [7].

The FLS initialization can be done with the following function call and parameter:

When configuration variant is VARIANT-POST-BUILD (Postbuild), the parameter is the address of a const

variable called Fls_Config_<number> (for example, Fls_Config_0),

Fls_Init(&Fls_Config_0);

User guide 13 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

2 Using the flash driver

Note: Fls_Config_<number> can be referred by including Fls_PBcfg.h.

When the configuration variant is VARIANT-PRE-COMPILE (Precompile) and only one FlsConfigSet is

configured,

Fls_Init(NULL_PTR);

All other API calls can be used after successful initialization of the FLS whenever necessary.

If you use the MCU with data cache, and the data cache is enabled, the following areas must be allocated to

non-cacheable region by setting of memory protection unit (MPU):

• Work flash region

• A section FLS_START_SEC_VAR_NO_INIT_UNSPECIFIED in Fls_MemMap.h

• A section FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT_32 in Fls_MemMap.h (Fls_TS_T40D13M2I0R0)

For detailed information, see Memory allocation keyword and Memory protection unit (MPU).

Use DMA to read data from the flash memory unless the configuration parameter FlsGeneral/

FlsUseDmaForRead is set to FALSE (it may be set to FALSE if you do not need to detect ECC errors). In such

uses of DMA, you must enable the DMA controller before using the flash driver by using one of the following

ways because the flash driver does not enable the DMA controller:

• Set ENABLED bit (Bit No.31) in DMAC_CTL register to 1.

• Configure the MCU module with McuDmaEnable=true and call the Mcu_SetMode() function with the

configured mode.

For detailed information, see DMA.

2.4 Starting the build process

Do the following to build your application:

Note: For a clean build, use the build command with target clean_all. before (make clean_all).

1. On the command shell, type the following command to generate the necessary configuration-dependent

files. See Generated files for details.

> make generate

2. Type the following command to resolve all required file dependencies.

> make depend

3. Type the following command to compile and link the application:

> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file, which can be downloaded to the

target hardware.

User guide 14 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

2 Using the flash driver

2.5 Measuring stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The

executable file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement.

-DSTACK_ANALYSIS_ENABLE

2. Type the following command to clean library files.

> make clean_lib

3. Follow the build process described in section Starting the build process.

Follow the instructions in the release notes and measure the stack consumption.

2.6 Memory mapping

The Fls_MemMap.h file in the $(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0I0R0/include directory is a

sample. This file is replaced by the file generated by the MEMMAP module. Input to the MEMMAP module is

generated as Fls_Bswmd.arxml in the $(PROJECT_ROOT)/output/generated/swcd directory of your project

folder.

2.6.1 Memory allocation keyword

• FLS_START_SEC_CODE / FLS_STOP_SEC_CODE

The memory section type is CODE. All executable code is allocated in this section.

• FLS_START_SEC_CONST_UNSPECIFIED / FLS_STOP_SEC_CONST_UNSPECIFIED

The memory section type is CONST. The following contents are allocated in this section:

− All configuration data

− Hardware register base address data

• FLS_START_SEC_VAR_INIT_UNSPECIFIED / FLS_STOP_SEC_VAR_INIT_UNSPECIFIED

The memory section type is VAR. The following variable is allocated in this section:

− Flash driver state

• FLS_START_SEC_VAR_NO_INIT_UNSPECIFIED / FLS_STOP_SEC_VAR_NO_INIT_UNSPECIFIED

• FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT_32 /

FLS_STOP_SEC_SYSCALLSHARED_VAR_NO_INIT_32 (Fls_TS_T40D13M2I0R0)

The memory section type is VAR. The following variables are allocated in this section:

− All variables except for flash driver state (status)

Note: When data cache is enabled in the MCU (for example, Arm® Cortex®-M7 CPU), this memory section

must be in non-cacheable region by setting of MPU. For further information, see Memory

protection unit (MPU).

User guide 15 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

2 Using the flash driver

For allocation of this memory section to given section name .autosar_fls_bss, an example of Fls_MemMap.h is

shown as follows. By linker, the section of .autosar_fls_bss must be allocated to address in non-cacheable

region.

(This is example for GHS compiler. If other compiler is used, confirm and follow the syntax rule of it.)

#ifdef FLS_START_SEC_VAR_NO_INIT_UNSPECIFIED

 :

 #else

 #define MEMMAP_STARTED

 #pragma ghs section bss=".autosar_fls_bss" // add

 :

#endif

#ifdef FLS_STOP_SEC_VAR_NO_INIT_UNSPECIFIED

 :

 #else

 #undef MEMMAP_STARTED

 #pragma ghs section bss=default // add

 :

#endif

User guide 16 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

3 Structure and dependencies

3 Structure and dependencies

The flash driver consists of static, configuration, and generated files.

3.1 Static files

Static files of the flash driver are located in the directory $(TRESOS_BASE)/plugins/Fls_TS_*. These files contain

the functionality of the driver, which does not depend on the current configuration.

All necessary source files are automatically compiled and linked during the build process and all include paths

are set.

3.2 Configuration files

The configuration of the flash driver is done using the EB tresos Studio software. When saving a project, the

configuration description is written in the Fls.xdm file, located in your project folder under

$(PROJECT_ROOT)/config. This file serves as the input to generate the configuration-dependent source and

header files during the build process.

Note: In the Fls.epc file, each sector container included in the FlsSectorList container must be

arranged in the order of the value of the FlsSectorStartaddress parameter.

3.3 Generated files

During the build process, the following files are generated based on the current configuration. They are located

in the subfolder output/generated of your project folder.

• include/Fls_Cfg.h and include/Fls_CfgDer.h contain the configuration declarations for the AUTOSAR module

FLS.

• include/Fls_Irq.h contains the configuration declarations of the interrupt service routine.

• include/Fls_PBcfg.h contains declarations of configuration variables required by the Fls_Init API.

• make/Fls_cfg.mak is currently empty.

• src/Fls_CfgDer.c contains the configuration relevant routine.

• src/Fls_Irq.c contains the interrupt service routine.

• src/Fls_PBcfg.c contains the structure of the FlsConfigSet and the memory map information of the flash

sectors.

Note: You do not need to add the generated source files to your application make file. They are compiled

and linked automatically during the build process.

• swcd/Fls_Bswmd.arxml contains BSW module description.

Note: Additional steps are required for the generation of the BSW module description.

In EB tresos Studio, follow the menu path Project > Build Project and select generate_swcd.

User guide 17 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

3 Structure and dependencies

3.4 Dependencies

Figure 3 shows how the flash driver is embedded in the memory stack.

Note: To use the flash driver, the flash EEPROM emulation (see Specification of flash EEPROM emulation

[3]) and the BSW scheduler module (see Specification of RTE [5]) must be enabled and configured.

Optionally, the default error tracer (see Specification of default error tracer [4]) can be enabled

and configured.

Figure 3 Relationship between the flash driver and other AUTOSAR modules

3.4.1 Flash EEPROM emulation (FEE)

The FEE is part of the ECU abstraction layer, which is located above the flash driver. It is the only module that

calls flash driver functions and provides callback functions for flash driver events such as the job end

notification or the job error notification.

3.4.2 DET

The default error tracer is optional and handles all errors.

3.4.3 BSW scheduler

The basic software scheduler calls the main function and handles the critical sections that are used within the

flash driver.

3.4.4 Error callout handler

The error callout handler is called on every error that is detected, independently of whether default error

detection is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by

AUTOSAR. It is configured via the FlsErrorCalloutFunction configuration parameter.

User guide 18 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of the current delivery. For further information see EB tresos Studio for ACG8 user's guide [7].

Note: The ECU parameter description of the Elektrobit automotive flash driver basically corresponds to

the one defined by AUTOSAR in Specification of flash driver [2], chapter 10. However, because there

are some vendor-specific extensions, use the ECU parameter description file that is delivered with

the flash driver located in $(TRESOS_BASE)/plugins/Fls_TS_*/config/Fls.xdm.

4.1 General configuration

The flash driver configuration, including different parameters and their meaning, is described in Specification of

flash driver [2] and Specification of ECU configuration parameters [6]. See these documents for further

information.

4.2 Vendor specific configuration

This section summarizes the differences between the configuration given in the Specification of flash driver [2]

and Specification of ECU configuration parameters [6] and the configuration necessary for this flash driver.

4.2.1 Parameter constraints

The range of several parameters of the general flash driver configuration was reduced to hardware-specific

values for the TRAVEO™ T2G microcontroller. These parameters are listed here, together with new hardware-

specific and vendor-specific parameters. The parameters are preconfigured by using default values relevant for

the selected derivative (when changing the derivative, a manual update is possible by clicking the Calc button).

If a parameter is not used by the driver or if the parameter is not configurable, the field cannot be edited.

4.2.1.1 Container FlsGeneral

4.2.1.1.1 FlsAcLoadOnJobStart

Name

FlsAcLoadOnJobStart

Range

FALSE

Annotation

Driver does not load flash access code to RAM, so currently set as FALSE.

User guide 19 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.1.2 FlsBaseAddress

Name

FlsBaseAddress

Range

-

Annotation

Flash memory starts exactly at the given addresses. FlsBaseAddress is gathered from the Resource module

and therefore configuration is not required.

4.2.1.1.3 FlsBlankCheckApi

Name

FlsBlankCheckApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_BlankCheck function.

4.2.1.1.4 FlsCancelApi

Name

FlsCancelApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_Cancel function.

4.2.1.1.5 FlsCompareApi

Name

FlsCompareApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_Compare function.

User guide 20 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.1.6 FlsDevErrorDetect

Name

FlsDevErrorDetect

Range

TRUE, FALSE

Annotation

Enables/disables the default error notification for the FLS driver. Setting this parameter to FALSE disables the

notification of default errors via DET. However, in contrast to AUTOSAR specification, detection of default

errors is still enabled as safety mechanisms (fault detection).

4.2.1.1.7 FlsDriverIndex

Name

FlsDriverIndex

Range

0

Annotation

Index of the driver. This parameter is not used in the flash driver. This will be assigned to the following symbolic

names. The symbolic name derived of the general container short name prefixed with "FlsConf_"

(FlsConf_FlsGeneral).

4.2.1.1.8 FlsGetJobResultApi

Name

FlsGetJobResultApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_GetJobResult function.

4.2.1.1.9 FlsGetStatusApi

Name

FlsGetStatusApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_GetStatus function.

User guide 21 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.1.10 FlsRuntimeErrorDetect

Name

FlsRuntimeErrorDetect

Range

TRUE, FALSE

Annotation

Enables/disables the runtime errors notification for the FLS driver. Setting this parameter to FALSE disables the

notification of runtime errors via DET. However, in contrast to AUTOSAR specification, detection of runtime

errors is still enabled as safety mechanisms (fault detection).

4.2.1.1.11 FlsSetModeApi

Name

FlsSetModeApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_SetMode function.

4.2.1.1.12 FlsTotalSize

Name

FlsTotalSize

Range

Total size of the available work flash memory. See the hardware manual.

Annotation

Flash memory length must exactly correspond to the available total size of work flash on the target device.

4.2.1.1.13 FlsUseInterrupts

Name

FlsUseInterrupts

Range

TRUE, FALSE

Annotation

Job processing triggered by hardware interrupt (TRUE) or not triggered by interrupt (FALSE). When this

parameter is set to TRUE, the parameter FlsGeneral/FlsUseNonBlockingWrite cannot be set to TRUE.

User guide 22 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.1.14 FlsVersionInfoApi

Name

FlsVersionInfoApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_GetVersionInfo function.

4.2.1.2 Container FlsConfigSet

4.2.1.2.1 FlsAcErase

Name

FlsAcErase

Range

-

Annotation

This driver does not execute in RAM. Therefore, this parameter cannot be specified by the configuration tool.

4.2.1.2.2 FlsAcWrite

Name

FlsAcWrite

Range

-

Annotation

This driver does not execute in RAM. Therefore, this parameter cannot be specified by the configuration tool.

4.2.1.2.3 FlsCallCycle

Name

FlsCallCycle

Range

0.000..1.000

Annotation

Cycle time of calls of the flash driver's main function. The unit of this parameter is seconds. Therefore, the

configured value of this parameter is rounded down in milliseconds. If the value is 0.000, Timeout supervision is

not performed.

User guide 23 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.2.4 FlsDefaultMode

Name

FlsDefaultMode

Range

MEMIF_MODE_FAST, MEMIF_MODE_SLOW

Annotation

Default FLS device mode after initialization.

4.2.1.2.5 FlsJobEndNotification

Name

FlsJobEndNotification

Range

<FUNCTION_NAME>

Annotation

Mapped to the job end notification routine provided by some upper layer module, typically the FEE module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the

declarations must be included using the parameter FlsGeneral/FlsIncludeFile.

4.2.1.2.6 FlsJobErrorNotification

Name

FlsJobErrorNotification

Range

<FUNCTION_NAME>

Annotation

Mapped to the job error notification routine provided by some upper layer module, typically the FEE module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the

declarations must be included using the parameter FlsGeneral/FlsIncludeFile.

User guide 24 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.2.7 FlsMaxReadFastMode

Name

FlsMaxReadFastMode

Range

4..* (multiple of 4)

Annotation

Default value is 1024. This value is a multiple of 4. This value is used in reading, comparing, blank checking and

verifying the written data after writing in fast mode.

4.2.1.2.8 FlsMaxReadNormalMode

Name

FlsMaxReadNormalMode

Range

4..* (multiple of 4)

Annotation

Default value is 128. This value is a multiple of 4. This value is used in reading, comparing, blank checking and

verifying the written data after writing in normal mode.

4.2.1.2.9 FlsMaxWriteFastMode

Name

FlsMaxWriteFastMode

Range

4..* (multiple of 4)

Annotation

Default value is 64. This value is a multiple of 4. This value is used in writing job without hardware interrupt in

fast mode.

4.2.1.2.10 FlsMaxWriteNormalMode

Name

FlsMaxWriteNormalMode

Range

4..* (multiple of 4)

Annotation

Default value is 16. This value is a multiple of 4. This value is used in writing the job without hardware interrupt

in normal mode.

User guide 25 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.2.11 FlsProtection

Name

FlsProtection

Range

-

Annotation

The flash driver does not support protection. Therefore, this parameter cannot be specified by the

configuration tool.

4.2.1.3 Container FlsDemEventParameterRefs

This container is not present because it is obsolete.

4.2.1.4 Container FlsExternalDriver

This container is not present because external flash is not supported.

4.2.1.5 Container FlsSector

4.2.1.5.1 FlsNumberOfSectors

Name

FlsNumberOfSectors

Range

1..*

Annotation

Number of continuous identical flash sectors. The maximum value depends on subderivative.

4.2.1.5.2 FlsPageSize

Name

FlsPageSize

Range

4

Annotation

Page size for write access of a sector.

User guide 26 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.5.3 FlsSectorSize

Name

FlsSectorSize

Range

2048 (large sector) or 128 (small sector)

Annotation

Size of a sector in bytes.

4.2.1.5.4 FlsSectorStartaddress

Name

FlsSectorStartaddress

Range

Virtual start address of a flash sector. See Virtual flash memory layout.

Annotation

Start address of a flash sector.

4.2.1.6 Container FlsPublishedInformation

4.2.1.6.1 FlsAcLocationErase

Name

FlsAcLocationErase

Range

-

Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

4.2.1.6.2 FlsAcLocationWrite

Name

FlsAcLocationWrite

Range

-

Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

User guide 27 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.6.3 FlsAcSizeErase

Name

FlsAcSizeErase

Range

-

Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

4.2.1.6.4 FlsAcSizeWrite

Name

FlsAcSizeWrite

Range

-

Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

4.2.1.6.5 FlsEraseTime

Name

FlsEraseTime

Range

0.16

Annotation

The unit of this parameter is seconds and represents the maximum time to erase one complete flash sector in

all supported derivatives.

4.2.1.6.6 FlsErasedValue

Name

FlsErasedValue

Range

0xFFFFFFFF

Annotation

The erased value is regarded as 0xFFFFFFFF for four bytes.

User guide 28 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.1.6.7 FlsExpectedHwId

Name

FlsExpectedHwId

Range

TRAVEO

Annotation

The flash driver does not support external flash. Therefore, this parameter is not used.

4.2.1.6.8 FlsSpecifiedEraseCycles

Name

FlsSpecifiedEraseCycles

Range

250000

Annotation

Number of erase cycles specified for the flash device.

4.2.1.6.9 FlsWriteTime

Name

FlsWriteTime

Range

0.001

Annotation

The unit of this parameter is seconds.

User guide 29 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2 Vendor and driver specific parameters

4.2.2.1 Container FlsGeneral

4.2.2.1.1 FlsErrorCalloutFunction

Name

FlsErrorCalloutFunction

Range

<FUNCTION_NAME>

Annotation

FlsErrorCalloutFunction is used to specify the error callout function name. The function is called on every

error. The ASIL level of this function limits the ASIL level of the FLS driver.

Note: FlsErrorCalloutFunction must be a valid C function name; otherwise an error can occur in

the configuration phase.

4.2.2.1.2 FlsIncludeFile

Name

FlsIncludeFile

Range

File names

Annotation

FlsIncludeFile is a list of the file names that shall be included within the driver. Any application-specific

symbol that is used by the Fls configuration such as error callout function should be included by configuring

this parameter.

Note: FlsIncludeFile must be a filename with the .h extension and a unique name; otherwise errors

can occur in the configuration phase.

Note: If the configuration parameter FlsJobEndNotification, FlsJobErrorNotification,

FlsDedErrorNotification, and / or FlsSedErrorNotification are configured, Fee_Cbk.h

(or another file containing the declarations) must be included by configuring this parameter

because notifications have to be declared and defined outside the FLS module.

User guide 30 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.1.3 FlsEraseVerification

Name

FlsEraseVerification

Range

TRUE, FALSE

Annotation

Enables/disables the erase verification (blank check) after erasing a flash block. (Only if the upper-layer module

can ensure blankness of flash block, FlsEraseVerification can be set to FALSE.)

4.2.2.1.4 FlsBeforeWriteVerification

Name

FlsBeforeWriteVerification

Range

TRUE, FALSE

Annotation

Enables/disables the verification (blank check) before writing a flash block. (Only if the upper-layer module can

ensure availability of flash block, FlsBeforeWriteVerification can be set to FALSE.)

4.2.2.1.5 FlsWriteVerification

Name

FlsWriteVerification

Range

TRUE, FALSE

Annotation

Enables/disables the write verification (compare) after writing the flash block. (Only if the upper-layer module

can ensure data consistency, FlsWriteVerification can be set to FALSE.)

4.2.2.1.6 FlsEraseCalloutFunction

Name

FlsEraseCalloutFunction

Range

<FUNCTION_NAME>

Annotation

FlsEraseCalloutFunction is used to specify the erase callout function name. The function is called after an

erase job is accepted.

User guide 31 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

Note: FlsEraseCalloutFunction must be a valid C function name; otherwise an error can occur in

the configuration phase.

4.2.2.1.7 FlsReadImmediateApi

Name

FlsReadImmediateApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_ReadImmediate function.

4.2.2.1.8 FlsSuspendResumeApi

Name

FlsSuspendResumeApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_Suspend / Fls_Resume function.

4.2.2.1.9 FlsDmaChannel

Name

FlsDmaChannel

Range

0..*

Annotation

The DMA channel that is used for reading from work flash. The maximum value depends on the subderivative. If

flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM (Fls_TS_T40D13M2I0R0) are used, a separate

DMA channel must be used for each flash driver. If the configuration parameter FlsUseDmaForRead is FALSE,

this parameter is not valid.

User guide 32 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.1.10 FlsAuxiliaryBufferSize

Name

FlsAuxiliaryBufferSize

Range

4..2048 (multiple of 4)

Annotation

The size of auxiliary buffer that stores data read from work flash by DMA transfer at a time for reading, verifying

or comparing process. Default value is 128. This value is a multiple of 4. If the configuration parameter

FlsUseDmaForRead is FALSE, this parameter is not valid.

4.2.2.1.11 FlsSetFlashCtlRegister

Name

FlsSetFlashCtlRegister

Range

FLS_FLASH_CTL_WORKONLY, FLS_FLASH_CTL_USERVALUE, FLS_FLASH_CTL_NOTSET

Annotation

Specifies the bit fields of FLASH_CTL register that are set by the flash driver.

FLS_FLASH_CTL_WORKONLY (Default): The only bit fields regarding work flash are set to the FLASH_CTL

register.

FLS_FLASH_CTL_USERVALUE: The user-specified value is set to the FLASH_CTL register. The value is defined by

the configuration parameter FlsUserValueForFlashCtlRegister.

FLS_FLASH_CTL_NOTSET: FLS driver does not set any value to the FLASH_CTL register.

4.2.2.1.12 FlsUserValueForFlashCtlRegister

Name

FlsUserValueForFlashCtlRegister

Range

0..*

Annotation

A value for the FLASH_CTL register that is set by the user when the configuration parameter

FlsSetFlashCtlRegister is FLS_FLASH_CTL_USERVALUE. All significant bits in the register must be

specified, but the bits of FLASH macro wait states (LSB 4 bits) are not set by flash driver.

User guide 33 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.1.13 FlsSetWorkFlashSafetyRegister

Name

FlsSetWorkFlashSafetyRegister

Range

TRUE, FALSE

Annotation

Specifies whether the WORK_FLASH_SAFETY register is set by the flash driver. If TRUE, the flash driver sets the

WORK_FLASH_SAFETY register. Otherwise, it does not set the WORK_FLASH_SAFETY register.

4.2.2.1.14 FlsDefineWdgClear

Name

FlsDefineWdgClear

Range

TRUE, FALSE

Annotation

Specifies whether the function Fls_WdgClear to clear the watchdog timer is defined by the flash driver. If

TRUE, the Flash driver defines the function Fls_WdgClear. Otherwise, it does not define the function

Fls_WdgClear.

4.2.2.1.15 FlsUseNonBlockingWrite

Name

FlsUseNonBlockingWrite

Range

TRUE, FALSE

Annotation

Specifies whether the flash driver writes to work flash in non-blocking mode. If TRUE, the Flash driver writes in

non-blocking mode. Otherwise, writes in blocking mode (Default). This parameter is not applied for the write

operation to work flash block#1. The direct register accesses to FLASHC1 implies non-blocking mode.

4.2.2.1.16 FlsHsmPresent

Name

FlsHsmPresent

Range

TRUE, FALSE

User guide 34 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

Annotation

This parameter indicates whether the hardware security module (HSM) is present. If the HSM is not supported

yet, this parameter should be FALSE.

4.2.2.1.17 FlsUseSafetyMechanism

Name

FlsUseSafetyMechanism

Range

TRUE, FALSE

Annotation

Preprocessor switch to enable and disable eCT flash safety mechanism for flash embedded (write or erase)

operation. If other flash drivers (such as HSM, SHE) have not supported the safety mechanism yet, this

parameter should be FALSE. If both flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM

(Fls_TS_T40D13M2I0R0) are used, this parameter should be TRUE for using the safety mechanism because of

the arbitration between both flash drivers.

4.2.2.1.18 FlsIpcStructure

Name

FlsIpcStructure

Range

0..*

Annotation

IPC structure (number) used for eCT flash safety mechanism and HSM communication. The maximum value

depends on subderivative. If both flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM

(Fls_TS_T40D13M2I0R0) are used, this parameter should be used for safety mechanism because of the

arbitration between both flash drivers. Do not choose the IPC structures that are reserved for system calls. Set

this parameter to the same values in both flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM

(Fls_TS_T40D13M2I0R0). Refer to 5.1.15.3 Arbitration sequences for the detailed usage and behavior.

4.2.2.1.19 FlsIpcInterruptStructure

Name

FlsIpcInterruptStructure

Range

0..*

Annotation

IPC interrupt structure (number) used for eCT flash safety mechanism and HSM communication. The maximum

value depends on subderivative. If both flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM

(Fls_TS_T40D13M2I0R0) are used, this parameter should be used for safety mechanism because of the

arbitration between both flash drivers. Do not choose the IPC interrupt structures that are reserved for system

User guide 35 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

calls. Set this parameter to different values for flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM

(Fls_TS_T40D13M2I0R0). Refer to 5.1.15.3 Arbitration sequences for the detailed usage and behavior.

4.2.2.1.20 FlsIpcReleaseEventNotification

Name

FlsIpcReleaseEventNotification

Range

1..*

Annotation

IPC interrupt structures to generate the IPC release event used for eCT flash safety mechanism. Each bitfield

from LSB corresponds to the IPC interrupt structure that triggers the interrupt for an IPC release event. The

maximum value depends on the subderivative. If both flash drivers for application (Fls_TS_T40D13M1I0R0) and

for HSM (Fls_TS_T40D13M2I0R0) are used, use this parameter for safety mechanism because of the arbitration

between both flash drivers. Do not choose the IPC interrupt structures that are reserved for system calls. Refer

to 5.1.15.3 Arbitration sequences for the detailed usage and behavior.

4.2.2.1.21 FlsIpcNotificationEventToHsm

Name

FlsIpcNotificationEventToHsm

Range

0..*

Annotation

IPC interrupt structure (number) used for flash processing request to HSM. The maximum value depends on the

subderivative. This parameter is used only for flash driver for pplication (Fls_TS_T40D13M1I0R0). If both flash

drivers for application (Fls_TS_T40D13M1I0R0) and for HSM (Fls_TS_T40D13M2I0R0) are used, use flash driver

for application (Fls_TS_T40D13M1I0R0) to request buffer invalidation to flash driver for HSM

(Fls_TS_T40D13M2I0R0). Set this parameter to the same value as FlsIpcInterruptStructure in the flash

driver for HSM (Fls_TS_T40D13M2I0R0). Refer to 5.1.15.3 Arbitration sequences for the detailed usage and

behavior.

User guide 36 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.1.22 FlsWorkEmbeddedNotification

Name

FlsWorkEmbeddedNotification

Range

<FUNCTION_NAME>

Annotation

Work flash embedded notification routine. The notification routine is called after flash embedded (write or

erase) operation if the eCT flash safety mechanism is enabled. You must implement this; the flash driver does

not care about the definition of the routine.

Syntax example: void WorkEmbeddedNotification (void)

Note: Notifications must be declared and defined outside the FLS module. The file containing the

declarations must be included using the parameter FlsGeneral/FlsIncludeFile.

4.2.2.1.23 FlsArbitrationTimeout

Name

FlsArbitrationTimeout

Range

0.000..60.000

Annotation

Tolerant time for arbitration (waiting for) to finish the flash operation that was started from another core,

typically maximum time to erase one flash sector. The unit of this parameter is seconds. If there is a conflict in

flash operation, the current operation by FLS driver will wait for the earlier operation to finish, and then retry to

start the current operation. The maximum retry time until timeout is calculated by dividing the value of the

FlsGeneral/FlsArbitrationTimeout parameter by the value of the FlsConfigSet/FlsCallCycle

parameter. When the FlsConfigSet/FlsCallCycle is zero, the timeout will not be caused permanently. The

default value of this parameter is 0.2 s (200 ms), which is the maximum time for erasing one flash sector plus a

margin.

4.2.2.1.24 FlsSystemcallCalloutFunction

Name

FlsSystemcallCalloutFunction

Range

<FUNCTION_NAME>

Annotation

FlsSystemcallCalloutFunction is used to define the existence and to specify the name of a callout

function for invocation of system-call. The function is called whenever the flash driver calls the system-call.

User guide 37 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

Note: FlsSystemcallCalloutFunction must be a valid C function name; otherwise an error can

occur in the configuration phase. You must implement the callout function to call the system-call

properly. Moreover, the parameter must have following interface:

Std_ReturnType Systemcall_Callout_Function_Name (uint32 *Fls_IpcContext);

The Fls_IpcContext parameter indicates SRAM address (SRAM_SCRATCH_ADDR) where the system-call

parameters have been stored and can be used to initiate the system-call request by such S-LLD IPC driver.

If the callout function calls the system-call successfully, it must return E_OK; otherwise it must return

E_NOT_OK.

4.2.2.1.25 FlsFaultStructure

Name

FlsFaultStructure

Range

0..*

Annotation

Fault structure (number) used for fault reporting. See Fault. The maximum value depends on subderivative.

4.2.2.1.26 FlsSetCycleModeApi

Name

FlsSetCycleModeApi

Range

TRUE, FALSE

Annotation

Preprocessor switch for enabling the Fls_SetCycleMode function. If TRUE, the Fls_SetCycleMode function

is enabled. Otherwise, it is disabled (default).

4.2.2.1.27 FlsUseDmaForRead

Name

FlsUseDmaForRead

Range

TRUE, FALSE

Annotation

This parameter is used to indicate whether reading from work flash is performed by DMA transfer. If TRUE, the

Flash driver reads with DMA transfer (default). Otherwise, reads without DMA transfer (with CPU transfer).

User guide 38 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.1.28 FlsSetWorkFlashFaultMaskRegister

Name

FlsSetWorkFlashFaultMaskRegister

Range

TRUE, FALSE

Annotation

Specifies whether the fault mask 1 (MASK1) and mask 2 (MASK2) registers for work flash are set by the flash

driver. If TRUE, the flash driver sets the fault mask 1 register (default). Otherwise, it does not set the fault mask

1 register. If TRUE and the target device has two flash blocks, the flash driver sets the fault mask 2 register

(default). Otherwise, it does not set the fault mask 2 register. See Fault for details.

4.2.2.1.29 FlsReportErrorIfNotBlank

Name

FlsReportErrorIfNotBlank

Range

TRUE, FALSE

Annotation

Specifies whether the FLS calls error callout functions (i.e., Error Callout Handler and Det_ReportError())

when a blank check job started by Fls_BlankCheck() detects the FLS_E_VERIFY_ERASE_FAILED error,

which indicates non-blank. If TRUE, the flash driver calls the error callout functions for non-blank (default).

Otherwise, it does not call the error callout functions for non-blank.

User guide 39 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.2 Container FlsConfigSet

4.2.2.2.1 FlsDedErrorNotification

Name

FlsDedErrorNotification

Range

<FUNCTION_NAME>

Annotation

Mapped to the DED error notification routine provided by some upper layer module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the

declarations must be included using the parameter FlsGeneral/FlsIncludeFile.

4.2.2.2.2 FlsSedErrorNotification

Name

FlsSedErrorNotification

Range

<FUNCTION_NAME>

Annotation

Mapped to the SED error notification routine provided by some upper layer module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the

declarations must be included using the parameter FlsGeneral/FlsIncludeFile.

User guide 40 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.2.3 FlsNumberOfDelayLoop

Name

FlsNumberOfDelayLoop

Range

0..4294967295

Annotation

This parameter specifies the number of delay (wait) loops for writing a 32-bit data. This value is typically

calculated by the following formula:

<FlsNumberOfDelayLoop>

= <CPU Clock> * <Write Time> * <Margin> / <Cycle per Loop>

Where,

• <CPU Clock> is CPU clock per a microsecond

• <Write Time> is Typ 32-bit (with ECC) write time (from datasheet)

• <Margin> is the margin considering the tolerance

• <Cycle per Loop> is the CPU cycle per a loop. (This value depends on compiler optimization. For

example, it is 1 for compiling by GHS)

For example, if CPU clock is 160 MHz, write time is 30 us, and margin is +5%, then:

<FlsNumberOfDelayLoop>

= 160 (cycle/usec) * 30 (usec) * 1.05 / 1

= 5040

Note: If the value of this parameter is large, the response of Fls_MainFunction() for writing will be

delayed. When the 32-bit write time is longer than the typical (even if it is max), the writing is

completed because the next calls of Fls_MainFunction() processes accordingly, although the

number of times the function is called increases. Therefore, it is unnecessary to set this parameter

to a large value. In addition, do not set the value such that the watchdog timer’s counter can reach

the limit value.

Note: If this parameter is set to 4294967295, Fls_MainFunction() will wait until the lesser size of

FlsConfigSet/FlsMaxWriteNormalMode (or FlsConfigSet/FlsMaxWriteFastMode) or

remaining data at that time has been written.

User guide 41 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

4 EB tresos Studio configuration interface

4.2.2.3 Container FlsSector

4.2.2.3.1 FlsSectorIdentifier

Name

FlsSectorIdentifier

Range

Selectable list entry

Annotation

Identifier of the predefined flash sector as specified in the hardware manual.

4.2.3 Other modules

4.2.3.1 Flash EEPROM emulation

The flash EEPROM emulation must be configured according to Specification of flash EEPROM emulation [3].

4.2.3.2 DET

The default error tracer (DET) must be configured according to Specification of default error tracer [4].

If runtime errors notification is activated and runtime error is detected, the following four runtime errors are

supported by this flash driver:

• FLS_E_ERASE_FAILED

• FLS_E_WRITE_FAILED

• FLS_E_READ_FAILED

• FLS_E_COMPARE_FAILED

4.2.3.3 BSW scheduler

The flash driver uses the following services of the BSW scheduler to enter and leave critical sections:

• SchM_Enter_Fls_FLS_EXCLUSIVE_AREA_0(void)

• SchM_Exit_Fls_FLS_EXCLUSIVE_AREA_0(void)

Ensure that the BSW scheduler is properly configured and initialized before using the flash driver.

User guide 42 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5 Functional description

The flash driver provides a hardware-independent interface for the flash EEPROM emulation to read, write,

erase, and compare data from or to the flash memory. The flash driver only uses the work flash memory.

The flash driver is usually used via the flash EEPROM emulation (Specification of flash EEPROM emulation [3])

and therefore, its functions should not be called directly by the application. In general, the flash driver's

functions (except the main function) are exclusively called by the flash EEPROM emulation.

5.1 Function of the flash driver

5.1.1 Flash driver state machine

Figure 4 State machine of the flash driver

5.1.1.1 State MEMIF_UNINIT

After power on, the flash driver is in the MEMIF_UNINIT state in which it has not been initialized yet.

5.1.1.2 State MEMIF_IDLE

After successful initialization, the driver reaches the MEMIF_IDLE state and is ready. If an ongoing read, write,

erase, compare, or blank check job is finished or canceled, the driver remains in this state and is ready for the

next job.

Note: After transition to the MEMIF_IDLE state, there is a possibility that the hardware is still working

because the flash driver cannot abort the underlying hardware task even if it has been ready to

accept a new job. In this case, it is necessary to be careful when the transition to the low-power

consumption mode happens. See Retrieving the status information.

User guide 43 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.1.3 State MEMIF_BUSY

In the MEMIF_BUSY state, the flash driver has accepted a read, write, erase, compare or blank check job, which

will be executed during the next call(s) of the Fls_MainFunction() function until the job is finished or

canceled by the user.

5.1.2 Flash driver job result state

Figure 5 State machine of the job result

5.1.2.1 MEMIF_JOB_OK

The last job finished successfully. This state is also used after initialization.

5.1.2.2 MEMIF_JOB_PENDING

A read, write, erase, compare, or blank check job is pending and will be executed on the next call of

Fls_MainFunction().

5.1.2.3 MEMIF_JOB_CANCELED

The last job was canceled by the user via calling the Fls_Cancel() function.

5.1.2.4 MEMIF_JOB_FAILED

The last job failed due to a hardware error, timeout, and so on.

5.1.2.5 MEMIF_BLOCK_INCONSISTENT

This job result can only occur on compare jobs. It is set if the compare job yielded differences.

User guide 44 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.3 Initialization

The initialization is done via the function call.

In case of the VARIANT-POST-BUILD variant (Postbuild), the parameter is the address of a const variable

Fls_Config_<number> (for example, Fls_Config_0):

Fls_Init(&Fls_Config_0);

In case of the VARIANT-PRE-COMPILE variant (Precompile), only one FlsConfigSet is configured:

Fls_Init(NULL_PTR);

After the initialization, the flash driver accepts a read, write, erase, compare, or blank check job for the flash

memory.

5.1.4 Reading data from the flash memory

The flash driver supports reading data from the flash memory with blank checking (Fls_Read()) and without

blank checking (Fls_ReadImmediate()). In the TRAVEO™ T2G microcontroller family, the blank check needs

to be performed in advance of reading because undefined value is read from the blank (erased) area. Only if the

upper-layer module has known where the blank areas are, for example, Fls_BlankCheck(), reading without

blank checking can be used. See Checking blank for the flash memory. Otherwise, reading with the blank

checking should be used. Generally, Fls_Read() is slower than Fls_ReadImmediate() due to significant

overhead of blank checking.

A read job with the blank checking is set up via the following command:

ReturnValue = Fls_Read(SourceAddress, TargetAddressPtr, Length);

A read job without the blank checking is set up via the following command:

ReturnValue = Fls_ReadImmediate(SourceAddress, TargetAddressPtr, Length);

Note: For use of Fls_ReadImmediate(), the configuration parameter

FlsGeneral/FlsReadImmediateApi must be set to TRUE.

If the function returns E_OK, the job was accepted and will be executed on the next call(s) of

Fls_MainFunction(). The flash driver is now in the MEMIF_BUSY state and will not accept other commands.

The job result is set to MEMIF_JOB_PENDING.

On each call of the main function, a specific number of bytes is copied from the flash memory SourceAddress

to the TargetAddressPtr. The number of bytes depends on the memory layout (for example, gaps) and the

configuration parameter such as FlsConfigSet/FlsMaxReadNormalMode. If both SourceAddress and

TargetAddressPtr are multiples of 4, the latency of Fls_MainFunction() can reduce.

If the configuration parameter FlsGeneral/FlsUseDmaForRead is TRUE (default), the flash driver reads data

with DMA transfer. The DMA channel used is specified by the configuration parameter

FlsGeneral/FlsDmaChannel. The read data is stored once in the auxiliary buffer that the flash driver has

prepared and is passed to the target data buffer that you have prepared. The auxiliary buffer size is determined

by the configuration parameter FlsGeneral/FlsAuxiliaryBufferSize. The larger the size of the auxiliary

buffer, the larger is the data read during a DMA transfer. However, this increases RAM consumption. The

auxiliary buffer size is limited to the value of FlsConfigSet/FlsMaxReadNormalMode (or

FlsConfigSet/FlsMaxReadFastMode) or a large sector size.

User guide 45 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

After the total number of bytes is successfully copied from the flash memory, the driver state is set back to

MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. In addition, the driver also calls an end notification

function if it was configured with the FlsConfigSet/FlsJobEndNotification parameter.

If you are reading from a blank (erased) area, Fls_Read() copies all 0xFF data, whereas,

Fls_ReadImmediate() copies indefinite data.

If a double-bit error was detected during the read process, the driver copies all 0xFF data and calls the error

callout handler and the DET runtime errors notification (If the configuration parameter

FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the error code FLS_E_DED_FAILURE, and the driver

will continue the read job. DED error notification also will be called if it was configured with the parameter

FlsConfigSet/FlsDedErrorNotification. In HSM (Fls_TS_T40D13M2I0R0), the driver detects the double-

bit error as “read failed” and will set the job result to MEMIF_JOB_FAILED and call the error callout handler

with the error code FLS_E_READ_FAILED_FOR_CALLOUT and the DET runtime errors notification (If the

configuration parameter FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the error code

FLS_E_READ_FAILED and the driver will abort the read job.

If a single-bit error was detected during the read process, the driver calls the error callout handler and the DET

runtime errors notification (If the configuration parameter FlsGeneral/FlsRuntimeErrorDetect is TRUE)

with the error code FLS_E_SED_FAILURE and the driver will continue the read job. The SED error notification

also will be called if it was configured with the parameter FlsConfigSet/FlsSedErrorNotification. In

HSM (Fls_TS_T40D13M2I0R0), the driver cannot detect the single-bit error.

If there is a conflict in the flash operation (reading while erase/write), the flash driver will return to the upper

layer (once) to wait for the earlier operation to finish, and then it will retry reading on the next call of

Fls_MainFunction(). The maximum retry time until timeout is calculated by dividing the value of the

configuration parameter FlsGeneral/FlsArbitrationTimeout by the value of the

FlsConfigSet/FlsCallCycle parameter. If the maximum retry time exceeds, the driver will set the job

result to MEMIF_JOB_FAILED and call the error callout handler and the DET error notification with the error

code FLS_E_TIMEOUT.

If any other error occurred during the read process, the driver will set the job result to MEMIF_JOB_FAILED

and call the error callout handler with the error code FLS_E_READ_FAILED_FOR_CALLOUT and the DET

runtime errors notification (If the configuration parameter FlsGeneral/FlsRuntimeErrorDetect is TRUE)

with the error code FLS_E_READ_FAILED and the driver will abort the read job.

5.1.5 Writing data to the flash memory

The flash driver supports writing data to the flash memory with polling-controlled job and interrupt controlled

job. The type of job used is determined by the configuration parameter FlsGeneral/FlsUseInterrupts.

The interrupt-controlled job is used for performance enhancement for writing a large amount of data because

it minimizes the calling and latency of Fls_MainFunction(). The polling-controlled job is simply used for

writing data. In this case, calling and latency of Fls_MainFunction() depends on the configuration

parameters such as FlsConfigSet/FlsMaxWriteNormalMode and

FlsConfigSet/FlsNumberOfDelayLoop.

A write job is set up via the following command:

ReturnValue = Fls_Write(TargetAddress, SourceAddressPtr, Length);

Note: The TargetAddress and the Length must be aligned to the flash page size. A flash page is the

smallest amount of flash memory that can be programmed in one pass. The size of the flash page

is architecture-dependent and outlined in Virtual flash memory layout.

User guide 46 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

If the function returns E_OK, the job was accepted and will be executed on the next call(s) of

Fls_MainFunction(). The flash driver is now in the MEMIF_BUSY state and will not accept other commands.

The job result is set to MEMIF_JOB_PENDING.

If an interrupt-controlled job is used, on each call of the main function, up to one flash sector size of bytes is

written from SourceAddressPtr to the flash memory TargetAddress. If an interrupt-controlled job is not

finished within one call cycle, the main function must be called again until one flash sector is written. If polling-

controlled job is used, on each call of the main function, a specific number of bytes is written from

SourceAddressPtr to the flash memory TargetAddress at most. The number of bytes depends on the

memory layout (such as gaps) and the configuration parameter such as

FlsConfigSet/FlsMaxWriteNormalMode.

There are two operations modes to write (ProgramRow): blocking and non-blocking modes. By default, the

flash driver uses blocking mode. If you want to use non-blocking mode for your use case, set the configuration

parameter FlsGeneral/FlsUseNonBlockingWrite to TRUE. The write operation mode for work flash

block#1 does not allow to configure and is handled as non-blocking mode.

After the total number of bytes was successfully written to the flash memory, the driver state is set back to

MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. In addition, the driver calls the end notification

function if it was configured with the FlsConfigSet/FlsJobEndNotification parameter.

If any hardware error occurred during the write process, the driver will set the job result to MEMIF_JOB_FAILED

and call the error callout handler with the error code FLS_E_WRITE_FAILED_FOR_CALLOUT and the DET

runtime errors notification (If the configuration parameter FlsGeneral/FlsRuntimeErrorDetect is TRUE)

with the error code FLS_E_WRITE_FAILED and the driver will abort the write job.

The written data will be verified. On each call of the main function, a specific number of bytes is verified. The

number of bytes depends on the memory layout (such as gaps) and the configuration parameter such as

FlsConfigSet/FlsMaxReadNormalMode. For verification, if the configuration parameter

FlsGeneral/FlsUseDmaForRead is TRUE (default), the flash driver reads data with DMA transfer. The DMA

channel used is specified by the configuration parameter FlsGeneral/FlsDmaChannel. The read data is

stored once in the auxiliary buffer that the flash driver has prepared and is compared with source data buffer

that you have prepared. The larger the size of the auxiliary buffer, the larger is the data read during a DMA

transfer. However, this increases RAM consumption. The auxiliary buffer size is limited to the value of

FlsConfigSet/FlsMaxReadNormalMode (or FlsConfigSet/FlsMaxReadFastMode) or a large sector size.

If the verification fails, the driver will set the job result to MEMIF_JOB_FAILED. Additionally, the driver calls the

error notification function if it was configured with the parameter

FlsConfigSet/FlsJobErrorNotification. Only if the upper-layer module (typically the FEE module) can

ensure data consistency by other means, the verification can be skipped by setting the configuration parameter

FlsGeneral/FlsWriteVerification to FALSE to improve performance. Otherwise, the configuration

parameter should be set to the default setting, TRUE, to ensure safety. Moreover, only if the upper-layer

module can ensure availability of flash block for writing data by other means, verification (blank check) before

writing flash block can be skipped by setting the configuration parameter

FlsGeneral/FlsBeforeWriteVerification to FALSE to improve performance. Otherwise, the

configuration parameter should be set to the default setting, TRUE, to ensure safety.

If there is a conflict in flash operation (writing or reading for verification while erase/write), the flash driver will

return to the upper layer (once) to wait for the earlier operation to finish, and then it will retry writing or reading

for verification on the next call of Fls_MainFunction(). The maximum retry time until timeout is calculated

by dividing the value of the configuration parameter FlsGeneral/FlsArbitrationTimeout by the value of

the parameter FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job

User guide 47 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

result to MEMIF_JOB_FAILED and call the error callout handler and the DET error notification with the error

code FLS_E_TIMEOUT.

5.1.6 Erasing data from the flash memory

The flash driver supports erasing (parts of) the flash memory with polling-controlled job and interrupt-

controlled job. The type of job used is determined by the configuration parameter

FlsGeneral/FlsUseInterrupts.

An erase job is set up via the following command:

ReturnValue = Fls_Erase(TargetAddress, Length);

Note: The TargetAddress and the Length must be aligned to a flash sector. A flash sector is the

smallest amount of flash memory that can be erased in one pass. The organization of flash sectors

is architecture-dependent and outlined in Virtual flash memory layout.

If the function returns E_OK, the job was accepted and will be executed on the next call(s) of

Fls_MainFunction(). The flash driver is now in the MEMIF_BUSY state and will not accept other commands.

The job result is set to MEMIF_JOB_PENDING.

If the erase callout function was configured with the parameter FlsGeneral/FlsEraseCalloutFunction,

when the job was accepted, the function is called and the TargetAddress is passed as parameter.

After all the affected sectors are successfully erased, the driver state is set back to MEMIF_IDLE and the job

result is set to MEMIF_JOB_OK. In addition, the driver calls the end notification function if it was configured with

the parameter FlsConfigSet/FlsJobEndNotification.

If any hardware error occurred during the erase process, the driver will set the job result to

MEMIF_JOB_FAILED and call the error callout handler with the error code

FLS_E_ERASE_FAILED_FOR_CALLOUT and the DET runtime errors notification (if the configuration parameter

FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the error code FLS_E_ERASE_FAILED and the driver

will abort the erase job.

The erase area will be verified. On each call of the main function, a specific number of bytes is verified. The

number of bytes depends on the memory layout (such as gaps) and the configuration parameter such as

FlsConfigSet/FlsMaxReadNormalMode. If the verification fails, the driver will set the job result to

MEMIF_JOB_FAILED. In addition, the driver calls the error notification function if it was configured with the

parameter FlsConfigSet/FlsJobErrorNotification. Only if the upper-layer module (typically the FEE

module) can ensure that flash block is blank by other means, the verification can be skipped by setting the

configuration parameter FlsGeneral/FlsEraseVerification to FALSE to improve performance.

Otherwise, the configuration parameter should be set to TRUE (default) to ensure safety.

If there is a conflict in flash operation (erasing or verifying while erase/write), the flash driver will return to the

upper layer (once) to wait for the earlier operation to finish, and then it will retry erasing or verifying on the next

call of Fls_MainFunction(). The maximum retry time until timeout is calculated by dividing the value of the

configuration parameter FlsGeneral/FlsArbitrationTimeout by the value of the parameter

FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job result to

MEMIF_JOB_FAILED and call the error callout handler and the DET error notification with the error code

FLS_E_TIMEOUT.

User guide 48 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.7 Comparing data from the flash memory

The flash driver supports comparing data between the flash memory and data in the RAM. A compare job is set

up via the command:

ReturnValue = Fls_Compare(SourceAddress, TargetAddressPtr, Length);

Note: When reading for the comparing is done, it is performed without blank checking.

If the function returns E_OK, the job was accepted and will be executed on the next call(s) of

Fls_MainFunction(). The flash driver is now in the MEMIF_BUSY state and will not accept other commands.

The job result is set to MEMIF_JOB_PENDING.

On each call of the main function, a specific number of bytes is compared between the flash memory

SourceAddress and the data at TargetAddressPtr. The number of bytes depends on the memory layout

(such as gaps) and the configuration parameter such as FlsConfigSet/FlsMaxReadNormalMode. If both

SourceAddress and TargetAddressPtr are multiples of 4, latency of Fls_MainFunction() can be

minimized.

For comparison, if the configuration parameter FlsGeneral/FlsUseDmaForRead is TRUE (default), the flash

driver reads data with DMA transfer. The used DMA channel is specified by the configuration parameter

FlsGeneral/FlsDmaChannel. The read data is stored once in the auxiliary buffer that the flash driver has

prepared and is compared with target data buffer that you have prepared. The auxiliary buffer size is

determined by the configuration parameter FlsGeneral/FlsAuxiliaryBufferSize. The larger the size of

the auxiliary buffer, the larger is the data read during a DMA transfer. However, this increases RAM

consumption. The auxiliary buffer size is limited to the value of FlsConfigSet/FlsMaxReadNormalMode (or

FlsConfigSet/FlsMaxReadFastMode) or a large sector size.

After the total number of bytes is successfully compared with the flash memory, the driver state is set back to

MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. In addition, the driver calls the end notification

function if it was configured with the parameter FlsConfigSet/FlsJobEndNotification.

If the driver yielded differences between the two memory spaces, the driver will set the job result to

MEMIF_BLOCK_INCONSISTENT, and calls the error notification function if it was configured.

If a double-bit error was detected during the compare process, the driver regards as all 0xFF data, calls the

error callout handler and the DET runtime errors notification (if the configuration parameter

FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the error code FLS_E_DED_FAILURE, and the driver

will continue the compare job. DED error notification also will be called if it was configured with the parameter

FlsConfigSet/FlsDedErrorNotification. In HSM (Fls_TS_T40D13M2I0R0), the driver detects the double-

bit error as “compare failed” and will set the job result to MEMIF_JOB_FAILED and will call the error callout

handler with the error code FLS_E_COMPARE_FAILED_FOR_CALLOUT and the DET runtime error notification (if

the configuration parameter FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the error code

FLS_E_COMPARE_FAILED, and the driver will abort the compare job.

If a single-bit error was detected during the compare process, the driver calls the error callout handler and the

DET runtime errors notification (If the configuration parameter FlsGeneral/FlsRuntimeErrorDetect is

TRUE) with the error code FLS_E_SED_FAILURE and the driver will continue the compare job. SED error

notification also will be called if it was configured with the parameter

FlsConfigSet/FlsSedErrorNotification. In HSM (Fls_TS_T40D13M2I0R0), the driver cannot detect the

single-bit error.

User guide 49 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

If there is a conflict in flash operation (reading for comparison while erase/write), the flash driver will return to

the upper layer (once) to wait for the earlier operation to finish, and then it will retry reading for comparison on

the next call of Fls_MainFunction(). The maximum retry time until timeout is calculated by dividing the

value of the configuration parameter FlsGeneral/FlsArbitrationTimeout by the value of the parameter

FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job result to

MEMIF_JOB_FAILED and call the error callout handler and the DET error notification with the error code

FLS_E_TIMEOUT.

If any other error occurred during the compare process, the driver will set the job result to MEMIF_JOB_FAILED

and call the error callout handler with the error code FLS_E_COMPARE_FAILED_FOR_CALLOUT and the DET

runtime errors notification (if the configuration parameter FlsGeneral/FlsRuntimeErrorDetect is TRUE)

with the error code FLS_E_COMPARE_FAILED and the driver will abort the compare job.

5.1.8 Checking blank for the flash memory

The flash driver supports checking blank for a given area in the flash memory. A blank check job is set up via the

command:

ReturnValue = Fls_BlankCheck(TargetAddress, Length);

If the function returns E_OK, the job was accepted and will be executed on the next call(s) of

Fls_MainFunction(). The flash driver is now in the MEMIF_BUSY state and will not accept other commands.

The job result is set to MEMIF_JOB_PENDING.

On each call of the main function, a specific number of bytes is checked blank for the flash memory

TargetAddress. The number of bytes depends on the memory layout (such as gaps) and the configuration

parameter such as FlsConfigSet/FlsMaxReadNormalMode.

After the total number of bytes was judged blank for the flash memory, the driver state is set back to

MEMIF_IDLE and the job result is set to MEMIF_JOB_OK. In addition, the driver also calls an end notification

function if it was configured with the FlsConfigSet/FlsJobEndNotification parameter.

If any area was not judged blank, the driver will set the job result to MEMIF_JOB_FAILED. If the configuration

parameter FlsGeneral/FlsReportErrorIfNotBlank is set to TRUE, the driver will call the error callout

handler and the DET error notification with the error code FLS_E_VERIFY_ERASE_FAILED. In addition, the

driver calls the error notification function if it was configured with the parameter

FlsConfigSet/FlsJobErrorNotification.

If there is a conflict in flash operation (checking blank while erase/write), the flash driver will return to the

upper layer (once) to wait for the earlier operation to finish, and then it will retry checking blank on the next call

of Fls_MainFunction(). The maximum retry time until timeout is calculated by dividing the value of the

configuration parameter FlsGeneral/FlsArbitrationTimeout by of the value of the parameter

FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job result to

MEMIF_JOB_FAILED and call the error callout handler and the DET error notification with the error code

FLS_E_TIMEOUT.

User guide 50 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.9 Canceling a job prior to maturity

Any ongoing flash job can be canceled by calling the function:

Fls_Cancel();

Note: This function must not be called during the execution of the Fls_MainFunction(),
Fls_Suspend() or Fls_Resume().

The function always cancels the ongoing job, sets the pending job result to MEMIF_JOB_CANCELED and sets

the driver back to MEMIF_IDLE. It also calls the error notification function if it was configured with the

parameter FlsConfigSet/FlsJobErrorNotification.

The driver is ready for the next job right after returning from this function call.

5.1.10 Retrieving the status information

Two API functions are offered to get the current state of the driver and the current state of the job result:

DriverState = Fls_GetStatus();

JobResult = Fls_GetJobResult();

For more information on the driver's state, see Flash driver state machine.

For more information on the job result, see Flash driver job result state.

Note: While the flash memory cells are being programmed or erased, the microcontroller shall not be

transited to low-power consumption modes. Whether the flash memory processing is ongoing can

be known by calling the Fls_GetStatusSub function (Note that it is not Fls_GetStatus) and

the microcontroller can be transited to the modes only if Fls_GetStatusSub returns

FLS_STATUS_IDLE. The function Fls_GetStatusSub has the following interface (The interface

and the macros FLS_STATUS_IDLE and FLS_UCHAR are declared in Fls.h.).

FLS_UCHAR Fls_GetStatusSub(void);

Note: The function Fls_GetStatusSub does not have critical sections (exclusive area).

User guide 51 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.11 Setting the driver operation mode

The driver can be switched between slow and fast operation modes. The default mode configured with the

FlsConfigSet/FlsDefaultMode parameter is applied right after initialization. To switch to the fast mode,

the following function must be called:

Fls_SetMode(MEMIF_MODE_FAST);

The driver will switch to the fast operation mode in which the configured parameters for fast mode are valid.

This affects the FlsConfigSet/FlsMaxReadFastMode parameter for read and compare jobs and the verify

process of write and erase jobs and the FlsConfigSet/FlsMaxWriteFastMode parameter for polling

controlled write job.

Note: The mode change can only be executed when the driver is in MEMIF_IDLE state.

To return to the slow mode, the Fls_SetMode function must be called with the parameter

MEMIF_MODE_SLOW while the flash driver is in MEMIF_IDLE state.

5.1.12 Suspending a job

Any ongoing flash job can be suspended by calling the function:

ReturnValue = Fls_Suspend();

Note: This function must not be called during the execution of the Fls_MainFunction() or

Fls_Resume().

Note: This function can be called for flash drivers for application (Fls_TS_T40D13M1I0R0) and HSM

(Fls_TS_T40D13M2I0R0). However, make sure that the arbitration is taken care, for example, make

sure that one core does not start an erase job while the other core is suspending the erase

operation.

Note: The nested erase suspend operation is not supported. Suspending an erase job while the other

erase operation is in the suspended state makes the previous erase job disappears and the erase

resume job is only applicable for the later suspended erase operation.

The following is the problematic sequence:

Erase sector #0

Erase suspend

Erase sector#1

Erase suspend (HW suspended information for erase sector#0 is removed)

Erase resume (resume erasing Sector#1)

If the function returns E_OK, the ongoing job was suspended. The flash driver is now in MEMIF_IDLE state and

accepts other commands. The job result is set to MEMIF_JOB_OK.

Fls_Write(), Fls_Read(), Fls_Compare(), Fls_BlankCheck(), and Fls_ReadImmediate() can start a

new job after returning from this function. However, if the target address (from start address to end address

(start address + length)) for the job lies within the sector used by suspended job, the API functions reject the

request, raise the default error FLS_E_BUSY and return with E_NOT_OK. Whereas, Fls_Erase() rejects for

anywhere.

User guide 52 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

If this function is called to suspend an erase job that was resumed by Fls_Resume(), the call must be done at

least 250 microseconds after Fls_Resume() finishes. Otherwise, the erase job cannot progress.

5.1.13 Resuming a suspended job

A suspended flash job can be resumed by calling the function:

ReturnValue = Fls_Resume();

Note: This function must not be called during the execution of the Fls_Suspend().

Note: This function can be called for flash drivers for application (Fls_TS_T40D13M1I0R0) and HSM

(Fls_TS_T40D13M2I0R0). However, make sure that the arbitration is taken care, for example, make

sure that one core does not start an erase job while the other core is suspending the erase

operation.

If the function returns E_OK, the suspended job was resumed. The flash driver is now in the MEMIF_BUSY state

and will not accept other commands. The job result is set to MEMIF_JOB_PENDING.

5.1.14 Timeout supervision

The driver provides a timeout monitoring for the deadline of read, write, erase, compare and blank check

functions.

The maximum timeout value is calculated based on the following.

• Specified length to read, write, erase or compare data, or blank check

• Cycle of Fls_MainFunction() function (FlsCallCycle)

• Kind of operation (Read, write, erase, compare or blank check)

• Conflict of flash operation (Division FlsArbitrationTimeout by FlsCallCycle).

The driver can disable the timeout monitoring by setting the value of the configuration parameter

FlsCallCycle to 0.000 or calling the following function:

ReturnValue = Fls_SetCycleMode(MEMIF_MODE_FAST);

Note: The mode change can only be executed when the driver is in MEMIF_IDLE state.

If the function returns E_OK, the timeout monitoring is disabled afterward. To enable the timeout monitoring

again, the Fls_SetCycleMode function must be called with the parameter MEMIF_MODE_SLOW while the flash

driver is in MEMIF_IDLE state.

User guide 53 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.15 eCT flash safety mechanism

The flash driver provides the eCT flash safety mechanism which is required for multicore flash operations. This

feature allows to arbitrate the write, erase, and blank check operations from multiple cores and prevent the

simultaneous system calls and FLASHC1 register accesses. For this feature to work properly, both flash drivers

for application (Fls_TS_T40D13M1I0R0) and for HSM Fls_TS_T40D13M2I0R0 must enable safety mechanism

(FlsUseSafetyMechanism = TRUE).

The eCT flash safety mechanism supports callback function from each flash driver to notify its counterpart

running on the other core when a flash embedded (write or erase) operation is complete. The callback function

is configured with FlsWorkEmbeddedNotification and required to be implemented by the application.

5.1.15.1 Related configurations

The configuration parameters related to the eCT flash safety mechanism are below:

• FlsUseSafetyMechanism

• FlsIpcStructure

• FlsIpcInterruptStructure

• FlsIpcReleaseEventNotification

• FlsIpcNotificationEventToHsm (used for HSM communication)

• FlsWorkEmbeddedNotification

• FlsHsmPresent

• FlsArbitrationTimeout

5.1.15.2 IPC lock acquisition and release

The drivers, supporting the eCT flash safety mechanism, acquire IPC lock which is specified with the

configuration FlsIpcStructure before starting a flash operation. If the IPC lock acquisition fails, the flash

operation is not executed, and the flash driver retries to acquire it at the next opportunity (e.g. the next

Fls_MainFunction() call). After finishing a flash operation, the flash driver releases the IPC lock for safety

mechanism to allow the flash operations by other flash driver(s).

Table 2 shows the IPC lock acquisition and release timing.

Table 2 IPC lock acquisition and release for eCT flash safety mechanism

Operation Acquisition timing Release timing

Erase Call Fls_MainFunction()

(Start erase operation)

Call Fls_MainFunction()

(Finish erase operation)

Write Call Fls_MainFunction()

(Start write operation)

Call Fls_MainFunction()

(Finish write operation)

Blank check (erase verify) Call Fls_MainFunction()

(Every time BlankCheck

system call is invoked)

Call Fls_MainFunction()

(Every time BlankCheck

system call is finished)

Blank check (pre-write verify) Call Fls_MainFunction()

(Every time BlankCheck

system call is invoked)

Call Fls_MainFunction()

(Every time BlankCheck

system call is finished)

Blank check (Fls_BlankCheck()) Call Fls_MainFunction() Call Fls_MainFunction()

User guide 54 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

Operation Acquisition timing Release timing

(Every time BlankCheck

system call is invoked)

(Every time BlankCheck

system call is finished)

Blank check (read operation for
single work flash or work flash

block#0)

- -

Blank check (read operation for work

flash block#1)

Call Fls_MainFunction()

(Every time the blank check

is started)

Call Fls_MainFunction()

(Every time the blank check

is finished)

Erase suspend - Call Fls_Suspend()

Erase resume Call Fls_Resume() -

Note: In case of the read operations for single work flash or work flash block#0, IPC lock for the eCT flash

safety mechanism is not acquired. When the error status is returned due to the system call for

erase or write by the other cores running, the flash driver suspends the read operation and retry it

at the next Fls_MainFunction() call.

Note: When the blank check is executed for the work flash block#1, IPC lock for the eCT flash safety

mechanism is acquired and released at the same timing as the system call BlankCheck.

If the flash driver fails to acquire IPC lock repeatedly, the flash operation is aborted due to the retry timeout.

The maximum retry time is configured with FlsArbitrationTimeout.

User guide 55 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.15.3 Arbitration sequences

The sequence diagrams in this section show the arbitration behaviors for flash operations by multiple cores in

an example use case. The preconditions for sequences are below:

• CM0+: Flash driver for HSM (Fls_TS_T40D13M2I0R0)

− FlsUseSafetyMechanism = TRUE

− FlsIpcStructure = 7 (IPC structure used for safety mechanism implementation)

− FlsIpcInterruptStructure = 6 (IPC interrupt structure 6 is configured to notify to flash driver for

HSM)

− FlsIpcReleaseEventNotification = 0x000000C0 (IPC release event triggers interrupts on IPC

interrupt structures #6 and #7)

• CM4: Flash driver for application (Fls_TS_T40D13M1I0R0)

− FlsUseSafetyMechanism = TRUE

− FlsIpcStructure = 7 (IPC structure used for safety mechanism implementation)

− FlsIpcInterruptStructure = 7 (IPC interrupt structure 7 is configured to notify to flash driver for

application)

− FlsIpcReleaseEventNotification = 0x000000C0 (IPC release event triggers interrupts on IPC

interrupt structures #6 and #7)

− FlsHsmPresent = TRUE

− FlsIpcNotificationEventToHsm = 6 (Flash driver for application should trigger interrupt on IPC

interrupt structure #6 to notify the flash driver for HSM for occurrence of notify event)

User guide 56 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

Figure 6 Erase operations by multiple flash drivers

 Driver State = IDLE Driver State = IDLE

 Fls_Erase() Fls_Erase()

 Driver State = BUSY (ERASE) Driver State = BUSY (ERASE)

 Fls_MainFunction()

 Fls_MainFunction()

 Acquire IPC lock (success)

 Acquire IPC lock (failure) Acquired

 System call (EraseSector)

EraseSector

 Fls_MainFunction()

 Fls_MainFunction()

 System call (EraseSector)

 Acquire IPC lock (failure) EraseSector

 Fls_MainFunction()

 Fls_MainFunction()

 Release IPC lock

 IPC release interrupt #7

 IPC release interrupt #6

 Fls_Isr_FlsIpc_Cat1()

 Fls_Isr_FlsIpc_Cat1()

 FlsWorkEmbeddedNotification()

 FlsWorkEmbeddedNotification()

 Acquire IPC lock (success)

 Driver State = IDLE Acquired

 System call (EraseSector)

EraseSector

Fls_TS_T40D13M2I0R0

(CM0+)

Fls_TS_T40D13M1I0R0

(CM4)
IPC0 IPC1 IPC7

User guide 57 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

Figure 7 Write operations by multiple flash drivers

 Driver State = IDLE Driver State = IDLE

 Fls_Write() Fls_Write()

 Driver State = BUSY (WRITE) Driver State = BUSY (WRITE)

 Fls_MainFunction()

 Fls_MainFunction()

 Acquire IPC lock (success)

 Acquire IPC lock (failure) Acquired

 System call (ProgramRow)

ProgramRow

 Fls_MainFunction()

 Fls_MainFunction()

 System call (ProgramRow)

 Acquire IPC lock (failure) ProgramRow

 System call (ProgramRow)

ProgramRow

 Release IPC lock

 IPC release interrupt #7

 IPC release interrupt #6

 Fls_Isr_FlsIpc_Cat1()

 Fls_Isr_FlsIpc_Cat1()

 FlsWorkEmbeddedNotification()

 FlsWorkEmbeddedNotification()

 Fls_MainFunction()

 Driver State = IDLE

 Acquire IPC lock (success)

Acquired

 System call (ProgramRow)

ProgramRow

Fls_TS_T40D13M2I0R0

(CM0+)

Fls_TS_T40D13M1I0R0

(CM4)
IPC0 IPC1 IPC7

User guide 58 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

Figure 8 Blank check operations by multiple flash drivers

 Driver State = IDLE Driver State = IDLE

 Fls_BlankCheck() Fls_BlankCheck()

 Driver State = BUSY (BLANKCHECK) Driver State = BUSY (BLANKCHECK)

 Fls_MainFunction()

 Fls_MainFunction()

 Acquire IPC lock (success)

 Acquire IPC lock (failure) Acquired

 System call (BlankCheck)

BlankCheck

 Fls_MainFunction()

 Fls_MainFunction()

 Acquire IPC lock (failure)

 Release IPC lock

 IPC release interrupt #7

 IPC release interrupt #6

 Fls_Isr_FlsIpc_Cat1()

 Fls_Isr_FlsIpc_Cat1()

 Acquire IPC lock (success)

Acquired

 Fls_MainFunction()

 System call (BlankCheck)

 Acquire IPC lock (failure) BlankCheck

 Fls_MainFunction()

 Release IPC lock

 Fls_MainFunction()

 IPC release interrupt #7

 IPC release interrupt #6

 Fls_Isr_FlsIpc_Cat1()

 Fls_Isr_FlsIpc_Cat1()

 Acquire IPC lock (success)

 Driver State = IDLE Acquired

 System call (BlankCheck)

BlankCheck

Fls_TS_T40D13M2I0R0

(CM0+)

Fls_TS_T40D13M1I0R0

(CM4)
IPC0 IPC1 IPC7

User guide 59 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

Figure 9 IPC notification and release events for HSM communication and safety mechanism

 Driver State = IDLE

 Fls_Erase()

 Driver State = BUSY (ERASE)

 Fls_MainFunction()

 Acquire IPC lock (success)

Acquired

 IPC notification

 IPC notify interrupt #6

 System call (EraseSector)

 Fls_Isr_FlsIpc_Cat1() EraseSector

 Invalidate buffer

 Fls_MainFunction()

 IPC notification

 IPC notify interrupt #6

 Fls_Isr_FlsIpc_Cat1()

 Release IPC lock

 Invalidate buffer

 IPC release interrupt #7

 IPC release interrupt #6

 Fls_Isr_FlsIpc_Cat1()

 Fls_Isr_FlsIpc_Cat1()

 FlsWorkEmbeddedNotification()

 FlsWorkEmbeddedNotification()

 Driver State = IDLE

Fls_TS_T40D13M2I0R0

(CM0+)

Fls_TS_T40D13M1I0R0

(CM4)
IPC0 IPC1 IPC7

User guide 60 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.1.15.4 Assumptions of use

Basically, only 2 Fls instances are allowed for Fls multicore processing.

- Flash driver for HSM (Fls_TS_T40D13M2I0R0): CM0+

- Flash driver for application (Fls_TS_T40D13M1I0R0): CM4/CM7_0, CM7_1, CM7_2, or CM7_3

The following integrations are the wrong usages and are not supported:

• Multiple Flash drivers for application

− Fls_TS_T40D13M1I0R0: CM7_0

− Fls_TS_T40D13M1I0R0: CM7_1

• Implementation on the wrong core

− Fls_TS_T40D13M1I0R0: CM0+

− Fls_TS_T40D13M2I0R0: CM4 or CM7_X

Note: When non-Infineon flash drivers are integrated in the software along with flash driver for

application and/or flash driver for HSM, it is the users’ responsibility to implement and enable IPC

based safety mechanism properly for smooth and error free flash operations.

5.1.15.5 Limitations

HW does not support the nested erase operation. The erase suspend job should be run only when there is no

suspended erase job by the other cores.

5.2 Virtual flash memory layout

The flash driver always maps the available flash memory to a consecutive zero-based virtual flash address

space. The flash driver uses the work flash memory only. Every subderivative has a specific work flash memory

layout. See Hardware documentation about the physical address of the available work flash memory on each

subderivative.

User guide 61 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.3 Parallel flash operations for separate work flash memories

There are two work flash blocks in several devices. Work flash block#0 is controlled by a flash controller

(FLASHC registers), and system calls same as devices containing a single flash block. Flash operations for work

flash block#1 are executed by FLASHC1 register accesses without system calls. The absence of resource

competition allows for both flash blocks to be controlled by two CPU cores in parallel.

For example,

• CM0+: Flash driver for HSM (Fls_TS_T40D13M2I0R0)

− FlsUseSafetyMechanism = FALSE

− Container FlsSector: Work flash block#0 only

• CM7_0: Flash driver for application (Fls_TS_T40D13M1I0R0)

− FlsUseSafetyMechanism = FALSE

− FlsHsmPresent = TRUE

− Container FlsSector: Work flash block#1 only

For parallel flash operations, FlsUseSafetyMechanism should be set to FALSE. If TRUE, a flash operation

from one core is blocked while a flash driver in another core is executing a flash process.

Work flash block#1 is controlled with FLASHC1 register accesses. These direct register accesses are equivalent

to the system calls in non-blocking mode. If the flash operations for work flash block#1 from multiple cores are

required, the safety mechanism feature is mandatory.

For example,

• CM0+: Flash driver for HSM (Fls_TS_T40D13M2I0R0)

− FlsUseSafetyMechanism = TRUE

− Container FlsSector: Include work flash block#1

• CM7_0: Flash driver for application (Fls_TS_T40D13M1I0R0)

− FlsUseSafetyMechanism = TRUE

− FlsHsmPresent = TRUE

− Container FlsSector: Include work flash block#1

User guide 62 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.4 Default error detection

The driver's services perform regular error checks.

When an error occurs, the error callout handler (configured via FlsErrorCalloutFunction) is called and the

error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all default errors are also reported to the default error tracer, a central

error hook function within the AUTOSAR environment. The checking itself cannot be deactivated for safety

reasons.

Table 3 shows the default error checks that are performed by the services of the flash driver.

Functions explains which error codes are reported by each API function.

Table 3 Default error codes

Related error code Value Type of error

FLS_E_PARAM_CONFIG 0x01 API service called with wrong parameter

FLS_E_PARAM_ADDRESS 0x02 API service called with wrong parameter

FLS_E_PARAM_LENGTH 0x03 API service called with wrong parameter

FLS_E_PARAM_DATA 0x04 API service called with wrong parameter

FLS_E_UNINIT 0x05 API service called without module initialization

FLS_E_BUSY 0x06 API service called while driver still busy

FLS_E_VERIFY_ERASE_FAILED 0x07 Erase verification (blank check) failed

FLS_E_VERIFY_WRITE_FAILED 0x08 Write verification (compare) failed

FLS_E_TIMEOUT 0x09 Timeout exceeded

FLS_E_PARAM_POINTER 0x0a API service called with NULL pointer

FLS_E_ERASE_FAILED_FOR_CALLOUT 0x81 Flash erase failed (HW). This error id is used to call the

error callout handler.

FLS_E_WRITE_FAILED_FOR_CALLOUT 0x82 Flash write failed (HW). This error id is used to call the

error callout handler.

FLS_E_READ_FAILED_FOR_CALLOUT 0x83 Flash read failed (HW). This error id is used to call the

error callout handler.

FLS_E_COMPARE_FAILED_FOR_CALLOUT 0x84 Flash compare failed (HW). This error id is used to call the

error callout handler.

FLS_E_DED_FAILURE 0x85 Double bit error was detected (DED)

FLS_E_SED_FAILURE 0x86 Single bit error was detected (SED)

User guide 63 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

5 Functional description

5.5 Runtime error detection

The following errors are reported to the default error tracer as runtime errors by the flash driver:

See Functions for a correlation between API functions and reported runtime error codes.

Table 4 Runtime error codes

Related error code Value Type of error

FLS_E_ERASE_FAILED 0x01 Flash erase failed (HW).

FLS_E_WRITE_FAILED 0x02 Flash write failed (HW).

FLS_E_READ_FAILED 0x03 Flash read failed (HW).

FLS_E_COMPARE_FAILED 0x04 Flash compare failed (HW).

When an error occurs, the error callout handler (configured via FlsErrorCalloutFunction) is also called and

the error code (related default error code), service ID, module ID, and instance ID are passed as parameters.

5.6 Reentrancy

The API functions Fls_GetStatus(), Fls_GetJobResult(), and Fls_GetVersionInfo() are reentrant.

All other API functions of the flash driver are not reentrants.

5.7 Debugging support

The flash driver does not support debugging.

User guide 64 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

6 Hardware resources

6.1 Registers

The flash driver for the TRAVEO™ T2G microcontroller deals with the registers listed in Appendix B – Access

register table.

Note: You should set the following registers before using the flash driver:

1. FLASHC_FLASH_CTL and FLASHC1_FLASH_CTL (MAIN_WS[bit3:0]): FLASH macro main interface wait states)

2. FLASHC_FLASH_CTL and FLASHC1_FLASH_CTL (all bits): FLASH control register (Set all significant bits in this

register if the configuration parameter FLSGeneral/FlsSetFlashCtlRegister is set to

FLS_FLASH_CTL_NOTSET)

Note: WORK_BANK_MODE bit must be 0. WORK_ECC_EN and WORK_ERR_SILENT bit must be 1.

3. FLASHC_WORK_FLASH_SAFETY and FLASHC1_WORK_FLASH_SAFETY (WorkFlashWriteEnable[bit0]): Work flash

security enable register (Set to 1 if the configuration parameter

FLSGeneral/FlsSetWorkFlashSafetyRegister is FALSE.)

4. DMAC_CTL (ENABLED[bit31]): M-DMA control register (Set to 1 if the configuration parameter

FlsUseDmaForRead is TRUE.)

6.2 Interrupts

The flash driver uses the following interrupts if the configuration parameter FlsGeneral/FlsUseInterrupts

is TRUE:

• The dedicated IPC interrupt for System call (for writing)

• FLASH macro interrupt (for erasing)

• FLASH#1 macro interrupt (for erasing and writing; only devices with two work flash blocks)

If the eCT flash safety mechanism (the configuration parameter FlsGeneral/FlsUseSafetyMechanism) is

TRUE and/or the HSM communication (the configuration parameter FlsGeneral/FlsHsmPresent) is TRUE,

the following interrupt is also used:

• Configured IPC interrupt (by the configuration parameter FlsGeneral/FlsIpcInterruptStructure)

Additionally, you must DEFINE ISR for fault, which calls the fault handling function provided by the flash driver

if the configuration parameter FlsGeneral/FlsSetWorkFlashFaultMaskRegister) is TRUE.

See Fault for information about ISR for fault.

The ISR must be declared in the AUTOSAR OS as Category 1 Interrupt or Category 2 Interrupt.

Note: The interrupt number (IRQ) depends on the subderivative. See Hardware documentation.

Therefore, you need to declare the following ISRs in the interrupt vector table (*_Cat1 for Category-1 ISR) or

(OS) interrupt service routine (*_Cat2 for Category-2 ISR). The ISR is located in the generated file at the

following location: output/generated/src/Fls_Irq.c.

• ISR_NATIVE(Fls_Isr_Ipc_Cat1) or ISR(Fls_Isr_Ipc_Cat2) (for IPC interrupt for System call)

User guide 65 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

• ISR_NATIVE(Fls_Isr_Flash_Cat1) or ISR(Fls_Isr_Flash_Cat2) (for flash macro interrupt)

• ISR_NATIVE(Fls_Isr_Flash1_Cat1) or ISR(Fls_Isr_Flash1_Cat2) (for flash#1 macro interrupt)

• ISR_NATIVE(Fls_Isr_FlsIpc_Cat1) or ISR(Fls_Isr_FlsIpc_Cat2) (for configured IPC interrupt)

Note: If the flash driver is used on CM0+, the priority for above-mentioned interrupts must be set to a

value more than ‘1’.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing

conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following

errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:

“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at

the end of the interrupt function to avoid the priority inversion.

TRAVEO™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.

Thus, if necessary, the DSB instruction should be added just before the end of the handler by the

integrator.

6.3 Fault

The flash driver gets the fault information such as single-bit error (SED) or double-bit error (DED) from a

centralized fault report structure. This centralized nature enables a system-wide, consistent handling of faults

and only a single fault interrupt handler is required. Therefore, the flash driver cannot directly do the

processing (such as clearing the validity bit field) for the fault report structures. If interrupt is disabled, the

errors cannot be detected.

The flash driver uses a fault structure that is specified by the configuration parameter

FlsGeneral/FlsFaultStructure.

You should implement the fault interrupt handler for the fault structure that was specified by the configuration

parameter and the handler should call a fault handing function (Fls_Fault_Handling()) provided by the

flash driver. The function is defined in the generated file in the following location:

output/generated/src/Fls_Irq.c.

Note: This fault handling is not applicable in the flash driver for HSM (Fls_TS_T40D13M2I0R0). It means

that the flash driver for HSM cannot detect SED, but can detect DED; therefore, handles the DED in

the same way as bus error (like HW failure).

Note: If both flash drivers of the application (Fls_TS_T40D13M1I0R0) and of HSM (Fls_TS_T40D13M2I0R0)

are used, and you cannot determine which CPU core caused the fault by checking the error-caused

address in the FAULT.DATA0 register, the configuration parameter FlsGeneral/

FlsSetWorkFlashFaultMaskRegister must be set to FALSE. Otherwise, if an ECC error occurs

when FLS for HSM reads data from the work flash, the fault report interrupt can be generated at

the other core of the application.

The example of the fault interrupt handler is shown as follows.

User guide 66 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

void userIrqFaultReportHandler(void)

{

 /* FAULT_STRUCT is top address of fault report structure. */

 if(FAULT_STRUCT->STATUS.bitField.VALID == 1U)

 {

 /* Check if an error-caused address is within area for this core. */

 /* The error-caused address is calculated by appending 0x10000000 */

 /* to [bit26:0] in DATA0 register of fault report structure. */

 if(WITHIN_AREA_FOR_THIS_CORE(FAULT_STRUCT->DATA0))

 {

 Fls_Fault_Handling(); /* Fault handling for Flash driver */

 }

 Xxx(...); /* Fault handling for other than Flash driver */

 ...

 }

 FAULT_STRUCT->INTR.bitField.FAULT = 1U;

 FAULT_STRUCT->STATUS = 0x00000000UL;

}

6.4 IPC

The flash driver uses inter processor communication (IPC) for performing flash memory operation (writing,

erasing, blank checking, and so on) with system calls or eCT flash safety mechanism.

A dedicated IPC structure (mailbox) for system calls is associated with each CPU core and the flash driver uses

the IPC structure for CM0+, CM4/CM7_0, CM7_1, CM7_2, or CM7_3. If acquisition of the IPC structure fails, the

flash diver retries or reports hardware error. Similarly, for the IPC interrupt structure, dedicated structure for

system calls is associated with each CPU core and the flash driver uses it for CM0+, CM4/CM7_0, CM7_1, CM7_2,

or CM7_3. The used resources are summarized as follows.

• IPC structure 0 (for invoking System call form CM0+)

• IPC structure 1 (for invoking System call form CM4/CM7_0)

• IPC structure 2 (for invoking System call form CM7_1)

• IPC structure 3 (for invoking System call form CM7_2)

• IPC structure 4 (for invoking System call form CM7_3)

• IPC interrupt structure 0 (for notifying System call to CM0+)

• IPC interrupt structure 1 (for notifying finish of System call to CM0+)

• IPC interrupt structure 2 (for notifying finish of System call to CM4/CM7_0)

• IPC interrupt structure 3 (for notifying finish of System call to CM7_1)

• IPC interrupt structure 4 (for notifying finish of System call to CM7_2)

• IPC interrupt structure 5 (for notifying finish of System call to CM7_3)

For eCT flash safety mechanism and/or the HSM communication, the flash driver uses the IPC structure that is

configured by the configuration parameter, FlsGeneral/FlsIpcStructure, and the IPC interrupt structure

that is configured by the configuration parameter, FlsGeneral/FlsIpcInterruptStructure. For eCT flash

User guide 67 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

safety mechanism, HSM communication, or both, do not choose the IPC structures and the IPC interrupt

structures that are reserved for system calls.

6.5 System call

The system call is used for flash memory operations such as write and erase. The IPC mechanism is used to

invoke a system call in TRAVEO™ T2G. A dedicated IPC structure is associated with each core (CM0+,

CM4/CM7_0, CM7_1, CM7_2, and CM7_3) to trigger a system call. The CPU acquires this dedicated IPC structure

(used as a mailbox), writes the system call opcode and argument to the data field of the mailbox, and notifies

the IPC interrupt structure. Typically, the argument is a pointer to SRAM where the API’s parameters are stored.

This results in an IRQ0 interrupt in CM0+. Note that all system calls are serviced by the CM0+ core. A CM0+ IRQ0

interrupt triggered by this method executes the system call. The result of the system call is passed through the

same IPC mechanism. Before running system calls, IRQ0 and IRQ1 should be enabled and IRQ0 priority set to

‘1’. This is to make sure that IRQ1 has higher interrupt priority than IRQ0. By default, IRQ1 priority will be set to

‘0’. In addition, a part of the available SRAM is allocated for system call, and not available for users. You must

keep the power of the SRAM area in enabled or retained state. For details, see hardware documents.

In the case of devices in which work flash block#0 and bllock#1 are mounted, system calls are invoked only for

work flash block#0.

The system call can be invoked by the user’s callout function. See FlsSystemcallCalloutFunction in

Vendor and driver specific parameters.

Note: The system call must not be used on CPU core which the flash driver runs.

Table 5 shows a summary of the system calls that the flash driver uses.

Table 5 System calls

Name Opcode Description

SiliconID 0x00 SROM firmware version

ProgramRow 0x06 Programs the addressed flash page

ConfigureFmInterrupt 0x08 Configures FM interrupt

EraseSector 0x14 Erases the addressed flash sector

EraseSuspend 0x22 Suspends ongoing erase operation

EraseResume 0x23 Resumes an erase suspend operation

BlankCheck 0x2A Performs blank check on eCT work flash memory

6.6 Memory protection unit (MPU)

As mentioned in IPC, the flash driver communicates with CM0+ via IPC for performing flash memory operation.

If the data cache in Arm® CM7 processor is enabled and the areas of IPC accessed from both CM0+ and CM7_0,

CM7_1, CM7_2, or CM7_3 are allocated in cacheable region, it is impossible for the areas to be assured

coherency of the content for each core. Moreover, data to be written to flash memory is passed through certain

SRAM area referred by IPC (writing is not performed by specifying an address); so, if the data cache is enabled,

subsequent reading of written data would be incorrect because only the data held in data cache is read.

Therefore, both flash memory area and the areas for IPC must be in non-cacheable regions. MPU can be used

for setting of the region attribute. Memory protection including the region attribute should be performed on

system level, so, the flash driver does not set up the MPU. When you enable data cache, you must configure the

MPU.

User guide 68 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

The following areas must be allocated to non-cacheable region by setting of MPU.

• Work flash region

• A section FLS_START_SEC_VAR_NO_INIT_UNSPECIFIED in Fls_MemMap.h (for the areas for IPC)

• A section FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT_32 in Fls_MemMap.h (Fls_TS_T40D13M2I0R0)

The following is an example of the MPU setting in Arm® Cortex®-M7 processor:

/* MPU configuration sample for ARM Cortex-M7 Processor */

/* Note: This sample should be valid only for privileged accesses */

#define MPU_RASR_SIZE_64KB (0x0FUL << 1U) // Region size 64KB

#define MPU_RASR_SIZE_512KB (0x12UL << 1U) // Region size 512KB

#define MPU_NORMAL_NON_CACHEABLE (1UL << 19U) // Normal, Non-cacheable

#define MPU_SHARED_DEVICE (1UL << 16U) // Shared device

#define MPU_STRONGLY_ORDERED_DEVICE (0UL) // Strongly ordered

#define MPU_RASR_AP_FULL_ACCESS (0x3 << 24U) // Full access

#define MPU_RASR_ENABLE (1UL) // Enables this region

#define MPU_CTRL_ENABLE (1UL) // Enables the MPU

#define MPU_CTRL_PRIVDEFENA (1UL << 2U) // Enables background region

#define MPU ((MPU_Type *)0xE000ED90UL) // MPU registers base address

typedef struct

{

 uint32_t rbar;

 uint32_t rasr;

} stc_mpu_cfg_t;

const stc_mpu_cfg_t mpuConfig[] =

{

/* FLS bss region */ {0x28030000, (MPU_RASR_SIZE_64KB |

 MPU_NORMAL_NON_CACHEABLE | MPU_RASR_AP_FULL_ACCESS | MPU_RASR_ENABLE)},

/* Work Flash region */ {0x14000000, (MPU_RASR_SIZE_512KB |

 MPU_NORMAL_NON_CACHEABLE | MPU_RASR_AP_FULL_ACCESS | MPU_RASR_ENABLE)}

};

#define MPU_SETTING_NUM (sizeof(mpuConfig)/sizeof(stc_mpu_cfg_t))

#define MPU_MAX_NUM ((MPU->TYPE == 0x00001000)? (16U): (8U))

void userMpuSetting(void)

User guide 69 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

{

 volatile unsigned long i;

 /* Cleans and Invalidates Data Cache */

 ...

 __DMB(); // Make sure outstanding transfers are done

 MPU->CTRL = 0; // Disable the MPU

 for (i = 0; i < MPU_SETTING_NUM; i++)

 {

 MPU->RNR = i; // Select which MPU region to configure

 MPU->RBAR = mpuConfig[i].rbar; // Set region base address register

 MPU->RASR = mpuConfig[i].rasr; // Set region attribute and size register

 }

 /* Disabled unused regions */

 for (i = MPU_SETTING_NUM; i < MPU_MAX_NUM; i++)

 {

 MPU->RNR = i; // Select which MPU region to configure

 MPU->RBAR = 0; // Set region base address register to 0

 MPU->RASR = 0; // Set region attribute and size register to 0

 }

 /* Enable the MPU and background region (only for privileged accesses) */

 MPU->CTRL = (MPU_CTRL_ENABLE | MPU_CTRL_PRIVDEFENA);

 __DSB(); // Make sure outstanding transfers are done

 __ISB(); // Make sure outstanding transfers are done

}

User guide 70 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

6 Hardware resources

6.7 DMA

The flash driver uses DMA transfer for reading from work flash if the configuration parameter

FlsGeneral/FlsUseDmaForRead is TRUE. The reading is done at following instances when

Fls_MainFunction() running.

• Read job initiated by Fls_Read() or Fls_ReadImmediate().

• Verifying after data is written by the write job initiated by Fls_Write().

• Compare job initiated by Fls_Compare().

Note: The flash driver does not enable the DMA controller. Therefore, you must enable the DMA controller

before starting the jobs by using one of the following ways if the configuration parameter

FlsGeneral/FlsUseDmaForRead is TRUE.

• Set ENABLED bit (Bit No.31) in DMAC_CTL register to 1.

• Configure the MCU module with McuDmaEnable=true and call the Mcu_SetMode() function

with the configured mode.

The DMA transfer resolves the following restrictions in the TRAVEO™ T2G microcontroller.

• Work flash is always read 64-bit wide via AXI on CM7_0/CM7_1/CM7_2/CM7_3. It will result in unexpected

ECC error for 32-bit reading. DMA reads via AHB which has 32-bit width.

• ECC error can be notified to only one CPU via the fault structure.

When DMA reads from work flash, the ECC error will be detected and informed as bus error via interrupt register

of DMA (even in the absence of fault handling). If a separate DMA channel is used for the flash driver on each

core, uncorrectable error can be detected for the flash driver on each core.

If you do not detect the ECC error, the configuration parameter FlsGeneral/FlsUseDmaForRead can be set to

FALSE.

The flash driver prepares the target (auxiliary) buffer for reading with DMA transfer on SRAM. The buffer is

located in non-cacheable region by MPU as described in Memory protection unit (MPU). It allows the driver to

copy from auxiliary buffer into user’s area with keeping cache coherency. The size of auxiliary buffer is

determined by the configuration parameter FlsGeneral/FlsAuxiliaryBufferSize. The size means

maximum size of read data by one DMA transfer, but it affects RAM consumption. You must appropriately

configure the size. The auxiliary buffer size is considered to be limited to the value of

FlsConfigSet/FlsMaxReadNormalMode (or FlsConfigSet/FlsMaxReadFastMode) or a large sector size.

User guide 71 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7 Appendix A – API reference

7.1 Data types

7.1.1 Flash driver data types

7.1.1.1 Fls_AddressType

Type

typedef uint32 Fls_AddressType;

Description

This type is used for address information.

7.1.1.2 Fls_LengthType

Type

typedef uint32 Fls_LengthType;

Description

This type is used for length information.

7.1.1.3 Fls_ConfigType

Type

Hardware specific.

Description

This is the type of the external data structure containing the overall initialization data of the flash driver.

7.1.1.4 External data types

The flash driver imports data types from the MemIf module and AUTOSAR standard data types.

7.1.1.5 Std_ReturnType

Description

AUTOSAR standard API return type.

7.1.1.6 Std_VersionInfoType

Description

This type is used to request the version of the flash driver using the Fls_GetVersionInfo() function.

User guide 72 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.1.1.7 MemIf_ModeType

Description

This type denotes the driver operation mode. It is used as the parameter value of the Fls_SetMode() function.

7.1.1.8 MemIf_StatusType

Description

This type denotes the current status of the underlying abstraction module and device driver. It is used as the

return value of the Fls_GetStatus() function.

7.1.1.9 MemIf_JobResultType

Description

This type denotes the result of the last job.

User guide 73 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.2 Macros

7.2.1 Error codes

The service may return the following error codes if default error detection is enabled.

Table 6 Error codes

Name Value Description

FLS_E_PARAM_CONFIG 0x01 Address of the given configuration for Fls_Init()

is not within the allowed range.

FLS_E_PARAM_ADDRESS 0x02 Address parameter is not within the correct range

such as in flash memory area.

FLS_E_PARAM_LENGTH 0x03 Length parameter or address + length parameter are

not within the correct range.

FLS_E_PARAM_DATA 0x04 Address pointer parameter is a NULL pointer.

FLS_E_UNINIT 0x05 Flash driver is not yet initialized.

FLS_E_BUSY 0x06 Flash driver is currently busy.

FLS_E_VERIFY_ERASE_FAILED 0x07 Erase or write operation failed. Data in the affected

sector was not erased properly.

FLS_E_VERIFY_WRITE_FAILED 0x08 Write operation failed. Data in the affected sector

was not written properly.

FLS_E_TIMEOUT 0x09 The maximum time has been exceeded during

operation or the maximum retry time has been

exceeded when there is conflict in flash operation.

FLS_E_PARAM_POINTER 0x0a Fls_GetVersionInfo() function called with

NULL pointer.

FLS_E_ERASE_FAILED_FOR_CALLOUT 0x81 Flash erase failed. This error ID is used to call the

error callout handler.

FLS_E_WRITE_FAILED_FOR_CALLOUT 0x82 Flash write failed. This error ID is used to call the

error callout handler.

FLS_E_READ_FAILED_FOR_CALLOUT 0x83 Flash read failed. This error ID is used to call the

error callout handler.

FLS_E_COMPARE_FAILED_FOR_CALLOUT 0x84 Flash compare failed. This error ID is used to call the

error callout handler.

FLS_E_DED_FAILURE 0x85 Double-bit error is detected (DED).

FLS_E_SED_FAILURE 0x86 Single-bit error is detected (SED).

User guide 74 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.2.2 Version information

The following version information is published in the driver's header file:

Table 7 Version information

Name Value Description

FLS_SW_MAJOR_VERSION Refer to release notes Vendor-specific major version number

FLS_SW_MINOR_VERSION Refer to release notes Vendor-specific minor version number

FLS_SW_PATCH_VERSION Refer to release notes Vendor-specific patch version number

7.2.3 Module information

Table 8 Module information

Name Value Description

FLS_MODULE_ID 92 Module ID

FLS_VENDOR_ID 66 Vendor ID

7.2.4 API service IDs

The following service IDs are used to call the default error tracer in different API functions:

Table 9 API service IDs

Name Value API name

FLS_ID_INIT 0x00 Fls_Init()

FLS_ID_ERASE 0x01 Fls_Erase()

FLS_ID_WRITE 0x02 Fls_Write()

FLS_ID_CANCEL 0x03 Fls_Cancel()

FLS_ID_GETSTATUS 0x04 Fls_GetStatus()

FLS_ID_GETJOBRESULT 0x05 Fls_GetJobResult()

FLS_ID_MAINFUNCTION 0x06 Fls_MainFunction()

FLS_ID_READ 0x07 Fls_Read()

FLS_ID_COMPARE 0x08 Fls_Compare()

FLS_ID_SETMODE 0x09 Fls_SetMode()

FLS_ID_BLANKCHECK 0x0A Fls_BlankCheck()

FLS_ID_GETVERSIONINFO 0x10 Fls_GetVersionInfo()

FLS_ID_SETCYCLEMODE 0xFA Fls_SetCycleMode()

FLS_ID_READIMMEDIATE 0xFB Fls_ReadImmediate()

FLS_ID_SUSPEND 0xFC Fls_Suspend()

FLS_ID_RESUME 0xFD Fls_Resume()

User guide 75 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3 Functions

7.3.1 Fls_Init

Syntax

void Fls_Init (const Fls_ConfigType* ConfigPtr)

Service ID

0x00

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

• ConfigPtr - pointer to FLS configuration set (Postbuild) or NULL pointer (Precompile).

Parameters (out)

None

Return value

None

Development errors

• FLS_E_PARAM_CONFIG - If configuration variant is post-build time, address of the given configuration for

Fls_Init() is not within the allowed range where is generated for FlsConfigSet container by EB tresos Studio.

If configuration variant is pre-compile time (and there is only one FlsConfiget), pointer other than NULL is

passed. Flash driver for application (Fls_TS_T40D13M1I0R0) runs on CM0+ or flash driver for HSM

(Fls_TS_T40D13M2I0R0) runs on CM4, CM7_0, CM7_1, CM7_2, or CM7_3.

• FLS_E_BUSY - The driver is currently busy.

Runtime errors

None

Description

Flash driver module initialization. This function shall be called with pointer to FLS configuration set (Postbuild)

or NULL pointer (Precompile).

Caveats

• This service shall be called before any other service of the flash driver.

User guide 76 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.2 Fls_Erase

Syntax

Std_ReturnType Fls_Erase (Fls_AddressType TargetAddress, Fls_LengthType Length)

Service ID

0x01

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

• TargetAddress - Virtual target address in flash memory.

• Length - Number of bytes to erase.

Parameters (out)

None

Return value

• E_OK - Erase command was accepted.

• E_NOT_OK - Erase command was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_PARAM_ADDRESS - Parameter TargetAddress is greater than the total flash memory size or

parameter TargetAddress is not aligned to a flash sector boundary.

• FLS_E_PARAM_LENGTH - Parameter Length is 0 or parameter TargetAddress + Length is greater than the

total flash memory size or the TargetAddress parameter + Length parameter is not aligned to a flash

sector boundary.

• FLS_E_BUSY - Driver is currently busy or another job has been already suspended.

Runtime errors

None

Description

Sets up an erase job for the flash driver. The driver will erase the affected sectors that include the area given.

Caveats

• The flash driver must be initialized before this service is called.

• Only one read, write, erase, compare or blank check job can be accepted at the same time.

• An erase job can be accepted only if another job has not been suspended.

User guide 77 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.3 Fls_Write

Syntax

Std_ReturnType Fls_Write(Fls_AddressType TargetAddress, const uint8*

SourceAddressPtr, Fls_LengthType Length)

Service ID

0x02

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

• TargetAddress - Virtual target address in flash memory.

• SourceAddressPtr - Pointer to source data buffer.

• Length - Number of bytes to write.

Parameters (out)

None

Return value

• E_OK - Write command was accepted.

• E_NOT_OK - Write command was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_PARAM_ADDRESS - The TargetAddress parameter is greater than the total flash memory size or the

TargetAddress parameter is not a multiple of FlsPageSize.

• FLS_E_PARAM_LENGTH – The Length parameter is 0 or the TargetAddress parameter + Length is greater

than the total flash memory size or the TargetAddress parameter + Length is not a multiple of

FlsPageSize.

• FLS_E_PARAM_DATA - The SourceAddressPtr parameter is a NULL pointer.

• FLS_E_BUSY - Driver is currently busy or the target address (from start address to end address (start

address + length)) is within the range of sector used by suspended job.

Runtime errors

None

Description

Sets up a write job for the flash driver. The driver will write Length data from SourceAddressPtr to

TargetAddress.

Caveats

User guide 78 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

• The flash driver must be initialized before this service is called.

• Only one read, write, erase, compare or blank check job can be accepted at the same time.

• A write job can be accepted only if the target address (from start address to end address (start address +

length)) is not within the range of sector used by suspended job.

• If FlsGeneral/FlsUseNonBlockingWrite is TRUE, the flash driver writes in non-blocking mode.

Otherwise, writes in blocking mode. This parameter is not applied for the write operation for work flash

block#1.

7.3.4 Fls_Cancel

Syntax

void Fls_Cancel (void)

Service ID

0x03

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

None

Parameters (out)

None

Return value

None

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_BUSY – This service was called during a running Fls_Suspend() or Fls_Resume() invocation.

Runtime errors

None

Description

This function cancels an ongoing read, write, erase, compare or blank check job immediately. The suspended

job can't be cancelled.

Caveats

• The flash driver must be initialized before this service is called.

• The states and data of the affected flash memory cells are undefined.

• This function must only be called from one source (for example, flash EEPROM emulation).

User guide 79 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

• The FLS module's environment shall not call the function Fls_Cancel() during a running

Fls_MainFunction() invocation.

• The suspended job can't be cancelled. After resume, it can be cancelled.

7.3.5 Fls_GetStatus

Syntax

MemIf_StatusType Fls_GetStatus (void)

Service ID

0x04

Sync/Async

Synchronous

Reentrancy

Re-entrant

Parameters (in)

None

Parameters (out)

None

Return value

• MEMIF_UNINIT - Driver is not yet initialized.

• MEMIF_IDLE - Driver is currently idle.

• MEMIF_BUSY - Driver is currently busy.

Development errors

None

Runtime errors

None

Description

This function returns the current state of the driver.

Caveats

• If a job has been suspended and new job doesn’t run, this function returns MEMIF_IDLE.

User guide 80 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.6 Fls_GetJobResult

Syntax

MemIf_JobResultType Fls_GetJobResult (void)

Service ID

0x05

Sync/Async

Synchronous

Reentrancy

Re-entrant

Parameters (in)

None

Parameters (out)

None

Return value

• MEMIF_JOB_OK - Last job was successful.

• MEMIF_JOB_PENDING - Job is currently pending.

• MEMIF_JOB_FAILED - Last job was failed.

• MEMIF_JOB_CANCELED - Last job was canceled.

• MEMIF_BLOCK_INCONSISTENT - Last compare job yielded differences.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

Runtime errors

None

Description

This function returns the last job result of the driver.

Caveats

• The flash driver must be initialized before this service is called.

• If a job has been suspended and new job doesn’t run, this function returns MEMIF_JOB_OK.

User guide 81 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.7 Fls_Read

Syntax

Std_ReturnType Fls_Read(Fls_AddressType SourceAddress, uint8* TargetAddressPtr,

Fls_LengthType Length)

Service ID

0x07

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

• SourceAddress - Virtual source address in flash memory.

• Length - Number of bytes to read.

Parameters (out)

• TargetAddressPtr - Pointer to target data buffer.

Return value

• E_OK - Read command was accepted.

• E_NOT_OK - Read command was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_PARAM_ADDRESS - The SourceAddress parameter is greater than the total flash memory size.

• FLS_E_PARAM_LENGTH - The Length parameter is 0 or the SourceAddress parameter + Length is greater

than the total flash memory size.

• FLS_E_PARAM_DATA - The TargetAddressPtr parameter is a NULL pointer.

• FLS_E_BUSY - Driver is currently busy or the source address (from start address to end address (start

address + length)) is within the range of sector used by suspended job.

Runtime errors

None

Description

Sets up a read job for the flash driver. The driver will read the Length data from SourceAddress to

TargetAddressPtr (with performing a blank check before reading).

Caveats

• The flash driver must be initialized before this service is called.

• Only one read, write, erase, compare or blank check job can be accepted at the same time.

User guide 82 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

• A read job can be accepted only if the source address (from start address to end address (start address +

length)) is not within the range of sector used by suspended job.

• If blank area is read, this function writes 0xFF.. to target data buffer.

7.3.8 Fls_Compare

Syntax

Std_ReturnType Fls_Compare(Fls_AddressType SourceAddress, const uint8*

TargetAddressPtr, Fls_LengthType Length)

Service ID

0x08

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

• SourceAddress - Virtual source address in flash memory.

• TargetAddressPtr - Pointer to target data buffer.

• Length - Number of bytes to compare.

Parameters (out)

None

Return value

• E_OK - Compare command was accepted.

• E_NOT_OK - Compare command was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_PARAM_ADDRESS - The SourceAddress parameter is greater than the total flash memory size.

• FLS_E_PARAM_LENGTH - The Length parameter is 0 or the SourceAddress parameter + Length is greater

than the total flash memory size.

• FLS_E_PARAM_DATA - The TargetAddressPtr parameter is a NULL pointer.

• FLS_E_BUSY - Driver is currently busy or the source address (from start address to end address (start

address + length)) is within the range of sector used by suspended job.

Runtime errors

None

Description

Sets up a compare job for the flash driver. The driver will compare the Length data between SourceAddress

and TargetAddressPtr.

User guide 83 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

Caveats

• The flash driver must be initialized before this service is called.

• Only one read, write, erase, compare or blank check job can be accepted at the same time.

• A compare job can be accepted only if the source address (from start address to end address (start address

+ length)) is not within the range of sector used by suspended job.

• When reading for the comparing is done, it is performed without blank checking.

7.3.9 Fls_SetMode

Syntax

void Fls_SetMode (MemIf_ModeType Mode)

Service ID

0x09

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

• Mode - Mode to set the flash driver to.

Parameters (out)

None

Return value

None

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_BUSY - Driver is currently busy.

Runtime errors

None

Description

This function sets the flash driver to either SLOW or FAST mode.

Caveats

• The flash driver must be initialized before this service is called.

• This service shall not be called during a running operation.

7.3.10 Fls_GetVersionInfo

Syntax

User guide 84 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

void Fls_GetVersionInfo (Std_VersionInfoType* VersioninfoPtr)

Service ID

0x10

Sync/Async

Synchronous

Reentrancy

Re-entrant

Parameters (in)

None

Parameters (out)

• VersioninfoPtr - Pointer to store the version information of this module to.

Return value

None

Development errors

• FLS_E_PARAM_POINTER - Parameter VersionInfoPtr is a NULL pointer.

Runtime errors

None

Description

This function returns the version information of this module.

Caveats

None

User guide 85 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.11 Fls_BlankCheck

Syntax

Std_ReturnType Fls_BlankCheck(Fls_AddressType TargetAddress, Fls_LengthType Length)

Service ID

0x0A

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

• TargetAddress - Virtual target address in flash memory.

• Length - Number of bytes to be checked blank.

Parameters (out)

None

Return value

• E_OK - Blank check command was accepted.

• E_NOT_OK - Blank check command was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_PARAM_ADDRESS - The TargetAddress parameter is greater than the total flash memory size.

• FLS_E_PARAM_LENGTH - The Length parameter is 0 or the TargetAddress parameter + Length is greater

than the total flash memory size.

• FLS_E_BUSY - Driver is currently busy or the target address (from start address to end address (start

address + length)) is within the range of sector used by suspended job.

Runtime errors

None

Description

Sets up a blank check job for the flash driver. The driver will check if the Length data from TargetAddress is

blank (it has been erased but not yet been programmed).

Caveats

• The flash driver must be initialized before this service is called.

• Only one read, write, erase, compare or blank check job can be accepted at the same time.

• A blank check job can be accepted only if the target address (from start address to end address (start

address + length)) is not within the range of sector used by suspended job.

User guide 86 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.12 Fls_ReadImmediate

Syntax

Std_ReturnType Fls_ReadImmediate(Fls_AddressType SourceAddress, uint8*

TargetAddressPtr, Fls_LengthType Length)

Service ID

0xFB

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

• SourceAddress - Virtual source address in flash memory.

• Length - Number of bytes to read.

Parameters (out)

• TargetAddressPtr - Pointer to target data buffer.

Return value

• E_OK - Read immediate command was accepted.

• E_NOT_OK - Read immediate command was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_PARAM_ADDRESS - The SourceAddress parameter is greater than the total flash memory size.

• FLS_E_PARAM_LENGTH - The Length parameter is 0 or the SourceAddress parameter + Length is greater

than the total flash memory size.

• FLS_E_PARAM_DATA - The TargetAddressPtr parameter is a NULL pointer.

• FLS_E_BUSY - Driver is currently busy or the source address (from start address to end address (start

address + length)) is within the range of sector used by suspended job.

Runtime errors

None

Description

Sets up a read job for the flash driver. The driver will read the Length data from SourceAddress to

TargetAddressPtr without performing a blank check before reading.

Caveats

• The flash driver must be initialized before this service is called.

• Only one read, write, erase, compare or blank check job can be accepted at the same time.

User guide 87 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

• A read job can be accepted only if the source address (from start address to end address (start address +

length)) is not within the range of sector used by suspended job.

• If blank area is read, this function will read undefined value.

7.3.13 Fls_Suspend

Syntax

Std_ReturnType Fls_Suspend(void)

Service ID

0xFC

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

None

Parameters (out)

None

Return value

• E_OK - a write or an erase was in progress and could be suspended.

• E_NOT_OK - a write or an erase was in progress and could not be suspended because another job was

already suspended or no job operation was in progress.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

Runtime errors

None

Description

This function suspends a job in progress.

Caveats

• The flash driver must be initialized before this service is called.

• After this service, the FLS module status is MEMIF_IDLE and the job result is MEMIF_JOB_OK.

• The FLS module's environment shall not call the function Fls_Suspend() during a running

Fls_MainFunction() or Fls_Resume() invocation.

• If this function is called to suspend an erase job that was resumed by Fls_Resume(), the call must be done

at least 250 microseconds after Fls_Resume() finishes. Otherwise, the erase job cannot progress.

User guide 88 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.14 Fls_Resume

Syntax

Std_ReturnType Fls_Resume(void)

Service ID

0xFD

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

None

Parameters (out)

None

Return value

• E_OK - an operation had been suspended and could be resumed.

• E_NOT_OK - no job was suspended or the suspended job cannot be resumed because there is a job in

progress already.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

Runtime errors

None

Description

This function resumes a suspended job, erase or write. Only the operation previously suspended can be

resumed.

Caveats

• The flash driver must be initialized before this service is called.

• After this service, the FLS module status is MEMIF_BUSY and the job result is MEMIF_JOB_PENDING.

• The FLS module's environment shall not call the function Fls_Resume() during a running Fls_Suspend()

invocation.

User guide 89 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.3.15 Fls_SetCycleMode

Syntax

void Fls_SetCycleMode (MemIf_ModeType Mode)

Service ID

0xFA

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

• Mode – Indicates whether the flash driver checks timeout. If Mode is MEMIF_MODE_FAST, timeout monitoring

is disabled. Otherwise, timeout monitoring is enabled.

Parameters (out)

None

Return value

• E_OK – This setting was accepted.

• E_NOT_OK - This setting was not accepted.

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_BUSY - Driver is currently busy.

Runtime errors

None

Description

This function determines whether the flash driver checks timeout.

Caveats

• The flash driver must be initialized before this service is called.

• This service must not be called during a running operation.

User guide 90 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.4 Scheduled functions

7.4.1 Fls_MainFunction

Syntax

void Fls_MainFunction (void)

Service ID

0x06

Timing

FIXED_CYCLIC

Reentrancy

Non re-entrant

Parameters (in)

None

Parameters (out)

None

Return value

None

Development errors

• FLS_E_UNINIT - Driver is not yet initialized.

• FLS_E_VERIFY_ERASE_FAILED - Verification of erase, before write or blank check yielded a non-erased

area. (If FlsGeneral/FlsReportErrorIfNotBlank is FALSE, blank check does not report the error.)

• FLS_E_VERIFY_WRITE_FAILED - Verification of write yielded incorrect written data.

• FLS_E_TIMEOUT - Read, write, erase, compare, or blank check job operation exceeded the maximum

timeout or the maximum retry time when there is conflict in flash operation.

Runtime errors

• FLS_E_ERASE_FAILED: Erase failed due to a hardware error.

• FLS_E_WRITE_FAILED: Write failed due to a hardware error.

• FLS_E_COMPARE_FAILED: Compare failed due to a hardware error.

• FLS_E_READ_FAILED: Read failed due to a hardware error.

• FLS_E_DED_FAILURE: Double bit error is detected (DED).

• FLS_E_SED_FAILURE: Single bit error is detected (SED).

Description

This function performs the asynchronous processing of the flash read, write, erase, compare or blank check job.

Caveats

• The flash driver must be initialized before this service is called.

User guide 91 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.5 Expected interfaces

7.5.1 Mandatory interface

There are no mandatory interfaces that is expected by the flash driver.

7.5.2 Optional interfaces

If default error detection is enabled, the flash driver uses the following callback function that is provided by the

default error tracer. If the default error tracer is not used, this function must be implemented separately.

7.5.2.1 Det_ReportError

Syntax

Std_ReturnType Det_ReportError (uint16 ModuleId, uint8 InstanceId, uint8 ApiId,

uint8 ErrorId)

Sync/Async

Synchronous

Reentrancy

Re-entrant

Parameters (in)

• ModuleId - Module ID of the flash driver.

• InstanceId - Instance ID of the flash driver.

• ApiId - ID of the API service that calls this function.

• ErrorId - ID of the detected default error.

Return value

Returns always E_OK (is required for services).

Description

Service for reporting default errors.

If runtime error detection is enabled, the flash driver uses the following callback function that is provided by

the default error tracer. If the default error tracer is not used, this function must be implemented separately.

User guide 92 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.5.2.2 Det_ReportRuntimeError

Syntax

Std_ReturnType Det_ReportRuntimeError (uint16 ModuleId, uint8 InstanceId, uint8

ApiId, uint8 ErrorId)

Sync/Async

Synchronous

Reentrancy

Re-entrant

Parameters (in)

• ModuleId - Module ID of the flash driver.

• InstanceId - Instance ID of the flash driver.

• ApiId - ID of the API service that calls this function.

• ErrorId - ID of the detected runtime error.

Return value

Returns always E_OK (is required for services).

Description

Service for reporting runtime errors.

User guide 93 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.5.3 Configurable interfaces

The following callback functions are configurable and usually provided by the flash EEPROM emulation.

7.5.3.1 Fee_JobEndNotification

Syntax

void Fee_JobEndNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function shall be called when a job has been completed with a positive result:

• Read job finished & OK

• Write job finished & OK

• Erase job finished & OK

• Compare job finished & memory blocks are the same

• Blank check job finished & OK

Configurable

If a function name is configured for the FlsConfigSet/FlsJobEndNotification parameter, the function is

called.

User guide 94 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.5.3.2 Fee_JobErrorNotification

Syntax

void Fee_JobErrorNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function shall be called when a job has been canceled or finished with negative result:

• Read job aborted or failed

• Write job aborted or failed

• Erase job aborted or failed

• Compare job aborted or failed

• Compare job finished & memory blocks differ

• Blank check job aborted or failed

Configurable

If a function name is configured for the FlsConfigSet/FlsJobErrorNotification parameter, the function

is called.

User guide 95 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.5.3.3 Fee_DedErrorNotification

Syntax

void Fee_DedErrorNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function is called when 2 bit or more ECC error is detected.

Configurable

If a function name is configured for the FlsConfigSet/FlsDedErrorNotification parameter, the function

is called.

7.5.3.4 Fee_SedErrorNotification

Syntax

void Fee_SedErrorNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function is called when single bit ECC error is detected.

Configurable

If a function name is configured for the FlsConfigSet/FlsSedErrorNotification parameter, the function

is called.

User guide 96 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

7.5.3.5 Systemcall callout function

Syntax

Std_ReturnType Systemcall_Callout_Function_Name

(

 uint32 *Fls_IpcContext

)

Reentrancy

Non re-entrant

Parameters (in)

• Fls_IpcContext - SRAM address (SRAM_SCRATCH_ADDR) where the system-call parameters have been

stored. This can be used to initiate the system-call request by such S-LLD IPC driver.

Return value

• E_OK - The callout function calls system-call successfully.

• E_NOT_OK - The callout function fails to call system-call.

Description

The callback function is called whenever the flash driver calls the system-call.

Configurable

If a function name is configured for the FlsGeneral/FlsSystemcallCalloutFunction parameter, the

function is called.

The following callback function is configurable and usually provided by the user, if required.

7.5.3.6 Erase callout API

Syntax

void Erase_Handler_Name

(

 Fls_AddressType TargetAddress

)

Reentrancy

Don't care

Parameters (in)

• TargetAddress - Virtual target address in flash memory (that was passed to Fls_Erase()).

Return value

None

Description

This callback function is called after an erase job is accepted.

Configurable

User guide 97 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

7 Appendix A – API reference

If a function name is configured for the FlsGeneral/FlsEraseCalloutFunction parameter, the function is

called.

7.6 Required callback functions

7.6.1 Callout functions

7.6.2 Error callout API

The AUTOSAR FLS module requires an error callout handler. Each error is reported to this handler; error

checking cannot be switched off. The name of the function to be called can be configured by the

FlsErrorCalloutFunction parameter.

Syntax

void Error_Handler_Name

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Re-entrant

Parameters (in)

• ModuleId - Module ID of calling module.

• InstanceId - Instance ID of calling module.

• ApiId - ID of the API service that calls this function.

• ErrorId - ID of the detected error.

Return value

None

Description

Service for reporting errors.

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
98

002-23407
 R

ev. *T

20
23

-12
-08

8 Appendix B – Access register table

8.1 FLASHC

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

FLASH_CTL 31:0 Word

(32 bits)

[FlsSetFlashCtlRegister is

FLS_FLASH_CTL_WORK

ONLY]

0x00500000 |

MAIN_WS[3:0]

Control Fls_Init 0x0070220F 0x00500000 |

MAIN_WS[3:0]

(After Fls_Init)

FLASH_PWR_CTL 31:0 Word

(32 bits)

- Flash power

Control

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

FLASH_CMD 31:0 Word

(32 bits)

0x00000002 Command Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM4_CA_CTL<n>

(<n>=0,1,2)
31:0 Word

(32 bits)

- CM4 cache

control

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM4_CA_STATUS<n>

(<n>=0,1,2)
31:0 Word

(32 bits)

- CM4 cache

status

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM0_STATUS 31:0 Word

(32 bits)

0x00000002 CM0+

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM4_STATUS 31:0 Word

(32 bits)

0x00000002 CM4

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM7_0_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #0

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
99

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CM7_1_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #1

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM7_2_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #2

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM7_3_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #3

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

Note: The registers relevant to only DFT (BIST), CM0+, CRYPTO, Datawire, DMAC and external master are omitted from above table.

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
100

002-23407
 R

ev. *T

20
23

-12
-08

8.2 FLASHC_FM_CTL_ECT

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

MAIN_FLASH_SAFETY 31:0 Word

(32 bits)

- Main (Code)

flash

Security

enable

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

STATUS 31:0 Word

(32 bits)

- Status read

from

flash macro

Read-only 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

WORK_FLASH_SAFETY 31:0 Word

(32 bits)

[FlsSetWorkFlashSafetyR

egister is TRUE]

0x00000001

(Before start of writing,

Before start of erasing

After Fls_Resume)

0x00000000

(After Fls_Init,

After finish of writing,

After finish of erasing,

After Fls_Suspend)

Work flash

security

enable

Fls_Init

Fls_MainFunction

Fls_Suspend

Fls_Resume

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

Note: The registers used only by System call are omitted from above table.

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
101

002-23407
 R

ev. *T

20
23

-12
-08

8.3 FLASHC1

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

FLASH_CTL 31:0 Word

(32 bits)

[FlsSetFlashCtlRegister is

FLS_FLASH_CTL_WORK

ONLY]

0x00500000 |

MAIN_WS[3:0]

Control Fls_Init 0x0070220F 0x00500000 |

MAIN_WS[3:0]

(After Fls_Init)

FLASH_PWR_CTL 31:0 Word

(32 bits)

- Flash power

Control

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

FLASH_CMD 31:0 Word

(32 bits)

0x00000002 Command Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM4_CA_CTL<n>

(<n>=0,1,2)
31:0 Word

(32 bits)

- CM4 cache

control

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM4_CA_STATUS<n>

(<n>=0,1,2)
31:0 Word

(32 bits)

- CM4 cache

status

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM0_STATUS 31:0 Word

(32 bits)

0x00000002 CM0+

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM4_STATUS 31:0 Word

(32 bits)

0x00000002 CM4

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM7_0_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #0

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM7_1_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #1

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
102

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CM7_2_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #2

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CM7_3_STATUS 31:0 Word

(32 bits)

0x00000002 CM7 #3

interface

status

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

Note: The registers relevant to only DFT (BIST), CM0+, CRYPTO, Datawire, DMAC, and external master. are omitted from above table.

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
103

002-23407
 R

ev. *T

20
23

-12
-08

8.4 FLASHC1_FM_CTL_ECT

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

FM_CTL 31:0 Word

(32 bits)

0x00000000 (when a

flash operation is

finished)

0x80000007 (perform

flash writing)

0x8000000C (perform

sector erasing)

0x8000000D (start blank

check)

0x8000000E (perform

blank check)

0x8000000F (finish blank

check)

0x80000011 (perform

erase suspending)

0x80000012 (perform

erase resuming)

Flash Macro

Control

Fls_MainFunction

Fls_Suspend

Fls_Resume

Fls_Cancel

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

FM_CODE_MARGIN 31:0 Word

(32 bits)

- Flash Macro

Margin

Mode on

Code Flash

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

FM_ADDR 31:0 Word

(32 bits)

Target work flash

address (before start of

writing, before start of

erasing and before

performing blank check)

Flash Macro

Address

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
104

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

INTR 31:0 Word

(32 bits)

0x00000001 (clear

flash#1 macro interrupt)

Interrupt Fls_MainFunction

Fls_Suspend

Fls_Resume

Fls_Cancel

Fls_GetStatusSub

Fls_Isr_Flash1_C

at1

Fls_Isr_Flash1_C

at2

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_SET 31:0 Word

(32 bits)

- Interrupt

Set

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_MASK 31:0 Word

(32 bits)

0x00000001 (enable

flash#1 macro interrupt)

0x00000000 (disable

flash#1 macro interrupt)

Interrupt

Mask

Fls_Init

Fls_MainFunction

Fls_Suspend

Fls_Resume

Fls_Cancel

Fls_GetStatusSub

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_MASKED 31:0 Word

(32 bits)

- Interrupt

Masked

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

ECC_OVERRIDE 31:0 Word

(32 bits)

- ECC Data In

override

information

and control

bits

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

FM_DATA 31:0 Word

(32 bits)

Flash write value (before

start of writing)

Flash macro

data_in [31

to 0] both

Code and

Work Flash

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
105

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

BOOKMARK 31:0 Word

(32 bits)

Address of sector erase

(after start of erasing)

Bookmark

register –

keeps the

current FW

HV seq

Fls_MainFunction 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

MAIN_FLASH_SAFETY 31:0 Word

(32 bits)

- Main (Code)

flash

Security

enable

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

STATUS 31:0 Word

(32 bits)

- Status read

from

flash macro

Read-only 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

WORK_FLASH_SAFETY 31:0 Word

(32 bits)

[FlsSetWorkFlashSafetyR

egister is TRUE]

0x00000001

(Before start of writing,

Before start of erasing

After Fls_Resume)

0x00000000

(After Fls_Init,

After finish of writing,

After finish of erasing,

After Fls_Suspend)

Work flash

security

enable

Fls_Init

Fls_MainFunction

Fls_Suspend

Fls_Resume

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
106

002-23407
 R

ev. *T

20
23

-12
-08

8.5 FAULT

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CTL 31:0 Word

(32 bits)

- Fault

control

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

STATUS 31:0 Word

(32 bits)

- Fault status Read-only 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

DATA 31:0 Word

(32 bits)

- Fault data Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

PENDING<n>

(<n>=0,1,2)
31:0 Word

(32 bits)

- Fault

pending

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

MASK0 31:0 Word

(32 bits)

- Fault mask

0

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

MASK1 31:0 Word

(32 bits)

[FlsSetWorkFlashFaultM

askRegister is TRUE]

0x00380000

(Fls_TS_T40D13M1I0R0)

0x00000000

(Fls_TS_T40D13M2I0R0)

Fault mask

1

Fls_Init 0x00380000 0x00380000

(Fls_TS_T40D13M1I

0R0)

0x00000000

(Fls_TS_T40D13M2I

0R0)

(After Fls_Init)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
107

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

MASK2 31:0 Word

(32 bits)

[FlsSetWorkFlashFaultM

askRegister is TRUE and

the target device has two

flash blocks]

0x00308000

(Fls_TS_T40D13M1I0R0)

0x00000000

(Fls_TS_T40D13M2I0R0)

Fault mask

2

Fls_Init 0x00308000 0x00308000

(Fls_TS_T40D13M1I

0R0)

0x00000000

(Fls_TS_T40D13M2I

0R0)

(After Fls_Init)

INTR 31:0 Word

(32 bits)

- Interrupt Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_SET 31:0 Word

(32 bits)

- Interrupt

set

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_MASK 31:0 Word

(32 bits)

- Interrupt

mask

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_MASKED 31:0 Word

(32 bits)

- Interrupt

masked

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
108

002-23407
 R

ev. *T

20
23

-12
-08

8.6 IPC

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

IPC_ACQUIRE 31:0 Word

(32 bits)

- IPC lock

acquire

register

Read-only 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_RELEASE 31:0 Word

(32 bits)

Release event

(After finish of writing,

After finish of erasing

After finish of blank

check

After Fls_Suspend)

IPC lock

release

register

Fls_MainFunction

Fls_Suspend
0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_NOTIFY 31:0 Word

(32 bits)

Notification event

(When call of System

call,

When communication

with HSM)

IPC

notification

register

Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

Fls_Isr_Flash_Cat1

Fls_Isr_Flash_Cat2

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_DATA0 31:0 Word

(32 bits)

Address of SRAM where

the System call (API)

parameters

(When call of System

call,

When communication

with HSM)

eCT flash safety

mechanism information

(for eCT flash safety

mechanism)

IPC data

register 0

Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

Fls_Isr_Flash_Cat1

Fls_Isr_Flash_Cat2

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
109

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

IPC_DATA1 31:0 Word

(32 bits)

Flash control request to

flash driver for HSM

(Fls_TS_T40D13M2I0R0)

IPC data

register 1

Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

Fls_Isr_Flash_Cat1

Fls_Isr_Flash_Cat2

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_LOCK_STA

TUS
31:0 Word

(32 bits)

- IPC lock

status

register

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_INTR 31:0 Word

(32 bits)

IPC release event clear IPC

interrupt

status

register

Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

Fls_Isr_Ipc_Cat1

Fls_Isr_Ipc_Cat2

Fls_Isr_FlsIpc_Cat1

Fls_Isr_FlsIpc_Cat2

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_INTR_SET 31:0 Word

(32 bits)

- IPC

interrupt

set register

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_INTR_MAS

K
31:0 Word

(32 bits)

IPC release event mask

(Enable interruption)

0x00000000

(Disable interruption)

IPC

interrupt

mask

register

Fls_Init

Fls_MainFunction

Fls_Cancel

Fls_Suspend

Fls_Resume

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IPC_INTR_MAS

KED
31:0 Word

(32 bits)

- IPC masked

interrupt

register

Not used. 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
110

002-23407
 R

ev. *T

20
23

-12
-08

8.7 CPUSS

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

IDENTITY 31:0 Word

(32 bits)

- Identity

(Bus

master

identifier)

Read-only 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

8.8 M-DMA (DMAC)

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CTL 31:0 Word

(32 bits)

- Control User must set Bit

No.31 to 1 (if
FlsUseDmaForRead

is TRUE)

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

ACTIVE 31:0 Word

(32 bits)

- Active

channels

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
111

002-23407
 R

ev. *T

20
23

-12
-08

8.9 DMAC_CH

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

CTL 31:0 Word

(32 bits)

0x80000000

(Before start of reading)

0x00000000

(After finish of reading)

Channel

control

Fls_MainFunction

(if FlsUseDmaFor-

Read is TRUE)

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

IDX 31:0 Word

(32 bits)

- Channel

current

indices

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

SRC 31:0 Word

(32 bits)

- Channel

current

source

address

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

DST 31:0 Word

(32 bits)

- Channel

current

destination

address

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

CURR 31:0 Word

(32 bits)

Channel descriptor

pointer

(Before start of reading)

0x00000000

(After finish of reading)

Channel

current

descriptor

pointer

Fls_MainFunction

(if FlsUseDmaFor-

Read is TRUE)

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

TR_CMD 31:0 Word

(32 bits)

0x00000001

(Trigger for reading)

Channel

software

trigger

Fls_MainFunction

(if FlsUseDmaFor-

Read is TRUE)

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR 31:0 Word

(32 bits)

0x000000FF (Clearing)

(Before start of reading,

After finish of reading)

Interrupt Fls_MainFunction

(if FlsUseDmaFor-

Read is TRUE)

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

F
la

sh
 d

riv
e

r u
se

r g
u

id
e

 8

 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
112

002-23407
 R

ev. *T

20
23

-12
-08

Register Bit

No.

Access

size

Value Description Timing Mask value Monitoring value

INTR_SET 31:0 Word

(32 bits)

- Interrupt

set

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_MASK 31:0 Word

(32 bits)

0x00000000

(Before start of reading,

After finish of reading)

Interrupt

mask

Fls_MainFunction

(if FlsUseDmaFor-

Read is TRUE)

0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

INTR_MASKED 31:0 Word

(32 bits)

- Interrupt

masked

Not used 0x00000000

(Monitoring is not

needed.)

0x00000000

(Monitoring is not

needed.)

Note: Registers relevant to the channel descriptor are omitted from this table.

User guide 113 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Revision history

Revision history

Document

revision

Date Description of changes

** 2018-05-17 Initial release

*A 2018-10-04 Added some acronyms relevant to Arm® Cortex®-M7 CPU in Table 1.

Glossary.

Added two TRAVEO™ T2G Automotive Body Controller High Family

TRMs in Hardware Documentation.

Added “Platforms” as required modules in 1.5 Development

Environment.

Added or modified description about API which cannot execute

concurrently in followings sections.

5.1.9 Canceling a Job Prior to Maturity

5.1.12 Suspending a Job

5.1.13 Resuming a Suspended Job

A.1.3 Functions (Fls_Cancel, Fls_Suspend and Fls_Resume)

Added or modified description relevant to Arm® Cortex®-M7 CPU in

followings sections.

6.4 IPC

6.5 System Call (NMI exception)

B.1.1 FLASHC (CM7_0_STATUS and CM7_1_STATUS)

*B 2018-12-13 Modified the Value and the Monitoing Value of FLASH_CTL register in

B.1.1 FLASHC.

Modified the Value, the Mask Value and the Monitoing Value of MASK1

register in B.1.3 FAULT.

*C 2019-02-21 Added an acronyms relevant to GHS in Table 1. Glossary.

Added description in the case of enabling data cache in following

sections.

2.3 Adapting Your Application

2.6 Memory Mapping

Changed the Range and the Annotation for following parameters to

new minimum and multiple of 4 in 4.2.1 Parameter Constraints.

FlsMaxReadFastMode

FlsMaxReadNormalMode

FlsMaxWriteFastMode

FlsMaxWriteNormalMode

Added a section 6.6 Memory Protection Unit (MPU) for use of Flash

driver in the case of enabling data cache.

*D 2019-06-11 Updated hardware documentation information.

*E 2019-11-14 Changed title to 6.5 System Call.

Updated description in 6.5 System Call.

*F 2020-03-08 Added description regarding suspending.

5.1.12 Suspending a Job

User guide 114 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Revision history

Document

revision

Date Description of changes

A.1.3 Functions (Fls_Suspend)

*G 2020-06-25 Added configuration parameter in 2.2.1 Architecture Details.

FlsSetFlashCtlRegister

FlsSetWorkFlashSafetyRegister

FlsDefineWdgClear

Changed description regarding Fls_WdgClear() in 2.2.1 Architecture

Details.

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific

Parametersails.

FlsSetFlashCtlRegister

FlsUserValueForFlashCtlRegister

FlsSetWorkFlashSafetyRegister

FlsDefineWdgClear

FlsFaultStructure

Added description of registers that is set before using the Flash driver

in 6.1 Registers.

FLASH_CTL

WORK_FLASH_SAFETY

Added description of fault structure that is specified by the

configuration parameter FlsFaultStructure in 6.3 Fault.

Added description of condition for setting registers to value.

B.1.1 FLASH_CTL

B.1.2 FM_CTL_ECT

Deleted sentence that SourceAddressPtr must be an address on

SRAM.

5.1.5 Writing Data to the Flash Memory

A.1.3 Functions (Fls_Write)

*H 2020-09-07 Added Words and Terms in Glossary.

DMA

HSM

Non-blocking mode

S-LLD

Added 1.7 HSM Support.

Added configuration parameter in 2.2.1 Architecture Details.

FlsDmaChannel

FlsAuxiliaryBufferSize

FlsUseNonBlockingWrite

FlsArbitrationTimeout

FlsSystemcallCalloutFunction

Added description of FlsSystemcallCalloutFunction and section

FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT in 2.3 Adapting Your

Application.

User guide 115 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Revision history

Document

revision

Date Description of changes

Changed a memmap file include folder in chapter 2.6.

Added configuration parameter in 2.6 Memory Mapping and 6.6

Memory Protection Unit (MPU).

FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT_32

FLS_STOP_SEC_SYSCALLSHARED_VAR_NO_INIT_32

Added description of configuration parameter in 4.2.1 Parameter

Constraints.

FlsUseInterrupts

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific

Parametersails.

FlsDmaChannel

FlsAuxiliaryBufferSize

FlsUseNonBlockingWrite

FlsArbitrationTimeout

FlsSystemcallCalloutFunction

Added description of configuration parameter in 4.2.2 Vendor- and

Driver-Specific Parametersails.

FlsUseSafetyMechanism

FlsIpcStructure

FlsIpcInterruptStructure

Added description regarding DMA transfer.

5.1.4 Reading Data from the Flash Memory

5.1.5 Writing Data to the Flash Memory

5.1.7 Comparing Data from the Flash Memory

Added description regarding Fls_TS_T40D13M2I0R0 (Flash driver for

HSM).

5.1.4 Reading Data from the Flash Memory

5.1.7 Comparing Data from the Flash Memory

Added description regarding conflict of flash operation.

5.1.4 Reading Data from the Flash Memory

5.1.5 Writing Data to the Flash Memory

5.1.6 Erasing Data from the Flash Memory

5.1.7 Comparing Data from the Flash Memory

5.1.8 Checking Blank for the Flash Memory

Added description regarding non-blocking mode.

5.1.5 Writing Data to the Flash Memory

Added note.

5.1.12 Suspending a Job

5.1.13 Resuming a Suspended Job

6.2 Interrupts

6.3 Fault

6.5 System Call

User guide 116 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Revision history

Document

revision

Date Description of changes

Added description of Conflict of flash operation in 5.1.14 Timeout

Supervision.

Changed example in 6.3 Fault.

Added description regarding CM0+ and restriction in 6.4 IPC.

Added description regarding FlsSystemcallCalloutFunction in 6.4 IPC.

Added 6.7 DMA.

Added description reagrding maximum retry time in Error Codes, A.1.2

Macros.

Added Development Errors in A.1.3 Functions.

Fls_Init

Added Caveats in A.1.3 Functions.

Fls_Write

Added Development Errors in A.1.4 Scheduled Functions.

Fls_MainFunction

Added Configurable Interfaces in A.1.5 Expected Interfaces.

Systemcall callout function

Added description of value for setting registers to value.

B.1.3 FAULT

Added B.1.6 M-DMA (DMAC)

Added B.1.7 DMAC_CH

*I 2020-11-20 Added configuration parameter in 2.2.1 Architecture Details.

FlsUseDmaForRead

FlsSetCycleModeApi

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific

Parametersails.

4.2.2.1.24 FlsSetCycleModeApi

4.2.2.1.25 FlsUseDmaForRead

Added description of configuration parameter in 4.2.2 Vendor- and

Driver-Specific Parametersails.

4.2.2.1.9 FlsDmaChannel

4.2.2.1.10 FlsAuxiliaryBufferSize

4.2.2.2.3 FlsNumberOfDelayLoop

Added description regarding condition for DMA transfer.

5.1.4 Reading Data from the Flash Memory

5.1.5 Writing Data to the Flash Memory

5.1.7 Comparing Data from the Flash Memory

6.7 DMA

Added description regarding the disabling of timeout monitoring.

5.1.14 Timeout Supervision

Added function in 7.1.3 Functions.

7.1.3.15 Fls_SetCycleMode

Added description regarding the Fls_SetCycleMode function.

User guide 117 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Revision history

Document

revision

Date Description of changes

7.1.2.4 API Service IDs

Added description regarding condition for setting registers condition.

8.1.6 M-DMA (DMAC)

8.1.7 DMAC_CH

Fixed typo.

5.4 Runtime Error Detection

Updated to Infineon template.

*J 2020-11-25 Updated 6.1 Registers.

*K 2021-03-01 Added configuration parameter in 2.2.1 Architecture Details.

FlsSetWorkFlashFaultMaskRegister

FlsReportErrorIfNotBlank

Added description regarding enabling DMA controller in 2.3 Adapting

Your Application.

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific

Parametersails.

4.2.2.1.26 FlsSetWorkFlashFaultMaskRegister

4.2.2.1.27 FlsReportErrorIfNotBlank

Deleted description regarding other error and added description

regarding FlsReportErrorIfNotBlank in 5.1.8 Checking Blank for the

Flash Memory.

Added 4. DMAC_CTL register in 6.1 Registers.

Added description regarding FlsSetWorkFlashFaultMaskRegister in 6.2

Interrupts.

Added note regarding use of both Flash drivers and modified example

in 6.3 Fault.

Added note regarding enabling DMA controller in 6.7 DMA.

Added description regarding FlsReportErrorIfNotBlank for

FLS_E_VERIFY_ERASE_FAILED in 7.4.1 Fls_MainFunction

Modified Value of MASK1 register in 8.3 FAULT.

Modified Value and Timing of CTL register in 8.6 M-DMA (DMAC).

*L 2021-05-18 Modified Note in 5.1.12 Suspending a Job.

Modified Note in 5.1.13 Resuming a Suspended Job.

*M 2021-08-19 Added a note in 6.2 Interrupts.

*N 2021-12-07 Updated to the latest branding guidelines.

*O 2022-09-28 Added “Data buffer” in Abbreviation.

Modified Annotation in 4.2.1.1.12 FlsTotalSize.

*P 2022-12-13 Modified Value and Timing of the IPC_RELEASE register in 8.6 IPC.

*Q 2023-03-03 Added terms in Abbreviation.

 CM7_2

 CM7_3

 Work flash block#0

User guide 118 002-23407 Rev. *T

 2023-12-08

Flash driver user guide

Revision history

Document

revision

Date Description of changes

 Work flash block#1

Added CM7_2 and CM7_3 in 1.7 HSM support, 6.6 Memory protection

unit (MPU), 6.7 DMA, 7.3.1 Fls_Init.

Added 5.3 Parallel flash operations for separate work flash memories.

Added FLASHC1 registers in 6.1 Registers.

Added flash#1 macro interrupt and ISRs in 6.2 Interrupts.

Added IPC resources for CM7_2 and CM7_3 in 6.4 IPC.

Added the description for work flash blocks in 6.5 System call.

Added CM7_2_STATUS and CM7_3_STATUS registers in 8.1 FLASHC.

Changed the section name of 8.2 FLASHC_FM_CTL_ECT to distinguish

two FM_CTL_ECT registers.

Added 8.3 FLASHC1 and 8.4 FLASHC1_FM_CTL_ECT.

*R 2023-05-31 Modified the description of FlsSetWorkFlashFaultMaskRegister

in 2.2.1 Architecture details and 4.2.2.1.28

FlsSetWorkFlashFaultMaskRegister.

Modified the description of FlsUseNonBlockingWrite in 2.2.1

Architecture details, 4.2.2.1.15 FlsUseNonBlockingWrite, 5.1.5 Writing

data to the flash memory and 7.3.3 Fls_Write.

Added the usecase for FLASHC1 operations from multiple cores in 5.3

Parallel flash operations for separate work flash memories.

Modified IPC resources for CM7_2 and CM7_3 in 6.4 IPC.

Modified MASK2 register in 8.5 FAULT.

*S 2023-10-06 Added the annotations in 4.2.2.1.18 FlsIpcStructure and 4.2.2.1.19

FlsIpcInterruptStructure.

Added the configuration parameters 4.2.2.1.20

FlsIpcReleaseEventNotification and 4.2.2.1.21

FlsIpcNotificationEventToHsm

Added the note for nested erase suspend in 5.1.12 Suspending a job.

Added the description for eCT flash safety mechanism in 5.1.15 eCT

flash safety mechanism.

Modified DATA0 and DATA1 registers in 8.6 IPC.

*T 2023-12-08 Web release. No content updates.

 Warnings

Edition 2023-12-08

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document reference

002-23407 Rev. *T

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the AUTOSAR flash driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding
	1.7 HSM support

	2 Using the flash driver
	2.1 Installation and prerequisites
	2.2 Configuring the flash driver
	2.2.1 Architecture details

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 Flash EEPROM emulation (FEE)
	3.4.2 DET
	3.4.3 BSW scheduler
	3.4.4 Error callout handler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 Vendor specific configuration
	4.2.1 Parameter constraints
	4.2.1.1 Container FlsGeneral
	4.2.1.1.1 FlsAcLoadOnJobStart
	4.2.1.1.2 FlsBaseAddress
	4.2.1.1.3 FlsBlankCheckApi
	4.2.1.1.4 FlsCancelApi
	4.2.1.1.5 FlsCompareApi
	4.2.1.1.6 FlsDevErrorDetect
	4.2.1.1.7 FlsDriverIndex
	4.2.1.1.8 FlsGetJobResultApi
	4.2.1.1.9 FlsGetStatusApi
	4.2.1.1.10 FlsRuntimeErrorDetect
	4.2.1.1.11 FlsSetModeApi
	4.2.1.1.12 FlsTotalSize
	4.2.1.1.13 FlsUseInterrupts
	4.2.1.1.14 FlsVersionInfoApi

	4.2.1.2 Container FlsConfigSet
	4.2.1.2.1 FlsAcErase
	4.2.1.2.2 FlsAcWrite
	4.2.1.2.3 FlsCallCycle
	4.2.1.2.4 FlsDefaultMode
	4.2.1.2.5 FlsJobEndNotification
	4.2.1.2.6 FlsJobErrorNotification
	4.2.1.2.7 FlsMaxReadFastMode
	4.2.1.2.8 FlsMaxReadNormalMode
	4.2.1.2.9 FlsMaxWriteFastMode
	4.2.1.2.10 FlsMaxWriteNormalMode
	4.2.1.2.11 FlsProtection

	4.2.1.3 Container FlsDemEventParameterRefs
	4.2.1.4 Container FlsExternalDriver
	4.2.1.5 Container FlsSector
	4.2.1.5.1 FlsNumberOfSectors
	4.2.1.5.2 FlsPageSize
	4.2.1.5.3 FlsSectorSize
	4.2.1.5.4 FlsSectorStartaddress

	4.2.1.6 Container FlsPublishedInformation
	4.2.1.6.1 FlsAcLocationErase
	4.2.1.6.2 FlsAcLocationWrite
	4.2.1.6.3 FlsAcSizeErase
	4.2.1.6.4 FlsAcSizeWrite
	4.2.1.6.5 FlsEraseTime
	4.2.1.6.6 FlsErasedValue
	4.2.1.6.7 FlsExpectedHwId
	4.2.1.6.8 FlsSpecifiedEraseCycles
	4.2.1.6.9 FlsWriteTime

	4.2.2 Vendor and driver specific parameters
	4.2.2.1 Container FlsGeneral
	4.2.2.1.1 FlsErrorCalloutFunction
	4.2.2.1.2 FlsIncludeFile
	4.2.2.1.3 FlsEraseVerification
	4.2.2.1.4 FlsBeforeWriteVerification
	4.2.2.1.5 FlsWriteVerification
	4.2.2.1.6 FlsEraseCalloutFunction
	4.2.2.1.7 FlsReadImmediateApi
	4.2.2.1.8 FlsSuspendResumeApi
	4.2.2.1.9 FlsDmaChannel
	4.2.2.1.10 FlsAuxiliaryBufferSize
	4.2.2.1.11 FlsSetFlashCtlRegister
	4.2.2.1.12 FlsUserValueForFlashCtlRegister
	4.2.2.1.13 FlsSetWorkFlashSafetyRegister
	4.2.2.1.14 FlsDefineWdgClear
	4.2.2.1.15 FlsUseNonBlockingWrite
	4.2.2.1.16 FlsHsmPresent
	4.2.2.1.17 FlsUseSafetyMechanism
	4.2.2.1.18 FlsIpcStructure
	4.2.2.1.19 FlsIpcInterruptStructure
	4.2.2.1.20 FlsIpcReleaseEventNotification
	4.2.2.1.21 FlsIpcNotificationEventToHsm
	4.2.2.1.22 FlsWorkEmbeddedNotification
	4.2.2.1.23 FlsArbitrationTimeout
	4.2.2.1.24 FlsSystemcallCalloutFunction
	4.2.2.1.25 FlsFaultStructure
	4.2.2.1.26 FlsSetCycleModeApi
	4.2.2.1.27 FlsUseDmaForRead
	4.2.2.1.28 FlsSetWorkFlashFaultMaskRegister
	4.2.2.1.29 FlsReportErrorIfNotBlank

	4.2.2.2 Container FlsConfigSet
	4.2.2.2.1 FlsDedErrorNotification
	4.2.2.2.2 FlsSedErrorNotification
	4.2.2.2.3 FlsNumberOfDelayLoop

	4.2.2.3 Container FlsSector
	4.2.2.3.1 FlsSectorIdentifier

	4.2.3 Other modules
	4.2.3.1 Flash EEPROM emulation
	4.2.3.2 DET
	4.2.3.3 BSW scheduler

	5 Functional description
	5.1 Function of the flash driver
	5.1.1 Flash driver state machine
	5.1.1.1 State MEMIF_UNINIT
	5.1.1.2 State MEMIF_IDLE
	5.1.1.3 State MEMIF_BUSY

	5.1.2 Flash driver job result state
	5.1.2.1 MEMIF_JOB_OK
	5.1.2.2 MEMIF_JOB_PENDING
	5.1.2.3 MEMIF_JOB_CANCELED
	5.1.2.4 MEMIF_JOB_FAILED
	5.1.2.5 MEMIF_BLOCK_INCONSISTENT

	5.1.3 Initialization
	5.1.4 Reading data from the flash memory
	5.1.5 Writing data to the flash memory
	5.1.6 Erasing data from the flash memory
	5.1.7 Comparing data from the flash memory
	5.1.8 Checking blank for the flash memory
	5.1.9 Canceling a job prior to maturity
	5.1.10 Retrieving the status information
	5.1.11 Setting the driver operation mode
	5.1.12 Suspending a job
	5.1.13 Resuming a suspended job
	5.1.14 Timeout supervision
	5.1.15 eCT flash safety mechanism
	5.1.15.1 Related configurations
	5.1.15.2 IPC lock acquisition and release
	5.1.15.3 Arbitration sequences
	5.1.15.4 Assumptions of use
	5.1.15.5 Limitations

	5.2 Virtual flash memory layout
	5.3 Parallel flash operations for separate work flash memories
	5.4 Default error detection
	5.5 Runtime error detection
	5.6 Reentrancy
	5.7 Debugging support

	6 Hardware resources
	6.1 Registers
	6.2 Interrupts
	6.3 Fault
	6.4 IPC
	6.5 System call
	6.6 Memory protection unit (MPU)
	6.7 DMA

	7 Appendix A – API reference
	7.1 Data types
	7.1.1 Flash driver data types
	7.1.1.1 Fls_AddressType
	7.1.1.2 Fls_LengthType
	7.1.1.3 Fls_ConfigType
	7.1.1.4 External data types
	7.1.1.5 Std_ReturnType
	7.1.1.6 Std_VersionInfoType
	7.1.1.7 MemIf_ModeType
	7.1.1.8 MemIf_StatusType
	7.1.1.9 MemIf_JobResultType

	7.2 Macros
	7.2.1 Error codes
	7.2.2 Version information
	7.2.3 Module information
	7.2.4 API service IDs

	7.3 Functions
	7.3.1 Fls_Init
	7.3.2 Fls_Erase
	7.3.3 Fls_Write
	7.3.4 Fls_Cancel
	7.3.5 Fls_GetStatus
	7.3.6 Fls_GetJobResult
	7.3.7 Fls_Read
	7.3.8 Fls_Compare
	7.3.9 Fls_SetMode
	7.3.10 Fls_GetVersionInfo
	7.3.11 Fls_BlankCheck
	7.3.12 Fls_ReadImmediate
	7.3.13 Fls_Suspend
	7.3.14 Fls_Resume
	7.3.15 Fls_SetCycleMode

	7.4 Scheduled functions
	7.4.1 Fls_MainFunction

	7.5 Expected interfaces
	7.5.1 Mandatory interface
	7.5.2 Optional interfaces
	7.5.2.1 Det_ReportError
	7.5.2.2 Det_ReportRuntimeError

	7.5.3 Configurable interfaces
	7.5.3.1 Fee_JobEndNotification
	7.5.3.2 Fee_JobErrorNotification
	7.5.3.3 Fee_DedErrorNotification
	7.5.3.4 Fee_SedErrorNotification
	7.5.3.5 Systemcall callout function
	7.5.3.6 Erase callout API

	7.6 Required callback functions
	7.6.1 Callout functions
	7.6.2 Error callout API

	8 Appendix B – Access register table
	8.1 FLASHC
	8.2 FLASHC_FM_CTL_ECT
	8.3 FLASHC1
	8.4 FLASHC1_FM_CTL_ECT
	8.5 FAULT
	8.6 IPC
	8.7 CPUSS
	8.8 M-DMA (DMAC)
	8.9 DMAC_CH

	Revision history
	Disclaimer

