

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-31274 Rev. *L

www.infineon.com 2024-11-29

I2C driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and use of the inter-integrated circuit (I2C) driver. This
document explains the functionality of the driver and provides a reference to the driver’s API.

The installation, the build process, and general information on the use of EB tresos are not within the scope of
this document.

Intended audience

This document is intended for anyone who uses the I2C driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the I2C driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the I2C driver details the steps on how to use the I2C driver in your application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the I2C driver.

Chapter 4 EB tresos Studio configuration interface describes the driver’s configuration.

Chapter 5 Functional description gives a functional description of all services offered by the I2C driver.

Chapter 6 Hardware resources gives a description of all hardware resources used.

Appendix A and Appendix B provide a complete API reference and access register table.

Abbreviations and definitions

Table 1 Abbreviations

Abbreviation Description

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

DEM Diagnostic Event Manager

DET Default Error Tracer

DMA Direct Memory Access

EB tresos Studio Elektrobit Automotive configuration framework

GCE Generic Configuration Editor

HW Hardware

SW Software

http://www.infineon.com/

User guide 2 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

About this document

Abbreviation Description

ISR Interrupt Service Routine

LSb Least Significant Bit

MCAL Microcontroller Abstraction Layer

MPU Memory Protection Unit

MSb Most Significant Bit

OVS Oversampling

PCLK Peripheral Clock

µC Microcontroller

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Complex driver design and integration guideline, AUTOSAR release 4.2.2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of default error tracer, AUTOSAR release 4.2.2.

Elektrobit Automotive documentation

Bibliography

[5] EB tresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[6] Layered software architecture, AUTOSAR release 4.2.2.

User guide 3 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 3

1 General overview ... 7
1.1 Introduction of I2C driver .. 7
1.2 User profile .. 7
1.3 Embedding in the AUTOSAR environment ... 8
1.4 Supported hardware ... 8
1.5 Development environment ... 8
1.6 Character set and encoding .. 8

2 Using the I2C driver .. 9
2.1 Installation and prerequisites ... 9
2.2 Configuring the I2C driver ... 9
2.2.1 Configuration outline ... 9
2.3 Adapting your application .. 11
2.4 Starting the build process ... 12
2.5 Measuring the stack consumption ... 12
2.6 Memory mapping .. 13
2.6.1 Memory allocation keywords .. 13
2.6.2 Memory allocation and constraints ... 13

3 Structure and dependencies ... 15
3.1 Static files .. 15
3.2 Configuration files ... 15
3.3 Generated files .. 15
3.4 Dependencies .. 16
3.4.1 PORT driver .. 16
3.4.2 MCU driver .. 16
3.4.3 AUTOSAR OS ... 16
3.4.4 BSW scheduler .. 16
3.4.5 DET .. 16
3.4.6 DEM ... 16
3.4.7 Error callout handler .. 17
3.4.8 DMA ... 17

4 EB tresos Studio configuration interface .. 18
4.1 General configuration ... 18
4.2 I2C configuration ... 19
4.2.1 I2C trigger level setting .. 21
4.2.2 I2C use DMA channel info ... 21
4.2.3 I2C channel OVS config .. 21
4.3 Other modules ... 23
4.3.1 PORT driver .. 23
4.3.2 MCU driver .. 23
4.3.3 DET .. 23
4.3.4 DEM ... 23
4.3.5 AUTOSAR OS ... 23
4.3.6 BSW scheduler .. 23

5 Functional description ... 24
5.1 I2C driver functionality .. 24

User guide 4 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Table of contents

5.1.1 Initialize and prepare the buffer for the I2C driver ... 24
5.1.1.1 Initialize the I2C driver .. 24
5.1.1.2 Prepare the external buffer .. 24
5.1.2 Master write operation ... 25
5.1.2.1 Using interrupt .. 26
5.1.2.2 Using polling ... 26
5.1.2.3 Using DMA.. 27
5.1.3 Master read operation.. 27
5.1.3.1 Using interrupt .. 28
5.1.3.2 Using polling ... 28
5.1.3.3 Using DMA.. 29
5.1.4 Slave mode operation .. 29
5.1.4.1 Slave write operation .. 30
5.1.4.2 Slave read operation ... 35
5.1.4.3 Auto acknowledge configuration ... 38
5.1.5 Confirm the I2C driver status ... 39
5.1.5.1 Driver status .. 39
5.1.5.2 Latest job result .. 39
5.1.5.3 Buffer status .. 40
5.1.5.4 Confirm Tx Transaction .. 41
5.1.6 Cancel the operation .. 41
5.1.7 Change I2C driver settings ... 41
5.1.7.1 OVS settings .. 42
5.1.7.2 Accept slave address / slave address mask ... 42
5.1.7.3 Repeated Start mode .. 43
5.1.8 Disabling the I2C driver .. 43
5.2 What is included .. 43
5.3 Initialization ... 43
5.4 Runtime reconfiguration ... 43
5.5 API parameter checking .. 44
5.5.1 Vendor-specific development errors ... 44
5.6 Production errors .. 45
5.6.1 Recoverable failure .. 45
5.6.2 Unrecoverable failure .. 46
5.7 Reentrancy ... 46
5.8 Sleep mode .. 46
5.9 Debugging support .. 46
5.10 Execution-time dependencies .. 47
5.11 Deviation from AUTOSAR .. 47

6 Hardware resources .. 48
6.1 Ports and pins .. 48
6.2 Timer .. 48
6.3 Interrupts ... 48
6.4 DMA .. 49

7 Appendix A ... 50
7.1 Include files.. 50
7.2 Data types .. 50
7.2.1 I2c_ChannelIdType .. 50
7.2.2 I2c_BufferType ... 50

User guide 5 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Table of contents

7.2.3 I2c_BufferSizeType .. 50
7.2.4 I2c_OvsIdType .. 50
7.2.5 I2c_SlaveAddressType ... 51
7.2.6 I2c_ChannelStatusType ... 51
7.2.7 I2c_JobResultType ... 51
7.2.8 I2c_TransferDirectionType .. 52
7.2.9 I2c_AcknowledgeType ... 52
7.2.10 I2c_SlaveCompleteEventType ... 53
7.2.11 I2c_ConfigType ... 53
7.3 Constants ... 54
7.3.1 Error codes ... 54
7.3.2 Version information ... 55
7.3.3 Module information ... 55
7.3.4 API service IDs .. 55
7.4 Functions ... 56
7.4.1 I2c_Init .. 56
7.4.2 I2c_DeInit .. 56
7.4.3 I2c_GetStatus ... 57
7.4.4 I2c_GetJobResult ... 58
7.4.5 I2c_Cancel .. 59
7.4.6 I2c_MasterWrite ... 60
7.4.7 I2c_MasterRead .. 61
7.4.8 I2c_SlaveAwaitRequest .. 62
7.4.9 I2c_SetupEb ... 63
7.4.10 I2c_GetBufferStatus ... 65
7.4.11 I2c_ChangeOvs ... 66
7.4.12 I2c_ChangeSlaveAddress ... 67
7.4.13 I2c_GetVersionInfo ... 68
7.4.14 I2c_SetRepeatedStart .. 69
7.4.15 I2c_GetRepeatedStart .. 70
7.4.16 I2c_ConfirmTxTransaction .. 71
7.4.17 I2c_UpdateTxBuffer ... 73
7.4.18 I2c_SlaveStartTransfer .. 74
7.5 Scheduled functions ... 75
7.5.1 I2c_MainFunction_Handling.. 75
7.6 Interrupt service routine ... 76
7.6.1 I2c_Interrupt_SCB<n>_CatX .. 76
7.6.2 I2c_Interrupt_DMA_CH<m>_Isr_CatY ... 77
7.7 Required callback functions ... 78
7.7.1 I2C notification functions... 78
7.7.1.1 I2c_MasterTxNotification.. 78
7.7.1.2 I2c_MasterRxNotification ... 79
7.7.1.3 I2c_SlaveTxNotification .. 79
7.7.1.4 I2c_SlaveRxNotification .. 80
7.7.1.5 I2c_MasterTxErrorNotification ... 80
7.7.1.6 I2c_MasterRxErrorNotification ... 81
7.7.1.7 I2c_SlaveTxErrorNotification ... 81
7.7.1.8 I2c_SlaveRxErrorNotification ... 81
7.7.1.9 I2c_MasterComReqNotification ... 82
7.7.1.10 I2c_SlaveSrNotification .. 82

User guide 6 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Table of contents

7.7.1.11 I2c_SlaveCompleteNotification ... 83
7.7.1.12 I2c_SlaveAddressMatchNotification .. 83
7.7.2 DET .. 85
7.7.2.1 Det_ReportError .. 85
7.7.3 DEM ... 86
7.7.3.1 Dem_ReportErrorStatus ... 86
7.7.4 Error callout functions ... 87
7.7.4.1 Error callout API .. 87

8 Appendix B - Access register table ... 88
8.1 SCB ... 88
8.2 DMA (DW) ... 95

Revision history... 98

Disclaimer... 103

User guide 7 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

1 General overview

1 General overview

1.1 Introduction of I2C driver

The I2C driver is a complex driver, which enables you to support I2C communication on special output pins of
the CPU.

The I2C driver provides services for reading from and writing to devices connected via I2C buses. The I2C driver

provides access to I2C communication for multiple peripherals (e.g., EEPROM, watchdog, and I/O ASICs). Master
mode and slave mode are supported.

The I2C driver provides FIFO access by the following methods:

• Interrupt: By using interrupts.

• Polling: By using periodical calls to I2c_MainFunction_Handling().

• DMA: By using DMA and interrupts.

The I2C driver is not responsible for initializing or configuring hardware ports. This is done by the PORT driver.

The I2C driver conforms to the AUTOSAR standard and is implemented according to the AUTOSAR complex

driver design and integration guideline [2].

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

• Embedded systems

• C programming language

• AUTOSAR standard

• Target hardware architecture

User guide 8 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

1 General overview

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 shows the layered AUTOSAR software architecture. There can be multiple complex device drivers

(CDD) and the I2C driver (Figure 2) is one of them. The I2C driver has similar functionality as the microcontroller

abstraction layer (MCAL).

For an exact overview of the AUTOSAR layered software architecture, see Layered software architecture [6].

Figure 2 I2C driver in CDD

1.4 Supported hardware

This version of the I2C driver supports the TRAVEO™ T2G family. No special external hardware devices are
required.

The supported derivatives are listed in the release notes.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The Base, Make, Mcu, Port, and
Resource modules are needed for the proper functionality of the I2C driver.

1.6 Character set and encoding

All source code files of the I2C driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 … 0x7F) being used.

User guide 9 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

2 Using the I2C driver

2 Using the I2C driver

This chapter describes all necessary steps to incorporate the I2C driver into your application.

2.1 Installation and prerequisites

Before you start, see the EB tresos Studio for ACG8 user’s guide [5] for the following information.

1. How to install EB tresos ECU AUTOSAR components.

2. How to use EB tresos Studio.

3. How to use the EB tresos ECU AUTOSAR build environment (includes an explanation of how to set up and

integrate your application within the EB tresos ECU AUTOSAR build environment).

The installation of the I2C driver corresponds to the general installation procedure of EB tresos ECU AUTOSAR
components given in the documents mentioned above. If the driver is successfully installed, it will appear in the
module list of the EB tresos Studio (see EB tresos Studio for ACG8 user's guide [5]).

In the following section, it is assumed that the project is properly set up and is using the application template
as described in the EB tresos Studio for ACG8 user’s guide [5]. This template provides the necessary folder
structure, project and Makefiles needed to configure and compile your application within the build

environment. You need to be familiar with the usage of the command shell.

2.2 Configuring the I2C driver

The I2C driver can be configured with any AUTOSAR-compliant GCE tool. Save the configuration in a separate

file, for example, I2c.epc. For more information about the I2C driver configuration, see Chapter 4 EB tresos

Studio configuration interface.

2.2.1 Configuration outline

Table 2 Containers and parameters

Container Description

I2cDemEventParameterRefs Turns the DEM feature used in the I2C driver ON/OFF

I2C_DEM_RECOVERABLE_FAILURE Specifies the DEM event for recoverable failures

I2C_DEM_UNRECOVERABLE_FAILURE Specifies the DEM event for unrecoverable failures

I2cGeneral Turns the optional APIs and features of the I2C driver ON/OFF

I2cDevErrorDetect Specifies whether development error detection is used

I2cVersionInfoApi Specifies whether I2c_VersionInfo is used

I2cChangeOvsApi Specifies whether the I2c_ChangeOvs is used

I2cChangeSlaveAddressApi Specifies whether I2c_ChangeSlaveAddress is used

I2cErrorCalloutFunction Specifies the name of the callout function, which is called when an

error occurs

I2cOsCounterRef Specifies the OS counter which is used by the I2C driver

I2cIncludeFiles Used for including external declaration files into the I2C driver.

Specifies the header files which should be included in the I2C driver.

I2cConfigSet Used for setting each I2C channel configuration

I2cChannelConfig Specifies the container name for a channel configuration

User guide 10 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

2 Using the I2C driver

Container Description

I2cChannelId Specifies the index number of an I2C channel

I2cScbChannelNumber Specifies the SCB resource used for an I2C channel

I2cDefaultSlaveAddress Specifies the default slave address for this I2C channel

I2cDefaultSlaveAddressMask Specifies the default slave address mask for this I2C channel

I2cMasterWriteProcessing Select interrupt or polling for master write transactions of this I2C

channel

I2cMasterReadProcessing Select interrupt or polling for master read transactions of this I2C

channel

I2cSlaveProcessing Select interrupt or polling for slave read and slave write transactions

of this I2C channel

I2cUseDmaMasterTx Specifies whether DMA is used for master write transactions

I2cUseDmaMasterRx Specifies whether DMA is used for master read transactions

I2cUseDmaSlaveTx Specifies whether DMA is used for slave write transactions

I2cUseDmaSlaveRx Specifies whether DMA is used for slave read transactions

I2cChannelDefaultOvs Specifies the default OVS settings ID

I2cBusIdleCheck Specifies whether the bus idle check feature is used before starting a

master transaction

I2cHwAutoAckSlaveAddress Specifies whether to send an acknowledgment by HW/SW when the

slave address matches

I2cHwAutoAckSlaveRxData Specifies whether to send acknowledgment by HW/SW when

receiving data in slave mode

I2cChannelOvsConfig Contains the filter and OVS settings

I2cOvsId Specifies the OVS settings index

I2cClockRef Specifies the SCB input clock reference point in the MCU

configuration

I2cClockRefInfo Specifies the SCB input clock speed (Hz)

I2cDataRateMode Specifies the SCB bus speed mode

I2cGlitcFiltering Specifies the filter (digital, analog) used

I2cOVS Specifies the OVS total value (low phase + high phase)

I2cLowPhaseOVS Specifies the low phase OVS value

I2cHighPhaseOVS Specifies the high phase OVS value

I2cBusFrequencyInfo Specifies the I2C bus clock speed (Hz) calculated by other

parameters

I2cTriggerLevelSetting Contains the trigger level settings

I2cTxTriggerLevelMaster Specifies the trigger level for master write transactions

I2cRxTriggerLevelMaster Specifies the trigger level for master read transactions

I2cTxTriggerLevelSlave Specifies the trigger level for slave write transactions

I2cRxTriggerLevelSlave Specifies the trigger level for slave read transactions

I2cUseDmaChannelInfo Contains the DMA channel settings

I2cDmaTxChannel Specifies the DMA resource used for this channel’s write transactions

User guide 11 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

2 Using the I2C driver

Container Description

I2cDmaRxChannel Specifies the DMA resource used for this channel’s read transactions

2.3 Adapting your application

To use the I2C driver in your application, include the header files of I2C, MCU and PORT driver by adding the
following lines of code to your source file:

#include "Mcu.h" /* AUTOSAR MCU Driver */

#include "Port.h" /* AUTOSAR PORT Driver */

#include "I2c.h" /* I2C Driver */

This makes all required functions, data types, and symbolic names known to the application.

To use the I2C driver, you must configure appropriate port pins, SCB clock settings, and I2C interrupts in the
PORT driver, MCU driver, and OS. For detailed information, see Chapter 6 Hardware resources.

You must initialize the MCU, PORT, and I2C driver in the following order:

Mcu_Init(&Mcu_Config[0]);

Port_Init(&Port_Config[0]);

I2c_Init(&I2c_Config[0]);

The function Port_Init() is called with a pointer to a structure of type Port_ConfigType, which is exported

by the PORT driver itself.

If “interrupt” or “DMA” is used for periodic processes, an interrupt service routine must be configured in the

AUTOSAR OS for each I2C peripheral, as described in 6.3 Interrupts.

If “polling” is used for periodic processes, you must call the I2c_MainFunction_Handling function cyclically.
This can either be done by configuring the BSW scheduler accordingly, or by calling the

I2c_MainFunction_Handling function from any other cyclic task.

All required input clocks for the configured hardware units (SCB) must be activated before initializing the I2C
driver. See 3.4.2 MCU driver.

Your application must provide notification functions and their declarations. The file containing the declarations
must be included using the I2cIncludeFile parameter. See the following example of function declarations:

extern void I2c_MasterTxNotification(uint8 Channel);

extern void I2c_MasterRxNotification(uint8 Channel);

extern void I2c_SlaveTxNotification(uint8 Channel);

extern void I2c_SlaveRxNotification(uint8 Channel);

extern void I2c_MasterTxErrorNotification(uint8 Channel);

extern void I2c_MasterRxErrorNotification(uint8 Channel);

extern void I2c_SlaveTxErrorNotification(uint8 Channel);

extern void I2c_SlaveRxErrorNotification(uint8 Channel);

extern void I2c_MasterComReqNotification(uint8 Channel);

extern void I2c_SlaveSrNotification(uint8 Channel);

User guide 12 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

2 Using the I2C driver

extern void ErrorCalloutHandler(uint16 ModuleId,uint8 InstanceId,uint8

ApiId,uint8 ErrorId);

extern void I2c_SlaveCompleteNotification(uint8 Channel,

I2c_SlaveCompleteEventType Event,uint32 TransferCount);

extern I2c_AcknowledgeType I2c_SlaveAddressMatchNotification(uint8

Channel,uint8 SlaveAddress,I2c_TransferDirectionType Direction);

The notification functions are called from an interrupt or polling context.

2.4 Starting the build process

Do the following to build your application.

Note: For a clean build, use the build command with target clean_all before executing “make
clean_all”.

1. In the command shell, type the following command. This will generate the necessary configuration-

dependent files. See 3.3 Generated files.

 > make generate

2. Type the following command to generate file dependency lists:

 > make depend

3. Compile and link the application with the following command:

 > make (optional target: all)

The application is built now. All files are compiled and linked to a binary file which can be downloaded to the
target hardware.

2.5 Measuring the stack consumption

Do the following to measure the stack consumption. The Base module is needed for a proper measurement.

Note: All files (including library files) should be rebuilt with the ‘stack analysis’ compiler option. The

executable file built in this step must be used for stack consumption measurement only.

1. Add the following compiler option to the makefile to enable stack consumption measurement.

 -DSTACK_ANALYSIS_ENABLE

2. Type the following command to clean library files.

 make clean_lib

3. Follow the build process described in 2.4 Starting the build process.

4. Follow the instructions in the release notes and measure the stack consumption.

User guide 13 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

2 Using the I2C driver

2.6 Memory mapping

The I2c_MemMap.h file in the $(TRESOS_BASE)/plugins/I2c_MemmapSmaple directory is a sample. This file is
replaced by the file generated by the MEMMAP module. The input to the MEMMAP module is described in the
I2c_Bswmd.arxml file in the $(PROJECT_ROOT)/ output/generate_swcd/swcd directory of your project folder.

2.6.1 Memory allocation keywords

• I2C_START_SEC_CODE_ASIL_B / I2C_STOP_SEC_CODE_ASIL_B
Memory section type is CODE. All executable code is allocated in this section.

• I2C_START_SEC_CONST_ASIL_B_UNSPECIFIED / I2C_STOP_SEC_CONST_ASIL_B_UNSPECIFIED
Memory section type is CONST. All configuration data is allocated in this section.

• I2C_START_SEC_VAR_NO_INIT_ASIL_B_UNSPECIFIED /

I2C_STOP_SEC_VAR_NO_INIT_ASIL_B_UNSPECIFIED
Memory section type is VAR. All non-initialized variables without alignment restrictions are allocated in this
section.

• I2C_START_SEC_VAR_SLOW_NO_INIT_ASIL_B_UNSPECIFIED /

I2C_STOP_SEC_VAR_SLOW_NO_INIT_ASIL_B_UNSPECIFIED

Memory section type is VAR. DMA related variables are allocated in this section.
This section has restrictions on the allocated memory region. See 2.6.2 Memory allocation and constraints

for details.

• I2C_START_SEC_VAR_INIT_ASIL_B_UNSPECIFIED /

I2C_STOP_SEC_VAR_INIT_ASIL_B_UNSPECIFIED

Memory section type is VAR. All initialized variables without alignment restrictions are allocated in this
section.

2.6.2 Memory allocation and constraints

The CPU has a private cache that is not shared with the DMA bus master. Therefore, you must ensure that the

data accessed by DMA are in uncached memory regions. The I2C driver does not support the memory allocation
of DMA-related memory and data buffer to the CPU’s tightly coupled memories (TCMs) and internal video RAM
(VRAM).

• The section that contains the external buffers (EB) used for read transactions:
When using DMA for read transactions, the section must be allocated to a user-specific memory region
configured by the CPU's memory protection unit (MPU) as non-cacheable.

There are no restrictions when not using DMA for read transactions.

• The section that contains the external buffers (EB) used for write transactions:

When using DMA for write transactions, the section must be allocated to a user-specific memory region

configured by the MPU as write-through or non-cacheable.
There are no restrictions when DMA is not used for write transactions.

• The section surrounded by I2C_START_SEC_VAR_SLOW_NO_INIT_ASIL_B_UNSPECIFIED /
I2C_STOP_SEC_VAR_SLOW_NO_INIT_ASIL_B_UNSPECIFIED:
When using DMA, this section must be allocated to a user-specific memory region configured by the MPU as
write-through or non-cacheable.

There are no restrictions when DMA is not used.

Note: These restrictions are applied only to the Cortex®-M7 CPU because it includes TCMs, VRAM and cache.
These restrictions do not apply when using the Cortex®-M4 CPU.
The areas mentioned above must be accessible through DMA and require 4-byte alignment.

User guide 14 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

2 Using the I2C driver

Note: A CONST(rodata) data may also be generated for the CODE memory sections. An example is the jump
address output by the compiler. Therefore, it is recommended to specify a CONST(rodata) data

allocation keyword to the CODE memory section too. If you do not specify it in the CODE memory
section, the generated CONST(rodata) data in the CODE memory section is placed in the default

memory section.

User guide 15 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

3 Structure and dependencies

3 Structure and dependencies

The I2C driver consists of static, configuration, and generated files.

3.1 Static files

Table 3 Static files

Folder Description

$(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/I2c_TS_* Path to the I2C driver plugin.

$(PLUGIN_PATH)/lib_src Contains all static source files of the I2C driver. These

files contain the functionality of the driver that does

not depend on the current configuration. The files

are used to build a static library.

$(PLUGIN_PATH)/src Comprises configuration-dependent source files or
derivative-specific files. Each file will be rebuilt when

the configuration is changed. All necessary source

files will automatically be compiled and linked
during the build process and all include paths will be

set if the I2C driver is enabled.

$(PLUGIN_PATH)/include Basic public include directory needed by the user to

include I2c.h.

$(PLUGIN_PATH)/autosar Contains the AUTOSAR ECU parameter definition
with vendor-, architecture-, and derivative-specific

adaptations to create a correctly matching

parameter configuration for the I2C driver.

3.2 Configuration files

The configuration of the I2C driver is done via EB tresos Studio. The file containing the I2C driver’s configuration

is named I2c.xdm and is in the $(PROJECT_ROOT)/config directory. This file serves as the input to generate
configuration-dependent source and header files during the build process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description. They
are in the output/generated subfolder of your project folder.

Table 4 Generated files

File Description

include/I2c_Cfg.h Contains all symbolic names for the configured I2C channels.

include/I2c_PBcfg.h Contains the configured constants for the I2C driver.

include/I2c_ExternalInclude.h Contains the include directives for user-configured external header files.

include/I2c_Irq.h Contains the declaration of ISR functions.

src/I2c_PBcfg.c Contains the configured constants for the I2C driver.

src/I2c_Irq.c Contains the definition of ISR functions.

swcd/I2c_Bswmd.arxml Contains BswModuleDescription.

User guide 16 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

3 Structure and dependencies

Note: Generated source files need not to be added to your application make file. These files will be compiled
and linked automatically during the build process.

Note: Additional steps are required to generate the BSW module description. In EB tresos Studio, select
Project > Build Project, and click generate_swcd.

3.4 Dependencies

3.4.1 PORT driver

Although the I2C driver can be successfully compiled and linked without an AUTOSAR-compliant PORT driver,

the latter is required to configure and initialize all ports. Otherwise, the I2C driver will show undefined behavior.
The PORT driver needs to be initialized before the I2C driver is initialized.

3.4.2 MCU driver

The MCU driver must be initialized, and all MCU clock reference points referenced by the hardware units (SCB)
via the I2cClockRef configuration parameter must have been activated (via calls of MCU API functions)
before initializing the I2C driver. See the MCU driver’s user guide for details.

Note that the clock, pre-scaler, or PLL settings are controlled by the MCU driver. There are no resources shared

with the I2C driver. Depending on the configuration, changes in the clock settings may affect the operation of

the I2C driver.

3.4.3 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the I2C driver. See 6.3 Interrupts for more
information.

The counter provided by the operating system is used by the I2C driver in the bus idle check feature.

3.4.4 BSW scheduler

The BSW scheduler handles the critical sections that are used by the I2C driver.

3.4.5 DET

If default error detection is enabled in the I2C driver configuration, DET needs to be installed, configured, and

integrated into the application as well.

This driver reports DET error codes as ‘instance 0’.

3.4.6 DEM

If DEM event reporting is enabled in the I2C driver configuration, DEM needs to be installed, configured, and
integrated into the application as well.

To enable DEM support in the I2C driver, the I2C_DEM_RECOVERABLE_FAILURE and
I2C_DEM_UNRECOVERABLE_FAILURE production error needs to be defined in the DEM configuration in the

I2cDemEventParameterRefs container.

User guide 17 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

3 Structure and dependencies

3.4.7 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It is
configured via the I2cErrorCalloutFunction configuration parameter.

3.4.8 DMA

DMA is supported for some hardware instances (see the datasheet for details). If a hardware instance that does
not support DMA is configured to use DMA, an error will be generated.

The I2C driver does not modify the global status of the DMA hardware. You must ensure that DMA is globally

enabled before using the DMA feature of the I2C driver.

User guide 18 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see EB tresos Studio for ACG8 user’s guide [5].

4.1 General configuration

The module comes preconfigured with default settings. You must adapt these to your environment when
necessary.

Table 5 General configuration

Parameter Description

I2cDemEventParameterRefs Enables or disables the DEM functionality for the I2C driver. If this
parameter is disabled, both of the following DEM functionalities are

disabled:

I2C_DEM_RECOVERABLE_FAILURE enables or disables the DEM

functionality for recoverable failures, categorized as follows:

• Bus protocol error (NACK, ARB_LOST, unintended STOP from

external master)

• Rx FIFO handling error (OVER_FLOW)

I2C_DEM_UNRECOVERABLE_FAILURE enables or disables the DEM

functionality for unrecoverable failures, categorized as follows:

• Bus error

• Tx FIFO handling error (OVER_FLOW)

• Rx FIFO handling error (UNDER_FLOW)

• DMA error

I2cDevErrorDetect Enables or disables the DET functionality for the I2C driver

I2cVersionInfoApi Specifies whether the I2c_GetVersionInfo API function is available

I2cChangeOvsApi Specifies whether the I2c_ChangeOvs API function is available

I2cChangeSlaveAddressApi Specifies whether the I2c_ChangeSlaveAddress API function is

available

I2cErrorCalloutFunction Specifies the name of the error callout function, which is called

whenever an error occurs.

I2cOsCounterRef Specifies the reference to the OS counter which is used by the I2C
driver. This parameter must be enabled if I2cBusIdleCheck is

enabled.

I2cIncludeFile Specifies the external include files used in the I2C driver.

If using this feature, the notification function and callout function

declaration must be included.

I2c_ConfigSet Specifies the configuration set for the I2C driver and its name

User guide 19 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

4 EB tresos Studio configuration interface

4.2 I2C configuration

Table 6 I2C configuration

Parameter Description

I2cChannelConfig Specifies the container name for channel configuration

I2cChannelId Specifies the ID for the channel used in the I2C driver. It is used as a

parameter for API functions.

Note: The combination of this parameter and the
I2cChannelConfig container name should be the same

in all configuration sets.

I2cScbChannelNumber Specifies the SCB resource number

Note: This parameter should be unique within a configuration set.

I2cDefaultSlaveAddrress Specifies the default slave address. This value is used for accepting

slave transactions.

Note: This value does not include the R/W bit. It should not set the

“general call” value (zero).

I2cDefaultSlaveAddrressMask Specifies the default slave address mask. This value is used for

accepting slave transactions.

Note: This value does not include the R/W bit.

I2cMasterWriteProcessing Specifies the periodic process for master write transactions:

• INTERRUPT: Using HW interrupt

• POLLING: Using I2c_MainFunction_Handling

I2cMasterReadProcessing Specifies the periodic process for master read transactions:

• INTERRUPT: Using HW interrupt

• POLLING: Using I2c_MainFunction_Handling

I2cSlaveProcessing Specifies the periodic process for slave write/read transactions:

• INTERRUPT: Using HW interrupt

• POLLING: Using I2c_MainFunction_Handling

I2cUseDmaMasterTx Enables or disables the DMA feature for master write transactions.

Note: If enabled, I2cMasterWriteProcessing must be set to
INTERRUPT.

User guide 20 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

4 EB tresos Studio configuration interface

Parameter Description

I2cUseDmaMasterRx Enables or disables the DMA feature for master read transactions.

Note: If enabled, I2cMasterReadProcessing must be set to
INTERRUPT.

I2cUseDmaSlaveTx Enables or disables the DMA feature for slave write transactions.

Note: If enabled, I2cSlaveProcessing must be set to

INTERRUPT.

I2cUseDmaSlaveRx Enables or disables the DMA feature for slave read transactions.

Note: If enabled, I2cSlaveProcessing must be set to

INTERRUPT.

I2cChannelDefaultOvs Specifies the default OVS settings

I2cBusIdleCheck Enables or disables the bus idle check feature before sending the

“START” bit.

Note: If enabled, each master mode API checks the bus idle state
before sending the “START” bit to the bus. It is useful for

multi-master buses. However, to check the bus idle state,
the hardware must wait for the stabilization of the SCB

unit. Thus, the API needs more execution time than without
this check.

I2cHwAutoAckSlaveAddress Specifies whether to send an acknowledgment by HW/SW when the

slave address matches.

Note: If you need strict control flow and/or cannot avoid the

interrupt delay for I2C handling, recommend to disable.

I2cHwAutoAckSlaveRxData Specifies whether to send an acknowledgment by HW/SW when

receiving data in slave mode.

Note: If you need strict control flow and/or cannot avoid the

interrupt delay for I2C handling, recommend to disable.

Note: When using DMA for receiving data in slave mode

(I2cUseDmaSlaveRx is enabled),

I2cHwAutoAckSlaveRxData must also be enabled, as
software acknowledgment is not possible.

Note: If disabled, I2cRxTriggerLevelSlave must be 0 and

cannot be edited.

User guide 21 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

4 EB tresos Studio configuration interface

4.2.1 I2C trigger level setting

Table 7 I2C trigger level setting

Parameter Description

I2cTxTriggerLevelMaster Specifies the trigger level for the master write operation. If the FIFO fill

level falls below this value, the periodic process is triggered.

I2cRxTriggerLevelMaster Specifies the trigger level for the master read operation. This

parameter is fixed to 0.

I2cTxTriggerLevelSlave Specifies the trigger level for the slave write operation. If the FIFO fill

level falls below this value, the periodic process is triggered.

I2cRxTriggerLevelSlave Specifies the trigger level for the slave read operation. If the FIFO rises

above this value, the periodic process is triggered.

Note: If these values are set higher, the interrupt (periodic process) frequency will decrease; however, the
process load in one interrupt will increase. In other words, the interrupt handler execution time will

be longer. Therefore, you should select an appropriate value suitable for your application.

4.2.2 I2C use DMA channel info

Table 8 I2C use DMA channel info

Parameter Description

I2cDmaTxChannel Specifies the DMA resource number to use for the Tx periodic processes.

This resource is used for both master and slave transactions.

I2cDmaRxChannel Specifies the DMA resource number to use for the Rx periodic processes.

This resource is used for both master and slave transactions.

Note: The runtime system is responsible for globally activating DMA before using the I2C driver, if DMA is

used. The selectable range of DMA resources is limited by the SCB resource in use.

4.2.3 I2C channel OVS config

Table 9 I2C channel OVS config

Parameter Description

I2cOvsId Specifies the ID for the OVS configuration set. It is used as a parameter for

I2c_ChangeOvs.

I2cClockRef Reference to the clock source configuration, which is set in the MCU driver

configuration.

Note: The runtime system is responsible for activating the selected clock
before using the I2C driver.

I2cClockRefInfo Specifies the SCB resource input clock value in Hz, which is referenced as

I2cClockRef.

I2cDataRateMode Specifies the I2C bus speed mode, selected from the following:

User guide 22 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

4 EB tresos Studio configuration interface

Parameter Description

• I2C_STANDARD_MODE

• I2C_FAST_MODE

• I2C_FAST_MODE_PLUS

I2cGlitchFiltering Specifies whether the glitch filter should use a digital filter or an analog filter.

• I2C_DF_in: digital filter

• I2C_AF_in: analog filter

I2cOVS Specifies the divider value of the selected frequency in I2cClockRef. The

frequency divided by this value is the I2C bus speed.

Note: This value must be the same as I2cLowPhaseOVS plus
I2cHighPhaseOVS.

I2cLowPhaseOVS Specifies the divider value of the low phase part of the frequency selected by

I2cClockRef.

I2cHighPhaseOVS Specifies the divider value of the high phase part of the frequency selected by

I2cClockRef.

User guide 23 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

4 EB tresos Studio configuration interface

Parameter Description

I2cBusFrequencyInfo Indicates the frequency specified by I2cClockRef divided by the value

specified by I2cOVS.

Note: This value should match I2cDataRateMode.

Note: The I2C bus speed is specified by above parameters. See the hardware TRM for details. You should
select appropriate values for these parameters to ensure communication with external nodes.

4.3 Other modules

4.3.1 PORT driver

The pins given in 6.1 Ports and pins must be configured in the PORT driver. The trigger multiplexer given in 6.4
DMA must be configured in the PORT driver if the DMA is configured to use.

4.3.2 MCU driver

The SCB clock must be configured.

4.3.3 DET

DET must be configured if the DET functionality is activated.

4.3.4 DEM

DEM must be configured if the DEM functionality is activated.

4.3.5 AUTOSAR OS

The I2C driver’s interrupts (listed in 6.3 Interrupts) must be configured in the AUTOSAR operating system. If

DMA is used, the corresponding DMA interrupt must also to be configured. The counter used by the I2C driver
must be configured if I2cBusIdleCheck is enabled.

4.3.6 BSW scheduler

The I2C driver uses the following services of the BSW scheduler (SchM) to enter and leave critical sections:

• SchM_Enter_I2c_I2C_EXCLUSIVE_AREA_0(void)

• SchM_Exit_I2c_I2C_EXCLUSIVE_AREA_0(void)

You must ensure that the BSW scheduler is properly configured and initialized before using I2C services. The

critical sections must prevent any task or interrupt from calling any I2C API function or I2C interrupt service

routine.

User guide 24 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5 Functional description

The I2C driver supports master and slave transaction modes. These modes are specified with the API call. Each

mode is processed with the preconfigured method (interrupt, polling, or interrupt with DMA).

This chapter describes the basic operation of the I2C driver.

5.1 I2C driver functionality

5.1.1 Initialize and prepare the buffer for the I2C driver

5.1.1.1 Initialize the I2C driver

Before using other APIs, you must initialize the I2C driver.

1. Call I2c_Init.

In this function, the I2C driver initializes the configured SCB resource and internal variables.

Code Listing 1 Example using the I2c_Init() function with the first configuration set

I2c_Init(&I2cConf_I2cConfigSet_I2cConfigSet_0);

5.1.1.2 Prepare the external buffer

Before starting a transaction, you must prepare the external buffer (EB). This buffer is used for both master and

slave operations.

1. Define the external buffer area for transmit and receive.

Code Listing 2 Example definition of the external buffer area for transmit and receive

uint8 TxBuffer[DATA_SIZE_OF_TRANSMIT]; /* external buffer for

transmit */

uint8 RxBuffer[DATA_SIZE _OF_RECEIVE]; /* external buffer for

receive */

Note: This buffer size is restricted by the memory allocation. (See 2.6.2 Memory allocation and constraints.)

Note: If the I2C driver is in the I2C_IDLE status, you can access the external buffer (read/write); do not

access the external buffer otherwise.

2. Store the transmit data in the prepared to transmit buffer.

3. Call I2c_SetupEb.

Code Listing 3 Example using I2c_SetupEb() with the defined external buffer

Ret = I2c_SetupEb(channelId, &TxBuffer[0], transmit_size, &RxBuffer[0],

receive_size);

Note: This API must be called in the IDLE state.

User guide 25 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

Note: The transmit data is read from the address given by the second parameter. The transmit length is
specified by the third parameter.

Note: The received data is stored at the address given by the fourth parameter. The receive length is
specified by the fifth parameter.

Note: After calling this function, the specified external buffer and length will be cyclically reused in every
master or slave operation. To change the buffer address or length, you should call I2c_SetupEb.

5.1.2 Master write operation

A master write operation is started as follows:

1. Call I2c_MasterWrite.

Code Listing 4 Example using I2c_MasterWrite()

Ret = I2c_MasterWrite(channelId, target_slave_address); /*

target_slave_address is not contain the read/write bit */

Note: The target slave address should be set as a 7-bit number, starting with the MSb. (LSb is don’t care.)

Note: The Tx buffer must be prepared before starting the master operation. This API should be called in the
idle state.

In this function, the prepared external buffer (EB) data is stored into the Tx FIFO, and the START bit is sent to

the bus.

If I2cBusIdleCheck is set, the bus idle state is checked before the START bit is sent. If the bus is busy (another
master is using the bus), this API is declined.

Figure 3 Master write transaction / (slave read transaction)

User guide 26 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.2.1 Using interrupt

The following operations are performed by the ISR.

If the transmit data length is greater than the Tx FIFO depth, the ISR stores the remaining data to the Tx FIFO.

If all transmit data has been sent, the ISR sends the STOP bit to the bus. After sending the STOP bit, the ISR calls
the transmit complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending

the STOP bit to the bus. In this callback, you can call I2c_SetupEb or I2c_MasterWrite or I2c_MasterRead
or I2c_Cancel. The repeated start bit is sent in the next API call (I2c_MasterWrite or I2c_MasterRead),
and the STOP bit is sent in I2c_Cancel.

Note: Confirm that the Tx transaction ended by using the I2c_ConfirmTxTransaction, before you
proceed to the next transaction with the repeated start bit.

Note: You can start the next transaction with repeated start (calling I2c_SetupEb or I2c_MasterWrite

or I2c_MasterRead) or Stop request (calling I2c_Cancel), not only in the callback but also

external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the

next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 I2c_MasterComReqNotification.

5.1.2.2 Using polling

The following operations are performed by calling I2c_MainFunction_Handling.

If the transmit data length is longer than the Tx FIFO depth, I2c_MainFunction_Handling stores the
remaining data to the Tx FIFO.

If all transmit data has been sent, I2c_MainFunction_Handling sends the STOP bit to the bus. After sending

the STOP bit, I2c_MainFunction_Handling calls the transmit complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending

the STOP bit to the bus. In this callback, you can call I2c_SetupEb or I2c_MasterWrite or I2c_MasterRead
or I2c_Cancel. The repeated start bit is sent in the next API call (I2c_MasterWrite or I2c_MasterRead),
and the STOP bit is sent in I2c_Cancel.

Note: Confirm that the Tx transaction ended by using the I2c_ConfirmTxTransaction, before you

proceed to the next transaction with repeated start bit.

Note: You can start the next transaction with repeated start (calling I2c_SetupEb or I2c_MasterWrite

or I2c_MasterRead) or Stop request (calling I2c_Cancel), not only in the callback but also
external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the

next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 I2c_MasterComReqNotification.

User guide 27 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.2.3 Using DMA

The following operations are performed by the ISR and DMA:

DMA stores the remaining transmit data to the Tx FIFO. If all transmit data is sent, the ISR sends the STOP bit to

the bus. After sending the STOP bit, the ISR calls the transmit complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending

the STOP bit to the bus. In this callback, you can call I2c_SetupEb or I2c_MasterWrite or I2c_MasterRead

or I2c_Cancel. The repeated start bit is sent in the next API call (I2c_MasterWrite or I2c_MasterRead),
and the STOP bit is sent in I2c_Cancel.

Note: DMA transfer operates when the external buffer size is 2 bytes or more.

Note: Confirm that the Tx transaction ended by using the I2c_ConfirmTxTransaction, before you
proceed to the next transaction with repeated start bit.

Note: You can start the next transaction with repeated start (calling I2c_SetupEb or I2c_MasterWrite

or I2c_MasterRead) or Stop request (calling I2c_Cancel), not only in the callback but also
external of the callback. If you want to call these APIs external of the callback, then take care to

ensure that the corresponding situation is not judged only by status or job result. Therefore, ensure
that the next communication request is notified is already done by your own implementation (such
as a set variable in callback). The relevant information is also described in 7.7.1.9

I2c_MasterComReqNotification.

5.1.3 Master read operation

The master read operation is started as follows:

1. Call I2c_MasterRead.

Code Listing 5 Example using I2c_MasterRead()

Ret = I2c_MasterRead(channelId, target_slave_address);

/* target_slave_address does not contain the read/write bit */

Note: The target slave address should be set as a 7-bit number, starting from MSb. (LSb is don’t care.)

Note: The Rx buffer must be prepared before starting the master operation. This API should be called in the
IDLE state.

In this function, the START bit is sent to the bus.

If I2cBusIdleCheck is set, the bus idle state is checked before the START bit is sent. If the bus is busy (another

master is using the bus), this API is declined.

User guide 28 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

Figure 4 Master read transaction / (slave write transaction)

5.1.3.1 Using interrupt

The following operations are performed by the ISR.

When the data is received, the ISR copies the Rx FIFO data to the external buffer. If the expected amount of data

has been copied, the ISR sends the NACK and STOP bits to the bus. After sending the STOP bit, the ISR calls the
receive complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call I2c_SetupEb or I2c_MasterWrite or I2c_MasterRead

or I2c_Cancel. The repeated start bit is sent in the next API call (I2c_MasterWrite or I2c_MasterRead),
and the STOP bit is sent in I2c_Cancel.

Note: You can start the next transaction with repeated start (calling I2c_SetupEb or I2c_MasterWrite
or I2c_MasterRead) or Stop request (calling I2c_Cancel), not only in the callback but also

external of the callback. If you want to call these APIs external of the callback, take care to ensure

that the corresponding situation is not judged only by status or job result. Therefore, ensure that the

next communication request notification is already done by your own implementation (e.g. set
variable in callback). The relevant information is also described in 7.7.1.9
I2c_MasterComReqNotification.

5.1.3.2 Using polling

The following operations are performed by calling I2c_MainFunction_Handling.

When the data is received, I2c_MainFunction_Handling copies the Rx FIFO data to the external buffer. If the
expected amount of data has been copied, I2c_MainFunction_Handling sends the NACK and STOP bits to
the bus. After sending the STOP bit, I2c_MainFunction_Handling calls the receive complete notification

function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending

the STOP bit to the bus. In this callback, you can call I2c_SetupEb or I2c_MasterWrite or I2c_MasterRead
or I2c_Cancel. The repeated start bit is sent in the next API call (I2c_MasterWrite or I2c_MasterRead),

and the STOP bit is sent in I2c_Cancel.

Note: You can start the next transaction with repeated start (calling I2c_SetupEb or I2c_MasterWrite
or I2c_MasterRead) or Stop request (calling I2c_Cancel), not only in the callback but also

external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the
next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 I2c_MasterComReqNotification.

User guide 29 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.3.3 Using DMA

The following operations are performed by the ISR and DMA.

When the data is received, DMA copies the Rx FIFO data to the external buffer. However, the remaining 128

bytes are copied by the ISR. If the expected amount of data has been copied, the ISR sends the NACK and STOP
bits to the bus. After sending the STOP bit, the ISR calls the receive complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending

the STOP bit to the bus. In this callback, you can call I2c_SetupEb or I2c_MasterWrite or I2c_MasterRead
or I2c_Cancel. The repeated start bit is sent in the next API call (I2c_MasterWrite or I2c_MasterRead),
and the STOP bit is sent in I2c_Cancel.

Note: DMA transfer operates when the external buffer size is 129 bytes or more.

Note: You can start the next transaction with repeated start (calling I2c_SetupEb or I2c_MasterWrite
or I2c_MasterRead) or Stop request (calling I2c_Cancel), not only in the callback but also

external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the

next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 I2c_MasterComReqNotification.

5.1.4 Slave mode operation

A slave operation is started as follows:

1. Call I2c_SlaveAwaitRequest.

Code Listing 6 Example using I2c_SlaveAwaitRequest()

Ret = I2c_SlaveAwaitRequest(channelId);

Note: After the start of the slave operation, external bus master requests for the configured slave address

are accepted.

Note: Both Tx and Rx buffers must be prepared before starting the slave operation. This API must be called

in the IDLE state.

This function stores the prepared external buffer (EB) data into the Tx FIFO and waits for an external bus master

request.

A slave write operation or slave read operation is performed when an external master request is received.

Note: Based on the different methods for sending an acknowledgment when slave address matching, there
are two ways to confirm the actual data transfer length:

- When an acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress is enabled),

confirm the actual transaction length by using I2c_GetBufferStatus. This API returns
the remaining data length (the length not sent/received) as specified by I2c_SetupEb.

- When an acknowledgment is sent by software (I2cHwAutoAckSlaveAddress is disabled),
confirm the actual transaction length by using I2c_SlaveCompleteNotification. The

User guide 30 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

TransferCount parameter in this API represents the actual data transfer length, and the
transfer completion event can be obtained through the Event parameter.

Note: For slave operation, if the actual transaction length is longer than the specified length, the driver
handles the following transactions as follows:

In the receive operation, the data which over the specified length are read from Rx FIFO but not
stored in the Rx buffer. (This means that the received data is ignored). And if further data is received,
driver tries to send NACK to stop the current transaction. In the transmit operation, the default data

(0xFF) is transmitted in repeatedly. Therefore, Infineon recommends use of the longer buffer (for
example, max data length) for slave operation, to avoid these situations. Even in such cases, each

notification is called by receiving a STOP bit or Repeated start bit from the master.

5.1.4.1 Slave write operation

If a read request is received from the external bus master, the I2C driver starts the slave write transaction.

5.1.4.1.1 Using interrupt

The handling of slave write operations (using interrupt) differs depending on the method used to send an

acknowledgment when slave address matching.

• When the slave address matches the acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress

is enabled)

The following operations are performed by the ISR.

If the transmit data length is greater than the Tx FIFO depth, the ISR stores the remaining data in the Tx FIFO.

After receiving the STOP bit, the ISR calls the transmit complete notification function
(I2c_SlaveTxNotification).

The driver also calls the repeated start notification (I2c_SlaveSrNotification), when detecting the

Repeated Start (detection of the STOP bit and bus busy). In this callback, call I2c_SetupEb or
I2c_UpdateTxBuffer or I2c_SlaveAwaitRequest to prepare the next transaction. To handle the repeated

start, handle the ISR without delay. Infineon recommends setting a higher priority to the corresponding ISR.

• When the slave address matches the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress
is disabled)

The following operations are performed by the ISR.

If the slave address matching occurs, the ISR calls the slave address match notification
(I2c_SlaveAddressMatchNotification), and the application must return the response as
I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function when returning I2C_ACK/I2C_NACK, the ISR

will send the corresponding acknowledge to the bus when returning I2C_HOLDACK, the ISR does nothing.

If the transmit data length is greater than the Tx FIFO depth, the ISR stores the remaining data in the Tx FIFO.

After receiving the STOP bit, the ISR calls the transmit complete notification function

(I2c_SlaveCompleteNotification) and notifies the application layer of the
I2C_SLAVE_COMPLETE_STOP_TX_XX event through the Event parameter.

The driver also calls the transmit complete notification function (I2c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the

User guide 31 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

I2C_SLAVE_COMPLETE_RESTART_TX_XX event through the Event parameter. In this callback, call
I2c_SetupEb, I2c_UpdateTxBuffer, or I2c_SlaveAwaitRequest to prepare the next transaction.

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce the
bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for example,

critical section), the control flow to the bus may lost. You should carefully enable this configuration,
depending on the use case. see 5.1.4.3 for more detail.

5.1.4.1.2 Using polling

The handling of the slave write operations (using polling) differs depending on the method used to send an

acknowledgment when slave address matching.

• When the slave address matches the acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress

is enabled)

The following operations are performed by calling I2c_MainFunction_Handling.

If the transmit data length is greater than the Tx FIFO depth, I2c_MainFunction_Handling stores the

remaining data in the Tx FIFO.

After receiving the STOP bit, I2c_MainFunction_Handling calls the transmit complete notification function
(I2c_SlaveTxNotification).

The driver also calls the repeated start notification (I2c_SlaveSrNotification), when detecting the

Repeated Start (detection of the STOP bit and bus busy). In this callback, call I2c_SetupEb

I2c_UpdateTxBuffer, or I2c_SlaveAwaitRequest to prepare the next transaction. However, Infineon
does not recommend polling in the repeated start mode. Because the I2c_MainFunction_Handling should

be called without any delay at the timing of Repeated Start receiving, to detect the next transaction start. If the
I2c_MainFunction_Handling is delayed, the I2C driver shall not handle the next transaction as expected.

• When the slave address matches the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress

is disabled)

The following operations are performed by calling I2c_MainFunction_Handling.

If the slave address matching occurs, I2c_MainFunction_Handling calls the slave address match
notification (I2c_SlaveAddressMatchNotification), and the application must return the response as
I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function, when returning I2C_ACK/I2C_NACK,
I2c_MainFunction_Handling will send the corresponding acknowledge to the bus when returning
I2C_HOLDACK, I2c_MainFunction_Handling does nothing.

If the transmit data length is greater than the Tx FIFO depth, I2c_MainFunction_Handling stores the

remaining data in the Tx FIFO.

After receiving the STOP bit, I2c_MainFunction_Handling calls the transmit complete notification function

(I2c_SlaveCompleteNotification) and notifies the application layer of the
I2C_SLAVE_COMPLETE_STOP_TX_XX event through the Event parameter.

The driver also calls the transmit complete notification function (I2c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C_SLAVE_COMPLETE_RESTART_TX_XX event through the Event parameter. In this callback, call
I2c_SetupEb, I2c_UpdateTxBuffer, or I2c_SlaveAwaitRequest to prepare the next transaction.

User guide 32 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.4.1.3 Using DMA

The handling of the slave write operations (using DMA) differs depending on the method used to send an
acknowledgment when the slave address matches.

• When the slave address matches the acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by the ISR and DMA.

The DMA stores the remaining transmit data to Tx FIFO. After receiving the STOP bit, the ISR calls the transmit
complete notification function (I2c_SlaveTxNotification).

The driver calls the repeated start notification (I2c_SlaveSrNotification) also when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call I2c_SetupEb,

I2c_UpdateTxBuffer, or I2c_SlaveAwaitRequest to prepare the next transaction.

• When the slave address matches the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress
is disabled)

The following operations are performed by the ISR and DMA.

If slave address matching occurs, the ISR calls the slave address match notification

(I2c_SlaveAddressMatchNotification), and the application must return the response as
I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function when returning I2C_ACK/I2C_NACK, the ISR

will send the corresponding acknowledge to the bus when returning I2C_HOLDACK, the ISR does nothing.

The DMA stores the remaining transmit data to Tx FIFO. After receiving the STOP bit, the ISR calls the transmit

complete notification function (I2c_SlaveCompleteNotification) and notifies the application layer of the

I2C_SLAVE_COMPLETE_STOP_TX_XX event through the Event parameter.

The driver also calls the transmit complete notification function (I2c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the

I2C_SLAVE_COMPLETE_RESTART_TX_XX event through the Event parameter. In this callback, call

I2c_SetupEb, I2c_UpdateTxBuffer, or I2c_SlaveAwaitRequest to prepare the next transaction.

Note: DMA transfer operates when the external buffer size is 2 bytes or more.

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce

the bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for
example, a critical section), the control flow to the bus may lost. You should carefully enable this

configuration, depending on the use case. see 5.1.4.3 for more detail.

5.1.4.1.4 Update Buffer

In the slave write operation, the buffer address and transmit length can be updated by calling
I2c_UpdateTxBuffer.

Code Listing 7 Example using I2c_UpdateTxBuffer() with the defined external buffer

Ret = I2c_UpdateTxBuffer(channelId, &TxBuffer[0], transmit_size);

Note: Keep the external buffer area while the transmit operation is ongoing.

User guide 33 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

Note: Do not access the external buffer while the transmit operation is ongoing.

Note: The buffer must be set at least once via I2c_SetupEb before using this API.

Note: For external buffers, see 5.1.1.2 Prepare the external buffer

I2c_SetupEb can update the buffer information, but the I2c_SetupEb requires the driver state to be IDLE.

After changing the buffer, the driver should be in the BUSY state to respond to the master by calling
I2c_SlaveAwaitReqeust. Therefore, if you are using this sequence to update the buffer information, there is a
period of IDLE state (this is a No response duration). The I2c_UpdateTxBuffer allows you to update buffer

information without setting the driver state to IDLE.

I2c_UpdateTxBuffer is used when the driver is in the BUSY state or slave address match window. This API

can call before the data transmission starts. If this API is called during data transmission, the request is
declined to keep the transmit data consistency.

Note: The slave address match window occurs when the slave address matches the acknowledgment sent
by software (I2cHwAutoAckSlaveAddress is disabled). If a slave address match occurs, the ISR

will call the slave address match notification (I2c_SlaveAddressMatchNotification). If this
notification returns I2C_HOLDACK, clock stretching will be applied to the bus, and the slave address

match window will open. The window remains open until the application calls
I2c_SlaveStartTransfer to start the transfer, after which the slave address match window will

close.

User guide 34 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

SDA : Serial Data Line
SCL : Serial Clock Line
START : Start condition
Sr : Repeated Start condition

Only in the I2c_SlaveSrNotification, accept the I2c_UpdateTxBuffer,
 even if the driver state is IDLE (this means that before calling I2c_SlaveAwaitRequest)

R/W : Direction bit(R:Read, W:Write)
ACK : Acknowledge
NACK : Not Acknowledge

LEGEND :

:Accept(Return E_OK)

:Decline (Return NOT_E_OK)

Decline the I2c_UpdateTxBuffer,
If I2c_SlaveAwaitRequest is not called.

Accept the I2c_UpdateTxBuffer.
(during BUSY state and before start data transmission)

Decline the I2c_UpdateTxBuffer.
(after starting data transmission)

SDA

SCL

Same as "Slave address
(7bit)" and later

START Slave address (7bit) Data(8 bits)R/W
bit

ACK SrNACK or ACK

SDA

SCL

Same as "Slave address
(7bit)" and later

START Slave address (7bit) DataR/W
bit

HOLD ACK SrNACK or ACK

Accept the I2c_UpdateTxBuffer.
(during clock stretch state and before start data transmission)

When return I2C_HOLDACK from I2c_SlaveAddressMatchNotification, I2C will enter clock

stretching status until "I2c_SlaveStartTransfer" is called, This period is called the "slave address

match window"

When I2cHwAutoAckSlaveAddress is disabled

When I2cHwAutoAckSlaveAddress is enabled

Figure 5 I2c_UpdateTxBuffer Accept / Decline

User guide 35 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.4.2 Slave read operation

When a write request is received from the external bus master, the I2C driver starts the slave read transaction.

5.1.4.2.1 Using interrupt

The handling of the slave read operations (using interrupt) differs depending on the method used to send an
acknowledgment when the slave address matches and receives data.

• When slave address match acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress is
enabled)

The following operations are performed by the ISR.

When the data is received, the ISR copies the Rx FIFO data to the external buffer and sends ACK/NACK to the
master when receiving data acknowledgment is sent by software (I2cHwAutoAckSlaveRxData is disabled).

After receiving the STOP bit, the ISR calls the receive complete notification function
(I2c_SlaveRxNotification).

The driver also calls the repeated start notification (I2c_SlaveSrNotification), when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call I2c_SetupEb or

I2c_SlaveAwaitRequest to prepare the next transaction. To handle the repeated start, handle the ISR
without delay. Infineon recommends setting a higher priority to the corresponding ISR.

• When the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress is disabled)

The following operations are performed by the ISR.

If slave address matching occurs, the ISR calls the slave address match notification

(I2c_SlaveAddressMatchNotification), and the application must return the response as
I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function when returning I2C_ACK/I2C_NACK, the ISR

will send the corresponding acknowledge to the bus when returning I2C_HOLDACK, the ISR does nothing.

When the data is received, the ISR copies the Rx FIFO data to the external buffer and sends ACK/NACK to the

master when receiving data acknowledgment is sent by software (I2cHwAutoAckSlaveRxData is disabled).

After receiving the STOP bit, the ISR calls the receive complete notification function
(I2c_SlaveCompleteNotification) and notifies the application layer of the
I2C_SLAVE_COMPLETE_STOP_RX_XX event through the Event parameter.

The driver also calls the transmit complete notification function (I2c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C_SLAVE_COMPLETE_RESTART_RX_XX event through the Event parameter. In this callback, call

I2c_SetupEb or I2c_SlaveAwaitRequest to prepare the next transaction.

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce the

bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for example,
critical section), the control flow to the bus may lost. Enable this configuration, depending on the use

case. See 5.1.4.3 for more details.

5.1.4.2.2 Using polling

The handling of the slave read operations (using polling) differs depending on the method used to send an
acknowledgment when the slave address matches and receives data.

User guide 36 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

• When the slave address matches the acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by calling I2c_MainFunction_Handling.

When the data is received, I2c_MainFunction_Handling copies the Rx FIFO data into the external buffer and
sends ACK/NACK to master when receiving data acknowledgment is sent by software

(I2cHwAutoAckSlaveRxData is disabled). After receiving the STOP bit, I2c_MainFunction_Handling calls

the receive complete notification function (I2c_SlaveRxNotification).

The driver also calls the repeated start notification (I2c_SlaveSrNotification), when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call I2c_SetupEb or

I2c_SlaveAwaitRequest to prepare the next transaction. However, Infineon does not recommend polling in

repeated start mode. Call the I2c_MainFunction_Handling without any delay at the timing of Repeated

Start receiving, to detect the next transaction start. If the I2c_MainFunction_Handling is delayed, the I2C
driver shall not handle the next transaction as expected.

• When the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress is disabled)

The following operations are performed by calling I2c_MainFunction_Handling.

If slave address matching occurs, I2c_MainFunction_Handling calls the slave address match notification
(I2c_SlaveAddressMatchNotification), and the application must return the response as

I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function when returning I2C_ACK/I2C_NACK,
I2c_MainFunction_Handling will send the corresponding acknowledge to the bus when returning
I2C_HOLDACK, I2c_MainFunction_Handling do nothing.

When the data is received, I2c_MainFunction_Handling copies the Rx FIFO data into the external buffer and

sends ACK/NACK to master when receiving data acknowledgment is sent by software

(I2cHwAutoAckSlaveRxData is disabled).

After receiving the STOP bit, I2c_MainFunction_Handling calls the transmit complete notification function
(I2c_SlaveCompleteNotification) and notifies the application layer of the

I2C_SLAVE_COMPLETE_STOP_RX_XX event through the Event parameter.

The driver also calls the transmit complete notification function (I2c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the

I2C_SLAVE_COMPLETE_RESTART_RX_XX event through the Event parameter.

5.1.4.2.3 Using DMA

The handling of the slave read operations (using DMA) differs depending on the method used to send an

acknowledgment when the slave address matches.

• When the slave address matches the acknowledgment is sent by hardware (I2cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by the ISR and DMA.

When the data is received, the DMA copies the Rx FIFO data to the external buffer. After receiving the STOP bit,
the ISR calls the receive complete notification function (I2c_SlaveRxNotification).

The driver calls the repeated start notification (I2c_SlaveSrNotification) also when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call I2c_SetupEb or
I2c_SlaveAwaitRequest to prepare the next transaction.

• When the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress is disabled)

User guide 37 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

The following operations are performed by the ISR and DMA.

If slave address matching occurs, the ISR calls the slave address match notification

(I2c_SlaveAddressMatchNotification), and the application must return the response as
I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function when returning I2C_ACK/I2C_NACK, the ISR

will send the corresponding acknowledge to the bus when returning I2C_HOLDACK, the ISR does nothing.

When the data is received, the DMA copies the Rx FIFO data to the external buffer. After receiving the STOP bit,
the ISR calls the receive complete notification function (I2c_SlaveCompleteNotification) and notifies the

application layer of the I2C_SLAVE_COMPLETE_STOP_RX_XX event through the Event parameter.

The driver also calls the transmit complete notification function (I2c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the

I2C_SLAVE_COMPLETE_RESTART_RX_XX event through the Event parameter. In this callback, call
I2c_SetupEb or I2c_SlaveAwaitRequest to prepare the next transaction.

Note: When using DMA for receiving data in slave mode, the configuration of I2cHwAutoAckSlaveRxData

must be enabled. (Can not be acknowledged by software)

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce
the bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (e.g.

critical section), the control flow to bus may lost. You should carefully to enabling this configuration,
depending on use case. see 5.1.4.3 for detail.

User guide 38 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.4.3 Auto acknowledge configuration

There are two configurations for controlling the method of sending acknowledgment in slave mode:
I2cHwAutoAckSlaveAddress and I2cHwAutoAckSlaveRxData. below is a description of the functionality of
these two configurations, as well as the trade-offs when they are enabled or disabled.

• I2cHwAutoAckSlaveAddress is enabled

Table 10 Description of the functionality when I2cHwAutoAckSlaveAddress is enabled

 Functionality Option

Send acknowledge method when matching the slave address Hardware

I2c_SlaveAddressMatchNotification Not called

Slave transfer complete notification when detecting the Stop
condition

I2c_SlaveTxNotification/

I2c_SlaveRxNotification

Slave transfer complete notification when detecting the

Repeated Start condition
I2c_SlaveSrNotification

• I2cHwAutoAckSlaveAddress is disabled

Table 11 Description of the functionality when I2cHwAutoAckSlaveAddress is disabled

 Functionality Option

Send acknowledge method when matching the slave address Software

I2c_SlaveAddressMatchNotification Called

Slave transfer complete notification when detecting the Stop

condition

I2c_SlaveCompleteNotification with
I2C_SLAVE_COMPLETE_STOP_XX_XX

event

Slave transfer complete notification when detecting the

Repeated Start condition

I2c_SlaveCompleteNotification with
I2C_SLAVE_COMPLETE_RESTART_XX_XX

event

Note: If the master performs continuous data transmission in the START -> STOP -> START -> STOP sequence

and the delay between the intermediate STOP and START is very short, due to the HW spec, SW
cannot distinguish between the repeated start and standard start bit. As a result, it will treat the

second START as a repeated start condition and pass the I2C_SLAVE_COMPLETE_RESTART_XX_XX

event through the Event parameter in the final transmission completion notification

(I2c_SlaveCompleteNotification).

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, it can reduce the
latency to bus acknowledge. In other words, you can reduce the clockstretch. However, if this is

enabled and the driver’s interrupt is disturbed by some reason (e.g. critical section), hardware
acknowledges to the bus without software interaction. This may cause the application to lose the
control flow to the bus. For example, there is a risk of transmitting the remaining data from a
previous transaction to the next transaction in a repeated start scenario. Another example is
incorrectly sending a NACK in response to a repeated start request. Such situations can occur when

the driver ISR is not handled in time. Therefore, you should carefully select this configuration based

on your system requirements.

• I2cHwAutoAckSlaveRxData is enabled

User guide 39 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

Table 12 Description of the functionality when I2cHwAutoAckSlaveRxData is enabled

 Functionality Option

Send acknowledge method when receiving data Hardware

Note: The acknowledgment will be sent by hardware when receiving data under the expected length, once
the received data length reaches the expected length, the I2C driver changes the HW setting to send
the further acknowledgment from software, and a NACK will be sent.

• I2cHwAutoAckSlaveRxData is disabled

Table 13 Description of the functionality when I2cHwAutoAckSlaveRxData is disabled

 Functionality Option

Send acknowledge method when receiving data Software

5.1.5 Confirm the I2C driver status

To confirm the driver progress or driver status, you can use the following features.

5.1.5.1 Driver status

1. Call I2c_GetStatus.

This function returns one of the following statuses.

I2C_UNINIT: Not yet initialized
I2C_IDLE: No transaction request

I2C_BUSY_MASTERTX: A master write operation is in progress.
I2C_BUSY_MASTERRX: A master read operation is in progress.
I2C_BUSY_SLAVE: Waiting for the slave operation to complete.

I2C_BUSY_SLAVETX: A slave write operation is in progress.

I2C_BUSY_SLAVERX: A slave read operation is in progress.
I2C_UNKNOWN_STATUS: Cannot return the status (invalid channel ID)

Code Listing 8 Example using I2c_GetStatus()

Status = I2c_GetStatus(channelId);

5.1.5.2 Latest job result

A job means a transaction. Thus, the job result is the same as the result of the transaction.

1. Call I2c_GetJobresult.

This function returns one of the following statuses.

I2C_NORESULT: No job after initialization

I2C_PENDING: A job is in progress.
I2C_CANCEL: The previous job was canceled.
I2C_MASTER_TX_SUCCESS: The previous master Tx job was successful.

I2C_MASTER_RX_SUCCESS: The previous master Rx job was successful.
I2C_SLAVE_TX_SUCCESS: The previous slave Tx job was successful.

User guide 40 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

I2C_SLAVE_RX_SUCCESS: The previous slave Rx job was successful.
I2C_MASTER_TX_ERROR: The previous master Tx job failed .

I2C_MASTER_RX_ERROR: The previous master Rx job failed .
I2C_SLAVE_TX_ERROR: The previous slave Tx job failed.

I2C_SLAVE_RX_ERROR: The previous slave Rx job failed.
I2C_UNKNOWN_RESULT: Cannot return a result (the channel ID was invalid or uninitialized)

Code Listing 9 Example using I2c_GetJobResult()

JobResult = I2c_GetJobResult(channelId);

5.1.5.3 Buffer status

You can check the progress of the transaction when it is underway.

1. Call I2c_GetBufferStatus.

This function outputs the current Tx and Rx buffer pointer address and the length of the remaining data.
If the pointer address or the length of the remaining data does not change (the bus transaction appears

stalled) for reasons such as waiting for an external node’s reaction, you can take action such as canceling
the operation to prevent the system from freezing.

This function can be used to confirm the actual transaction length in slave mode. If you use it for this
purpose, you can call this function in each transaction’s complete notification. If there is any difference
between the specified length in I2c_SetupEb and the actual transaction length, the difference length can

be found in this function parameter. In slave mode, when the default data sending (TX) or receiving (RX) is

ignored by a longer data request from the Master, this function returns the last position and the length 0.
This is because the external buffer data transaction is already complete.

Note: This function returns the calculated buffer status (position/length). Thus, the returned value has

limited accuracy. If DMA is used, the return value is a rough estimate.

Note: When I2cHwAutoAckSlaveAddress is enabled, using I2c_GetBufferStatus to confirm the

actual transaction length may become inaccurate in slave mode. Therefore, Infineon recommends
using the transfer completion notification (I2c_SlaveCompleteNotification) to confirm the

actual data transfer length.

Code Listing 10 Example using the I2c_GetBufferStatus()

I2c_BufferType * SrcAddressPtr; /* variable definition */

I2c_BufferType * DestAddressPtr; /* variable definition */

I2c_BufferSizeType SrcSize; /* variable definition */

I2c_BufferSizeType DestSize; /* variable definition */

Ret = I2c_GetBufferStatus(channelId,

 &SrcAddressPtr,

 &DestAddressPtr,

 &SrcSize,

 &DestSize);

User guide 41 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.5.4 Confirm Tx Transaction

After calling the MasterWrite in repeated start mode, make sure that all the Tx transactions are complete before
you start the next transaction with repeated start.

1. Call I2c_ConfirmTxTransaction.

This function confirms if the Tx transaction has ended or not.

E_OK: Tx Transaction ended

E_NOT_OK: Tx Transaction not ended

Code Listing 11 Example using I2c_ConfirmTxTransaction()

Ret = I2c_ConfirmTxTransaction(channelId);

Note: If you start the next Master transaction without confirming the Tx transaction ended, there is a

possibility to broken the current transaction.

Note: This function is intended for use in the Master mode channel.

5.1.6 Cancel the operation

You can terminate an operation underway.

1. Call I2c_Cancel.

Code Listing 12 Example using I2c_Cancel()

Ret = I2c_Cancel(channelId);

Note: If this function is called, the I2C driver tries to stop the transaction (For example, if a master read
operation is ongoing, it tries to send NACK and STOP). However, the communication partner may

ignore this request. For example, if a slave write operation is underway, the driver clears the FIFO and
disables the SCB, but the external master may continue to read the data. Such cases are difficult to

avoid; therefore, you should pay extra attention when calling this function.

Note: If this function is called during slave write operation, the external master may detect a bus error.

This function terminates the currently ongoing operation. If the operation is terminated, the callback
notification will not be called.

If repeated start mode is set and call this function in the next communication request notification, the driver
sends the STOP bit in this function. In this case, the transaction complete callback notification will be called.

5.1.7 Change I2C driver settings

Even if not using reinitialization, the following settings can be changed.

User guide 42 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.7.1 OVS settings

The OVS settings can be changed as follows:

1. Call I2c_ChangeOvs.

Code Listing 13 Example using the I2c_ChangeOvs()

Ret = I2c_ChangeOvs(channelId, OvsId);

/* OvsId should be select from the configured one */

Note: This API should be called in the IDLE state. You should ensure that the clock setting is in sync with the

input SCB clock setting.

This function changes the current OVS setting to another configured one, which is specified by the given

parameter (OVS setting ID).

5.1.7.2 Accept slave address / slave address mask

The slave address / slave address mask value can be changed as follows:

1. Call I2c_ChangeSlaveAddress.

Code Listing 14 Example using the I2c_ChangeSlaveAddress()

Ret = I2c_ChangeSlaveAddress (channelId, Address, AddressMask);

Note: This API should be called in the IDLE state. The slave address should be set as a 7-bit number, starting
with MSb.

You should avoid setting a slave address which only accepts the “general call (I2C protocol)”
(address = 0, address mask = 0xFF).

User guide 43 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.1.7.3 Repeated Start mode

The repeated start mode can be changed as follows:

1. Call I2c_SetRepeatedStart.

Code Listing 15 Example using the I2c_SetRepeatedStart ()

Ret = I2c_SetRepeatedStart (channelId, RepeatedFlag);

/* parameter: RepeatedFlag */

/* TRUE: Repeated start mode */

/* FALSE: Normal mode */

Note: This API should be called in the IDLE state.

5.1.8 Disabling the I2C driver

To stop the I2C driver, use the following API:

1. Call I2c_DeInit.

Code Listing 16 Example using I2c_DeInit()

I2c_DeInit();

Note: In this function, the I2C driver resets the SCB settings to their reset values.

5.2 What is included

The I2c.h file includes all necessary external identifiers. Thus, your application only needs to include I2c.h to
make all API functions and data types available.

5.3 Initialization

The I2C driver must be initialized before use by calling the I2c_Init API function.

Before using the I2C driver, the following is needed:

• The PORT and MCU module must be initialized

• If you use DMA, ensure that DMA is globally enabled before using the DMA feature of the I2C driver.

• Prepare other BSW modules (see 4.3 Other modules).

5.4 Runtime reconfiguration

To change the configuration set, disable the I2C driver (using I2c_DeInit). After this, initialize the I2C driver
(using I2c_Init) with another configuration set.

To change a part of the configuration, see 5.1.7 Change I2C driver settings. This feature does not require
disabling the I2C driver.

User guide 44 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.5 API parameter checking

The I2C driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via I2cErrorCalloutFunction) is called with the

error code, service ID, module ID, and instance ID as parameters.

If default error detection is enabled, all errors are also reported to DET, a central error hook function within the

AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

See 7.4 Functions for a description of API functions and associated error codes.

5.5.1 Vendor-specific development errors

The I2C driver is not included in the AUTSOAR specification; therefore, all parameter error checks are vendor-
specific.

Table 14 Vendor-specific development errors

Error Description

I2C_E_UNINIT An API (except the I2c_Init, I2c_GetStatus,
I2c_GetVersionInfo) is called before the initialization of the I2C

driver.

I2C_E_ALREADY_INITIALIZED I2c_Init is called when the driver is already initialized, without

calling I2c_DeInit.

I2C_E_TRANSACTION An API (I2c_SetupEb, I2c_MasterWrite, I2c_MasterRead,

I2c_SlaveAwaitRequest, I2c_ChangeOvs,

I2c_ChangeSlaveAddress) is called when the driver is not in

IDLE state.

I2C_E_OS_TIME_REFUSED GetCounterValue or GetElapsedValue (OS reference

functions) reports an error.

I2C_E_PARAM_CONFIG I2c_Init is called with an invalid parameter (the configuration

structure is not found in the configuration set).

I2C_E_PARAM_CHANNEL An API is called with incorrect channel ID (channel ID not found in

the configuration set).

I2C_E_PARAM_POINTER An API is called with an invalid pointer. One of the following cases:

• I2c_SetupEb and I2c_UpdateTxBuffer are called with
NULL pointers.

• I2c_GetBufferStatus and I2c_GetVersionInfo are called
with a NULL pointer.

I2C_E_PARAM_LENGTH An API (I2c_SetupEb, I2c_UpdateTxBuffer) is called with an

invalid length (SrcSize or DstSize is 0 or greater than 65536u).

I2C_E_PARAM_OVSID I2c_ChangeOvs is called with an invalid OVS ID (OVS ID not found

in the configuration set).

I2C_E_PARAM_ADDRESS_MATCHING I2c_ChangeSlaveAddress is called with an invalid combination
of address and address mask (the value of address is equal to 0,
and the address mask is equal to 0xFF; this combination would

result in only accepting the “general call”).

User guide 45 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

Error Description

I2C_E_PARAM_POINTER_AND_LENGTH One of the following cases:

I2c_SetupEb is called with an invalid combination of length and

pointer.

• Length (SrcSize/DstSize) is 0, but the pointer
(SrcPtr/DstPtr) is a valid address.

• Pointer is NULL, but the length is valid.

I2c_MasterWrite is called with invalid parameters:

• Previously set SrcSize is equal to 0 or SrcPtr is NULL.

I2c_MasterRead is called with invalid parameters:

• Previously set DstSize is equal to 0 or DstPtr is NULL.

I2c_SlaveAwaitRequest is called with invalid parameters:

• Previously set SrcSize or DstSize is equal to 0 or SrcPtr or
DstPtr is NULL.

5.6 Production errors

There are two types of production errors: recoverable failure and unrecoverable failure.

These errors are reported to the DEM module with the category name, and to the error hook (configured via

I2cErrorCalloutFunction) with the detailed error code.

5.6.1 Recoverable failure

These are temporary errors, which are cleared when the operation is retried.

• Bus protocol error (NACK, ARB_LOST, unintended STOP from external master)

• Rx FIFO handling error (OVER_FLOW)

I2C_E_HW_NACK_ERROR: NACK received from an external node.

Note: In the master mode (write direction) of the repeated start mode, if the last acknowledgement is
delayed due to clock stretching on the slave node, reception of a NACK may not be detected. So, it is
possible the driver does not report the NACK via the Error report feature. However, note that in any

case, the corresponding last byte is already sent.
If the Tx data length is 1 byte (Master Write transaction) and depending on the interrupt handling

timing, there is a possibility to ignore the NACK reception of a slave address. In this case, the driver
does not report the NACK via the Error report feature.

Note: NACK may not be detected if the interrupt delay or the I2c_MainFunction_Handling call cycle is
long in master mode.

I2C_E_HW_ARB_LOST_ERROR: The I2C driver lost bus arbitration.

I2C_E_HW_RX_OVERFLOW_ERROR: Rx FIFO overflow. This occurs when the periodic process is slower than the

bus transaction speed.

User guide 46 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.6.2 Unrecoverable failure

These errors are typically caused by a hardware failure; if retried, the error may occur again.

• Bus error

• Tx FIFO handling error (OVER_FLOW)

• Rx FIFO handling error (UNDER_FLOW)

• DMA error

Table 15 Unrecoverable failure

Error Description

I2C_E_HW_BUS_ERROR SCB detected an I2C bus error

I2C_E_HW_TX_OVERFLOW_ERROR Tx FIFO overflow

I2C_E_HW_RX_UNDERFLOW_ERROR Rx FIFO underflow

I2C_E_HW_DMA_SRC_BUS_ERROR DMA source bus error

I2C_E_HW_DMA_DST_BUS_ERROR DMA destination bus error

I2C_E_HW_DMA_SRC_MISAL_ERROR DMA source buffer misaligned

I2C_E_HW_DMA_DST_MISAL_ERROR DMA destination buffer misaligned

I2C_E_HW_DMA_CURR_PTR_NULL_ERROR Tried to activate DMA with NULL pointer

I2C_E_HW_DMA_CH_DISABLED_ERROR DMA channel disabled

I2C_E_HW_DMA_DESCR_BUS_ERROR DMA descriptor bus error

Note: If the slave write operation occurs an unrecoverable failure, the external master may detect a bus
error.

5.7 Reentrancy

All services except I2c_Init, I2c_DeInit and I2c_MainFunction_Handling are reentrant if they are

executed with different channel IDs(I2c_GetVersionInfo is always reentrant).

5.8 Sleep mode

The I2C driver does not provide a dedicated sleep mode.

Note: All I2C sequences must be completed or stopped before entering deep sleep mode. I2C operation in
deep sleep mode is not guaranteed.

5.9 Debugging support

The I2C driver does not support debugging.

User guide 47 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

5 Functional description

5.10 Execution-time dependencies

The execution time of the API functions depends on certain factors listed in Table 16.

Table 16 Execution-time dependencies

Affected function Dependency

I2c_Init(),

I2c_DeInit()

Number of configured hardware units

I2c_MainFunction_Handling(),

(Interrupt)

Number of configured hardware units, trigger level setting, DMA

usage, master or slave operation

I2c_MasterWrite(),

I2c_MasterRead()

Trigger level setting, DMA usage, send/receive data length, and

bus idle check

I2c_SlaveAwaitRequest(),

I2c_GetBufferStatus()

Trigger level setting, DMA usage, send/receive data length

I2c_Cancel() Length of remaining data and transaction status

I2c_UpdateTxBuffer() Trigger-level setting, DMA usage, send data length, driver status,

and bus status

5.11 Deviation from AUTOSAR

I2C is not defined in AUTOSAR. Thus, there is no specific requirement about where the I2C driver deviates from.

User guide 48 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

6 Hardware resources

6 Hardware resources

6.1 Ports and pins

The I2C driver uses the SCB instances of the TRAVEO™ T2G family microcontrollers. The pins listed in Table 17
are used. Make sure that the pins are correctly set in the PORT driver’s configuration.

Table 17 Pins for I2C operation

Pin name Direction Description

SCB<n>_I2C_SDA Output SCB channel <n> I2C data pin

SCB<n>_I2C_SCL Output SCB channel <n> I2C clock pin

6.2 Timer

The I2C driver does not use any hardware timers directly (An OS timer is referenced).

6.3 Interrupts

The interrupt services listed in Table 18 must be configured correctly for peripherals used by the I2C driver. If a

peripheral is not used, the corresponding interrupt service must not be present in the configuration.

Table 18 IRQ vectors and ISR names

IRQ vector ISR name Cat1 ISR name Cat2

SCB<n> interrupt request I2c_Interrupt_SCB<n>_Cat1 I2c_Interrupt_SCB<n>_Cat2

DMA completion interrupt

request ch.<i> for TX

I2c_Interrupt_DMA_CH<i>_Isr_Cat1 I2c_Interrupt_DMA_CH<i>_Isr_Cat2

DMA completion interrupt

request ch.<j> for RX

I2c_Interrupt_DMA_CH<j>_Isr_Cat1 I2c_Interrupt_DMA_CH<j>_Isr_Cat2

Note: The OS must associate the named ISRs with the corresponding SCB interrupt.
For example, if the hardware unit SCB ch.2 is configured, I2c_Interrupt_SCB2_Cat2() must be

called from the (OS-)interrupt service routine of the SCB ch.2 interrupt. For category1 usage, the
address of I2c_Interrupt_SCB2_Cat1() must be the entry for the SCB ch.2 interrupt in the (OS)

interrupt vector table.
DMA completion ISRs are generated only if the given DMA channel is used by an SCB channel

configured to I2C. If an SCB channel uses DMA, the interrupt handlers for SCB are required in addition
to the DMS completion ISRs.

Note: The DMA interrupt priority must be higher than the SCB interrupt priority.

Note: If the I2C interrupt priority is too low, FIFO access may be inhibited by other interrupts. This may cause
FIFO overflow or underflow, and unintended behavior (especially during the repeated start
operation). Thus, you should ensure an appropriate priority of the I2C interrupts.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing

conditions in the integrated system with I2C. For more details, see the following errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:

User guide 49 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

6 Hardware resources

“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at the
end of the interrupt function to avoid the priority inversion.

I2C interrupts are handled by an ISR wrapper (handler) in the integrated system. Thus, if necessary,
the DSB instruction should be added just before the end of the handler by the integrator.

6.4 DMA

The I2C driver uses DMA channels. The DMA channels can be configured by the user and are enabled or disabled

by the I2C driver as required. The DMA hardware itself must be enabled by the user before the I2C driver uses
them for DMA transfers. The conditions under which DMA transfer operates vary depending on the specified

external buffer size and each mode. See 5.1.2.3 Using DMA, 5.1.3.3 Using DMA and 5.1.4.1.3 Using DMA.

When using DMA, ensure that “one-to-one trigger multiplexer” is correctly configured in the PORT driver’s
configuration. In addition, ensure proper memory allocation. See 2.6.2 Memory allocation and constraints.

User guide 50 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7 Appendix A

7.1 Include files

The I2c.h file is the only file that needs to be included to use the functions of the I2C driver.

7.2 Data types

7.2.1 I2c_ChannelIdType

Type

uint8

Description

I2c_ChannelIdType: Channel ID

Range of values from 0 to <number of Channels-1>

7.2.2 I2c_BufferType

Type

uint8

Description

I2c_BufferType: Type of external buffer elements

7.2.3 I2c_BufferSizeType

Type

uint32

Description

I2c_BufferSizeType: Size of the external buffer as the number of data elements of the I2c_BufferType
type

7.2.4 I2c_OvsIdType

Type

uint8

Description

I2c_OvsIdType: OVS settings ID

User guide 51 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.2.5 I2c_SlaveAddressType

Type

uint8

Description

This type is used for the slave address and slave address mask.

7.2.6 I2c_ChannelStatusType

Type

typedef enum

{

 I2C_UNKNOWN_STATUS = 0,

 I2C_UNINIT = 1,

 I2C_IDLE = 2,

 I2C_TX = 3,

 I2C_RX = 4,

 I2C_BUSY_MASTER = 16,

 I2C_BUSY_MASTERTX = (I2C_TX + I2C_BUSY_MASTER),

 I2C_BUSY_MASTERRX = (I2C_RX + I2C_BUSY_MASTER),

 I2C_BUSY_SLAVE = 32,

 I2C_BUSY_SLAVETX = (I2C_TX + I2C_BUSY_SLAVE),

 I2C_BUSY_SLAVERX = (I2C_RX + I2C_BUSY_SLAVE)

} I2c_ChannelStatusType;

Description

I2c_ChannelStatusType : Status of the I2C driver. This datatype holds the I2C channel status and can be
obtained by calling I2c_GetStatus.

7.2.7 I2c_JobResultType

Type

typedef enum

{

 I2C_UNKNOWN_RESULT,

 I2C_NORESULT,

 I2C_PENDING,

 I2C_CANCEL,

 I2C_MASTER_TX_SUCCESS,

 I2C_MASTER_RX_SUCCESS,

 I2C_SLAVE_TX_SUCCESS,

 I2C_SLAVE_RX_SUCCESS,

User guide 52 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

 I2C_MASTER_TX_ERROR,

 I2C_MASTER_RX_ERROR,

 I2C_SLAVE_TX_ERROR,

 I2C_SLAVE_RX_ERROR

} I2c_JobResultType;

Description

I2c_JobResultType: Job status of the I2C driver. This datatype holds the I2C job status and can be obtained

by calling I2c_GetJobResult.

7.2.8 I2c_TransferDirectionType

Type

typedef enum

{

 I2C_WRITE,

 I2C_READ

} I2c_TransferDirectionType;

Description

I2c_TransferDirectionType: The kind of I2c transfer direction. This datatype is used to determine the I2C
transfer direction in I2c_SlaveAddressMatchNotification.

Note: Since I2c_SlaveAddressMatchNotification is only called when
I2cHwAutoAckSlaveAddress is disabled, this datatype can only be used when

I2cHwAutoAckSlaveAddress is disabled.

7.2.9 I2c_AcknowledgeType

Type

typedef enum

{

 I2C_NACK,

 I2C_HOLDACK,

 I2C_ACK

} I2c_AcknowledgeType;

Description

I2c_AcknowledgeType: The kind of I2c transfer acknowledge. This datatype is used to determine the I2C
transfer acknowledge in I2c_SlaveAddressMatchNotification.

Note: Since I2c_SlaveAddressMatchNotification is only called when
I2cHwAutoAckSlaveAddress is disabled, this datatype can only be used when
I2cHwAutoAckSlaveAddress is disabled.

User guide 53 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.2.10 I2c_SlaveCompleteEventType

Type

typedef enum

{

 /* STOP : Slave write greater than expected */

 I2C_SLAVE_COMPLETE_STOP_TX_GT,

 /* STOP : Slave write equal to expected */

 I2C_SLAVE_COMPLETE_STOP_TX_EQ,

 /* STOP : Slave write less than expected */

 I2C_SLAVE_COMPLETE_STOP_TX_LT,

 /* STOP : Slave read greater or equal expected */

 I2C_SLAVE_COMPLETE_STOP_RX_GE,

 /* STOP : Slave read less than expected */

 I2C_SLAVE_COMPLETE_STOP_RX_LT,

 /* RESTART : Slave write greater than expected */

 I2C_SLAVE_COMPLETE_RESTART_TX_GT,

 /* RESTART : Slave write equal to expected */

 I2C_SLAVE_COMPLETE_RESTART_TX_EQ,

 /* RESTART : Slave write less than expected */

 I2C_SLAVE_COMPLETE_RESTART_TX_LT,

 /* RESTART : Slave read greater or equal expected */

 I2C_SLAVE_COMPLETE_RESTART_RX_GE,

 /* RESTART : Slave read less than expected */

 I2C_SLAVE_COMPLETE_RESTART_RX_LT

} I2c_SlaveCompleteEventType;

Description

I2c_SlaveCompleteEventType: The kind of I2c transfer complete event. This datatype is used to determine
the I2C transfer complete event in I2c_SlaveCompleteNotification.

Note: Since I2c_SlaveCompleteNotification is only called when I2cHwAutoAckSlaveAddress is
disabled, this datatype can only be used when I2cHwAutoAckSlaveAddress is disabled.

7.2.11 I2c_ConfigType

Type

typedef struct

{

 P2CONST(I2c_ScbChannelConfigType, TYPEDEF, TYPEDEF)

I2c_ScbChannelConfigsPtr;

 P2CONST(I2c_ChannelIdType, TYPEDEF, TYPEDEF) I2c_ChannelIdListPtr;

User guide 54 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

 CONST(uint8, TYPEDEF) NumberOfChannel;

} I2c_ConfigType;

Description

The type of the external data structure containing the initialization data for the I2C driver.

7.3 Constants

7.3.1 Error codes

A service may return one of the error codes, listed in Table 19, if default error detection is enabled.

Table 19 Error codes

Name Value Description

I2C_E_UNINIT 0x0A No initialization done

I2C_E_ALREADY_INITIALIZED 0x0B Initialization is already done

I2C_E_TRANSACTION 0x0C Not called in IDLE status

I2C_E_OS_TIME_REFUSED 0x0D OS reference function returned an error code

I2C_E_PARAM_CONFIG 0x10 Configuration pointer out of range

I2C_E_PARAM_CHANNEL 0x11 Channel ID out of range

I2C_E_PARAM_POINTER 0x12 Pointer out of range

I2C_E_PARAM_LENGTH 0x13 Length out of range

I2C_E_PARAM_OVSID 0x14 OVS ID out of range

I2C_E_PARAM_ADDRESS_MATCHING 0x15 Address/address mask out of range

I2C_E_PARAM_POINTER_AND_LENGTH 0x16 Pointer and length combination invalid

I2C_E_HW_NACK_ERROR 0x20 NACK received

I2C_E_HW_ARB_LOST_ERROR 0x21 Arbitration lost

I2C_E_HW_BUS_ERROR 0x22 Bus error

I2C_E_HW_TX_OVERFLOW_ERROR 0x23 TX FIFO overflow

I2C_E_HW_RX_OVERFLOW_ERROR 0x25 RX FIFO overflow

I2C_E_HW_RX_UNDERFLOW_ERROR 0x26 RX FIFO underflow

I2C_E_HW_DMA_SRC_BUS_ERROR 0x29 Internal bus error in source DMA

I2C_E_HW_DMA_DST_BUS_ERROR 0x2A Internal bus error in destination DMA

I2C_E_HW_DMA_SRC_MISAL_ERROR 0x2B DMA source buffer misaligned

I2C_E_HW_DMA_DST_MISAL_ERROR 0x2C DMA destination buffer misaligned

I2C_E_HW_DMA_CURR_PTR_NULL_ERROR 0x2D Current DMA pointer is NULL

I2C_E_HW_DMA_CH_DISABLED_ERROR 0x2E DMA channel disabled

I2C_E_HW_DMA_DESCR_BUS_ERROR 0x2F A bus error occurred when loading the descriptor

User guide 55 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.3.2 Version information

Table 20 Version information

Name Value Description

I2C_SW_MAJOR_VERSION See release notes Vendor-specific major version number

I2C_SW_MINOR_VERSION See release notes Vendor-specific minor version number

I2C_SW_PATCH_VERSION See release notes Vendor-specific patch version number

7.3.3 Module information

Table 21 Module information

Name Value Description

I2C_MODULE_ID 255 Module ID

I2C_VENDOR_ID 66 Vendor ID

7.3.4 API service IDs

Table 22 lists the API service IDs used when reporting errors via DET or via the error callout function.

Table 22 API service IDs

Name Value API name

I2C_API_INIT 0x00 I2c_Init

I2C_API_DEINIT 0x01 I2c_DeInit

I2C_API_GET_STATUS 0x02 I2c_GetStatus

I2C_API_GET_JOB_RESULT 0x03 I2c_GetJobResult

I2C_API_CANCEL 0x04 I2c_Cancel

I2C_API_MASTER_WRITE 0x05 I2c_MasterWrite

I2C_API_MASTER_READ 0x06 I2c_MasterRead

I2C_API_SLAVE_AWAIT_REQUEST 0x07 I2c_SlaveAwaitRequest

I2C_API_SETUP_EB 0x08 I2c_SetupEb

I2C_API_MAINFUNCTION_HANDLING 0x09 I2c_MainFunction_Handling

I2C_API_GET_BUFFER_STATUS 0x0A I2c_GetBufferStatus

I2C_API_CHANGE_OVS 0x0B I2c_ChangeOvs

I2C_API_CHANGE_SLAVE_ADDRESS 0x0C I2c_ChangeSlaveAddress

I2C_API_GET_VERSION_INFO 0x0D I2c_GetVersionInfo

I2C_API_INTERRUPT_SCB 0x0E I2c_Interrupt_SCB<n>_Cat1,

I2c_Interrupt_SCB<n>_Cat2

I2C_API_INTERRUPT_DMA 0x0F I2c_Interrupt_DMA_CH<m>_Isr_Cat1,

I2c_Interrupt_DMA_CH<m>_Isr_Cat2

I2C_API_SET_REPEATEDSTART 0x10 I2c_SetRepeatedStart

I2C_API_GET_REPEATEDSTART 0x11 I2c_GetRepeatedStart

I2C_API_CONFIRM_TXTRANSACTION 0x12 I2c_ConfirmTxTransaction

I2C_API_UPDATE_TX_BUFFER 0x13 I2c_UpdateTxBuffer

User guide 56 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Name Value API name

I2C_API_SLAVE_START_TRANSFER 0x14 I2c_SlaveStartTransfer

7.4 Functions

7.4.1 I2c_Init

Syntax

FUNC(void, I2C_CODE) I2c_Init

(

 P2CONST(I2c_ConfigType, AUTOMATIC, I2C_APPL_CONST) ConfigPtr

)

Service ID

0x00

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

• ConfigPtr – Pointer to a configuration

Parameters (out)

None

Return value

None

DET errors

• I2C_E_ALREADY_INITIALIZED – Driver already initialized

• I2C_E_PARAM_CONFIG – Invalid pointer

DEM errors

None

Description

This function initializes all local data for the configured channels. The driver state will be set to I2C_IDLE, and

all job results will be set to I2C_NORESULT.

7.4.2 I2c_DeInit

Syntax

FUNC(void, I2C_CODE) I2c_DeInit(void)

User guide 57 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Service ID

0x01

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

• I2C_E_UNINIT – Driver uninitialized

DEM errors

None

Description

Initializes all local data and registers to reset values. The driver state will be set to I2C_UNINIT, and all job

results will be set to I2C_NORESULT.

This API can be used for force initialize the HW regardless the SW state. If there is a case to hang the

communication, you can recover the I2C HW to default state with this API.

7.4.3 I2c_GetStatus

Syntax

FUNC(I2c_ChannelStatusType, I2C_CODE) I2c_GetStatus

(

 const I2c_ChannelIdType ChannelId

)

Service ID

0x02

Sync/Async

Sync

Reentrancy

Reentrant

User guide 58 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Parameters (in)

• ChannelId – Channel ID

Parameters (out)

None

Return value

• I2C_UNINIT: Not yet initialized

• I2C_IDLE: No transaction request

• I2C_BUSY_MASTERTX: Ongoing master write operation

• I2C_BUSY_MASTERRX: Ongoing master read operation

• I2C_BUSY_SLAVE: Waiting for external master request

• I2C_BUSY_SLAVETX: Ongoing slave write operation

• I2C_BUSY_SLAVERX: Ongoing slave read operation

• I2C_UNKNOWN_STATUS: Cannot return the status (invalid channel ID)

DET errors

• I2C_E_PARAM_CHANNEL – Invalid channel ID

DEM errors

None

Description

Returns the current driver/channel status

7.4.4 I2c_GetJobResult

Syntax

FUNC(I2c_JobResultType, I2C_CODE) I2c_GetJobResult

(

 const I2c_ChannelIdType ChannelId

)

Service ID

0x03

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

Parameters (out)

User guide 59 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

None

Return value

• I2C_NORESULT: Initial status, there is no job yet.

• I2C_PENDING: Ongoing job

• I2C_CANCEL: Previous job cancelled

• I2C_MASTER_TX_SUCCESS: Previous master Tx job success

• I2C_MASTER_RX_SUCCESS: Previous master Rx job success

• I2C_SLAVE_TX_SUCCESS: Previous slave Tx job success

• I2C_SLAVE_RX_SUCCESS: Previous slave Rx job success

• I2C_MASTER_TX_ERROR: Previous master Tx job failed

• I2C_MASTER_RX_ERROR: Previous master Rx job failed

• I2C_SLAVE_TX_ERROR: Previous slave Tx job failed

• I2C_SLAVE_RX_ERROR: Previous slave Rx job failed

• I2C_UNKNOWN_RESULT: Cannot return the result (channel ID invalid or channel uninitialized)

DET errors

• I2C_E_UNINIT – The driver is uninitialized.

• I2C_E_PARAM_CHANNEL – An invalid channel ID was specified.

DEM errors

None

Description

Returns the newest driver/channel job status

7.4.5 I2c_Cancel

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_Cancel

(

 const I2c_ChannelIdType ChannelId

)

Service ID

0x04

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

User guide 60 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Parameters (out)

None

Return value

E_OK: Accepted and completed

E_NOT_OK: Not completed or declined with error

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

DEM errors

None

Description

Terminates the current operation.

If the bus state does not allow an immediate stop, this function returns E_NOT_OK (without DET error). In such
cases, this call should be retried until E_OK is returned.

The channel state will be set to I2C_IDLE, and the job result will be set to I2C_CANCEL.

7.4.6 I2c_MasterWrite

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_MasterWrite

(

 const I2c_ChannelIdType ChannelId,

 const I2c_SlaveAddressType SlaveAddr

)

Service ID

0x05

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

• SlaveAddr – Target slave address (bit 7–bit 1 is used, bit 0 is ignored)

Parameters (out)

None

User guide 61 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

• I2C_E_PARAM_POINTER_AND_LENGTH – Invalid pointer or length set with I2c_SetupEb.

DEM errors

None

Description

Starts the master write operation.

This function sets the SCB registers and local data. If DMA was configured to perform a periodic process, the
DMA channel is also set in this function. The external “Src" buffer is referenced, and the stored data is used for

transmission.

If the I2cBusIdleCheck is enabled, and the bus state is busy, this function returns E_NOT_OK without DET

error. In such cases, this call should be retried until E_OK is returned.

The channel state will be set to I2C_BUSY_MASTERTX, and the job result will be set to I2C_PENDING.

Note: This bus idle check is not applied on Repeated Start mode.

7.4.7 I2c_MasterRead

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_MasterRead

(

 const I2c_ChannelIdType ChannelId,

 const I2c_SlaveAddressType SlaveAddr

)

Service ID

0x06

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

User guide 62 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

• SlaveAddr – Target slave address (bit 7–bit 1 is used, bit 0 is ignored)

Parameters (out)

None

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

• I2C_E_PARAM_POINTER_AND_LENGTH – Invalid pointer or length set with I2c_SetupEb

DEM errors

None

Description

Starts the master read operation.

This function sets the SCB registers and local data. If DMA was configured for periodic processes, the DMA

channel is also set in this function. The external “Dst” buffer is used to store received data.

If I2cBusIdleCheck is enabled, and the bus state is busy, this function returns E_NOT_OK without DET error.

In such cases, you should retry until E_OK is returned. The channel state will be set to I2C_BUSY_MASTERRX,
and the job result will be set to I2C_PENDING.

Note: This bus idle check is not applied on repeated start mode.

7.4.8 I2c_SlaveAwaitRequest

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_SlaveAwaitRequest

(

 const I2c_ChannelIdType ChannelId

)

Service ID

0x07

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

User guide 63 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

• ChannelId – Channel ID

Parameters (out)

None

Return value

E_OK: Request accepted

E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

• I2C_E_PARAM_POINTER_AND_LENGTH – Invalid pointer or length was set with I2c_SetupEb.

DEM errors

None

Description

Starts the slave operation.

The operation to start (Tx or Rx) depends on the external master request. This function prepares the SCB for

both operations (Tx and Rx). If DMA was configured to periodic process, the DMA channel is also set in this

function. The external “Src” buffer is referenced, and the stored data is used for transmission. The external

“Dst” buffer is used to store the received data.

The channel state will be set to I2C_BUSY_SLAVE, and the job result will be set to I2C_PENDING. The state will
be changed to I2C_BUSY_SLAVETX or I2C_BUSY_SLAVERX in the periodic process.

7.4.9 I2c_SetupEb

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_SetupEb

(

 const I2c_ChannelIdType ChannelId,

 P2VAR(I2c_BufferType, AUTOMATIC, I2C_APPL_DATA) SrcPtr,

 const I2c_BufferSizeType SrcSize,

 P2VAR(I2c_BufferType, AUTOMATIC, I2C_APPL_DATA) DstPtr,

 const I2c_BufferSizeType DstSize

)

Service ID

0x08

Sync/Async

Sync

User guide 64 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

• SrcPtr – External buffer address for transmit

• SrcSize – Transmit data length in bytes (0 to 65536)

• DstPtr – External buffer address for receive

• DstSize – Receive data length in bytes (0 to 65536)

Parameters (out)

None

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

• I2C_E_PARAM_POINTER – Invalid pointer

• I2C_E_PARAM_LENGTH – Invalid length

• I2C_E_PARAM_POINTER_AND_LENGTH – Invalid combination of pointer and length

DEM errors

None

Description

Saves the buffer information for subsequent operations.

The saved data will be used repeatedly in subsequent operations until this request is invoked again. SrcPtr
and SrcSize are used for data transmission. The transmit data will be read from the SrcPtr buffer; the total
transmit length is specified as SrcSize.

DstPtr and DstSize are used to receive the data. The received data will be stored into the DstPtr buffer; the

total buffer length is specified as DstSize.

Note: If you want to use the same external buffer repeatedly, you can omit calling this function for each
transaction. (only once is needed).
If you omit this call, the same buffer address (specified by SrcPtr and DstPtr) and size (specified by
SrcSize and DstSize) are reused, both in the first and the following operations. It means that the

same data will be transmitted from the SrcPtr buffer and received data will be overwritten in the

DstPtr buffer.

If only used for master mode, the unused parameters can be set as NULL and 0. (For example, if the driver is

used only for master write operations, DstPtr can be NULL, DstSize can be 0.)

User guide 65 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

However, inconsistent data (for example, a NULL pointer and a valid size or a valid pointer and a size of 0) is not
allowed. Because slave mode needs both buffers, these cannot be set to NULL or 0.

The channel state and job result will not be changed.

Note: Keep the external buffer area while the transmit/receive operation is ongoing. Do not access the
external buffer while the transmit/receive operation is ongoing.

7.4.10 I2c_GetBufferStatus

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_GetBufferStatus

(

 const I2c_ChannelIdType ChannelId,

 P2VAR(P2VAR(I2c_BufferType, AUTOMATIC, I2C_APPL_DATA), AUTOMATIC,

 I2C_APPL_DATA) SrcPtrPtr,

 P2VAR(P2VAR(I2c_BufferType, AUTOMATIC, I2C_APPL_DATA), AUTOMATIC,

 I2C_APPL_DATA) DstPtrPtr,

 P2VAR(I2c_BufferSizeType, AUTOMATIC, I2C_APPL_DATA)

 SrcRemainingLengthPtr,

 P2VAR(I2c_BufferSizeType, AUTOMATIC, I2C_APPL_DATA)

 DstRemainingLengthPtr

)

Service ID

0x0A

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

Parameters (out)

• SrcPtrPtr – Pointer to the location where the current SrcPtr address is written (next address using for
Tx)

• DstPtrPtr – Pointer to the location where the current DstPtr address is written (next address using for
Rx)

• SrcRemainingLengthPtr – Pointer to the location where the length of remaining data to transmit is
written

User guide 66 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

• DstRemainingLengthPtr – Pointer to the location where the length of remaining data to receive is
written

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_PARAM_POINTER – Given pointer is pointed to NULL_PTR.

DEM errors

None

Description

Gives the current job’s buffer status. (buffer address and length)

If the job is ongoing, the buffer status will be changed by the periodic process.

For example, if a master write operation is ongoing, the address of the referenced external buffer (SrcPtrPtr)

and the remaining data length (SrcRemainingLengthPtr) for sending will be changed by each periodic
process (such as interrupts). If the output values are not changed in a sufficiently long interval, the transaction

is suspended by an external node or stopped because of a detected error. Thus, in addition to receiving error

notifications, you can observe the transaction progress to determine the transaction status.

Note: The required interval depends on the type of periodic process and the SCB/Bus frequency.
For example, if polling is selected, the output value will not change until the scheduled function is

called. The channel state and job result will not be changed.

Note: Do not rely on this API value if it is not in the transaction direction (Tx or Rx) of the target job. For
example, do not rely on the remaining DST data length of the slave Tx transaction. This is because,
when the Tx transaction is in progress, the remaining length of the external SRC buffer can be

calculate with accuracy, but the external DST buffer remaining length cannot be handled well.

Note: When an error is detected or a job is canceled, this API value may not be accurate.

7.4.11 I2c_ChangeOvs

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_ChangeOvs

(

 const I2c_ChannelIdType ChannelId,

 const I2c_OvsIdType OvsId

)

User guide 67 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Service ID

0x0B

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

• OvsId – Ovs settings ID

Parameters (out)

None

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

• I2C_E_PARAM_OVSID – Invalid OVS settings ID

DEM errors

None

Description

This operation changes the current OVS settings.

The I2C driver uses the default OVS settings for initialization. The default OVS settings are specified with the
configuration, these values are related to the MCU clock settings. However, the MCU clock settings can be

changed by the MCU functionality at run time. In such cases, by using this service, you can continue to use the

I2C driver even if the SCB clock was changed.

Note: You should ensure proper configuration of the OVS settings and select the proper OVS settings. There

is no check for coherency between the SCB clock and the OVS settings. After reinitialization, the

default settings will be used again. The channel state and the job result will not be changed.

7.4.12 I2c_ChangeSlaveAddress

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_ChangeSlaveAddress

(

User guide 68 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

 const I2c_ChannelIdType ChannelId,

 I2c_SlaveAddressType Address,

 I2c_SlaveAddressType Mask

)

Service ID

0x0C

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

• Address – Slave address

• Mask – Slave address mask

Parameters (out)

None

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver is uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

• I2C_E_PARAM_ADDRESS_MATCHING - Invalid address and mask combination

DEM errors

None

Description

This service changes the slave address setting which is used to accept messages when the I2C driver is in slave
mode.

The default slave address/slave address mask setting is specified by the configuration. After reinitialization, the

default settings will be used again. The channel state and the job result will not be changed.

7.4.13 I2c_GetVersionInfo

Syntax

FUNC(void, I2C_CODE) I2c_GetVersionInfo

User guide 69 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

(

 P2VAR(Std_VersionInfoType, AUTOMATIC, I2C_APPL_DATA) VersionInfo

)

Service ID

0x0D

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

• Versioninfo – Pointer to the location where the version information will be written

Return value

None

DET errors

• I2C_E_PARAM_POINTER – Version info is NULL pointer.

DEM errors

None

Description

This function returns the version information of this module. This includes module ID, vendor ID, and vendor-

specific version numbers.

7.4.14 I2c_SetRepeatedStart

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_SetRepeatedStart

(

 const I2c_ChannelIdType ChannelId,

 const boolean RepeatedFlag

)

Service ID

0x10

Sync/Async

Sync

User guide 70 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

• RepeatedFlag – Repeated Start Mode (TRUE: Repeated Start mode, FALSE: Normal mode)

Parameters (out)

None

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver is uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_TRANSACTION – Driver/channel not in IDLE state

DEM errors

None

Description

This function changes the repeated start mode of this module. In the repeated start mode, Master job will not
send the STOP bit at the end of the transaction. Instead, the driver sends the repeated start bit instead of the

START bit in the next API call. In the repeated start mode, Slave job will invoke the additional callback if it
detects the repeated start bit. In this callback, set the buffer for the following transaction.

Once you set the repeated start mode, it will be continued until calling deInit function or changing the mode by

calling this API again.

7.4.15 I2c_GetRepeatedStart

Syntax

FUNC(boolean, I2C_CODE) I2c_GetRepeatedStart

(

 const I2c_ChannelIdType ChannelId

)

Service ID

0x11

Sync/Async

Sync

Reentrancy

User guide 71 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Reentrant

Parameters (in)

• ChannelId – Channel ID

Parameters (out)

None

Return value

• TRUE: Driver is in Repeated Start mode

• FALSE: Driver is in Normal mode

DET errors

• I2C_E_UNINIT – Driver is uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

DEM errors

None

Description

Returns the current driver mode (Repeated start mode or normal mode).

7.4.16 I2c_ConfirmTxTransaction

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_ConfirmTxTransaction

(

 const I2c_ChannelIdType ChannelId

)

Service ID

0x12

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

Parameters (out)

None

Return value

User guide 72 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

• E_OK: Tx transaction is ended

• E_NOT_OK: Tx transaction is not ended

DET errors

• I2C_E_UNINIT – Driver is uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

DEM errors

None

Description

Returns the Tx transaction is ended or not. This confirmation is required after the MasterWrite transaction in
repeated start mode.

User guide 73 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.4.17 I2c_UpdateTxBuffer

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_UpdateTxBuffer

(

 const I2c_ChannelIdType ChannelId,

 P2VAR(I2c_BufferType, AUTOMATIC, I2C_APPL_DATA) SrcPtr,

 const I2c_BufferSizeType SrcSize

)

Service ID

0x13

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

• SrcPtr – External buffer address for transmit

• SrcSize – Transmit data length in bytes (0 to 65536)

Parameters (out)

None

Return value

• E_OK: Request accepted

• E_NOT_OK: Request declined

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

• I2C_E_PARAM_POINTER – Invalid pointer

• I2C_E_PARAM_LENGTH – Invalid length

DEM errors

None

Description

This API updates the Tx buffer set by I2c_SetupEb. This API is accepted in the following cases:

• I2c_SlaveAwaitRequest was called but did not start the I2c transaction.

• During the callback I2c_SlaveSrNotification on repeated start mode, and before calling the
I2c_SlaveAwaitRequest.

User guide 74 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

This API declines the update request when the bus transaction is in progress.

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce

the bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for
example, critical section), the control flow to the bus may lost. You should carefully enable this

configuration, depending on the use case. see 5.1.4.3 for more detail.

If the request is accepted (API returns E_OK), the Tx buffer stored in the driver is updated. If a new transaction
starts, the data in the new Tx buffer is transmitted.

If the request is declined (API returns E_NOT_OK), the Tx buffer is not updated with a new one. If a new

transaction starts, the data in the stored buffer (previous setup buffer) is transmitted.

Note: The constraints and usage of the buffer to be updated are the same as the buffer to be updated with
I2c_SetUpEb.

7.4.18 I2c_SlaveStartTransfer

Syntax

FUNC(Std_ReturnType, I2C_CODE) I2c_SlaveStartTransfer

(

 const I2c_ChannelIdType ChannelId

);

Service ID

0x14

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

• ChannelId – Channel ID

Parameters (out)

None

Return value

• E_OK: Succeeded to start slave transfer

• E_NOT_OK: Failed to start slave transfer

DET errors

• I2C_E_UNINIT – Driver uninitialized

• I2C_E_PARAM_CHANNEL – Invalid channel ID

User guide 75 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

• I2C_E_TRANSACTION – Invalid configuration and call timing

DEM errors

None

Description

This API is used to restart the slave transfer when:

After the I2C bus enters the clock stretching state due to I2c_SlaveAddressMatchNotification returns

I2C_HOLDACK, and ensure that I2c_UpdateTxBuffer has been called before this function is used.

7.5 Scheduled functions

7.5.1 I2c_MainFunction_Handling

Syntax

FUNC(void, I2C_CODE) I2c_MainFunction_Handling(void)

Service ID

0x09

Sync/Async

Async

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

I2C_E_UNINIT – Driver is uninitialized.

DEM errors

I2C_DEM_RECOVERABLE_FAILURE:

I2C_E_HW_NACK_ERROR: “NACK” received from an external node

I2C_E_HW_ARB_LOST_ERROR: I2C driver lost the arbitration for the bus.

I2C_E_HW_RX_OVERFLOW_ERROR: Rx FIFO overflow

I2C_DEM_UNRECOVERABLE_FAILURE:

I2C_E_HW_BUS_ERROR: SCB detected an I2C bus error.

User guide 76 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

I2C_E_HW_TX_OVERFLOW_ERROR: Tx FIFO overflow

I2C_E_HW_RX_UNDERFLOW_ERROR: Rx FIFO underflow

Description

This function is used for polling.

This function progresses the jobs and operation of all configured channels. If a job has ended, the
corresponding notification function will be called. Then the channel state will be set to I2C_IDLE, and the job
result will be set according to the job’s outcome.

7.6 Interrupt service routine

7.6.1 I2c_Interrupt_SCB<n>_CatX

Syntax

ISR_NATIVE(I2c_Interrupt_SCB<n>_Cat1) or

ISR(I2c_Interrupt_SCB<n>_Cat2)

Service ID

0x0E

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

None

DEM errors

• I2C_DEM_RECOVERABLE_FAILURE:

− I2C_E_HW_NACK_ERROR: “NACK” received from an external node

− I2C_E_HW_ARB_LOST_ERROR: I2C driver lost the arbitration for the bus

− I2C_E_HW_RX_OVERFLOW_ERROR: Rx FIFO overflow

• I2C_DEM_UNRECOVERABLE_FAILURE:

− I2C_E_HW_BUS_ERROR: SCB detected an I2C bus error

User guide 77 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

− I2C_E_HW_TX_OVERFLOW_ERROR: Tx FIFO overflow

− I2C_E_HW_RX_UNDERFLOW_ERROR: Rx FIFO underflow

− I2C_E_HW_DMA_SRC_BUS_ERROR
1: Source DMA detected an error.

− I2C_E_HW_DMA_DST_BUS_ERROR
1: Destination DMA detected an error

− I2C_E_HW_DMA_SRC_MISAL_ERROR
1: Source DMA buffer is misaligned

− I2C_E_HW_DMA_DST_MISAL_ERROR
1: Destination DMA buffer is misaligned

− I2C_E_HW_DMA_CURR_PTR_NULL_ERROR
1: Current DMA pointer is NULL

− I2C_E_HW_DMA_CH_DISABLED_ERROR
1: DMA channel is disabled

− I2C_E_HW_DMA_DESCR_BUS_ERROR
1: A bus error occurred when loading the descriptor

Description

This function is an ISR.

This function progresses the jobs and operation of the affected channels. If a job has ended, the corresponding

notification function will be called. Then the channel state will be set to I2C_IDLE, and the job result will be set
according to the job’s outcome.

7.6.2 I2c_Interrupt_DMA_CH<m>_Isr_CatY

Syntax

ISR_NATIVE(I2c_Interrupt_DMA_CH<m>_Isr_Cat1) or

ISR(I2c_Interrupt_DMA_CH<m>_Isr_Cat2)

Service ID

0x0F

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

None

1 This error causes both an SCB interrupt and a DMA interrupt.

User guide 78 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

DEM errors

• I2C_DEM_RECOVERABLE_FAILURE:

− I2C_E_HW_NACK_ERROR
1: “NACK” received from an external node

− I2C_E_HW_ARB_LOST_ERROR
1: I2C driver lost arbitration for the bus

− I2C_E_HW_RX_OVERFLOW_ERROR
1: Rx FIFO overflow

• I2C_DEM_UNRECOVERABLE_FAILURE:

− I2C_E_HW_BUS_ERROR
1: SCB detected an I2C bus error

− I2C_E_HW_TX_OVERFLOW_ERROR
1: Tx FIFO overflow

− I2C_E_HW_RX_UNDERFLOW_ERROR
1: Rx FIFO underflow

− I2C_E_HW_DMA_SRC_BUS_ERROR: Source DMA detected an error.

− I2C_E_HW_DMA_DST_BUS_ERROR: Destination DMA detected an error

− I2C_E_HW_DMA_SRC_MISAL_ERROR: Source DMA buffer is misaligned

− I2C_E_HW_DMA_DST_MISAL_ERROR: Destination DMA buffer is misaligned

− I2C_E_HW_DMA_CURR_PTR_NULL_ERROR: Current DMA pointer is NULL

− I2C_E_HW_DMA_CH_DISABLED_ERROR: DMA channel is disabled.

− I2C_E_HW_DMA_DESCR_BUS_ERROR: A bus error occurred when loading the descriptor

Description

This function is an ISR.

This function performs the jobs and operation of the affected channels.

7.7 Required callback functions

7.7.1 I2C notification functions

The I2C driver uses the following callback routines to inform other software modules about certain states or
state changes. These other modules are required to handle the conditions indicated by the callback routines.

All notification functions must be reentrant. Basically, I2C driver API calls are not allowed from callback
functions. Some exceptions are described in each notification function’s description.

Note: If the job is finished by cancellation (I2c_Cancel was called), the notification function will not be
called.

However, if the Master job finishes without the slave sending or receiving a single data, the slave notification
function (I2c_SlaveTxNotification or I2c_SlaveRxNotification) will be called.

7.7.1.1 I2c_MasterTxNotification

Syntax

void I2c_MasterTxNotification(uint8 Channel)

Parameters (in)

1 This error causes both SCB and DMA interrupts.

User guide 79 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished.

It will be called at the end of a master write job.

If the driver is in the repeated start mode, this callback is only called after sending the STOP bit. This means,
that, this callback is called only once in the one continuous transaction. And if the last transaction was a

MasterWrite operation, then this callback is called.

7.7.1.2 I2c_MasterRxNotification

Syntax

void I2c_MasterRxNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished.

It will be called at the end of a master read job.

If the driver is in the repeated start mode, this callback is only called after sending the STOP bit. This means,

that, this callback is called only once in the one continuous transaction. And if the last transaction was a

MasterRead operation, then this callback is called.

7.7.1.3 I2c_SlaveTxNotification

Syntax

void I2c_SlaveTxNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

User guide 80 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished. It will be called at the

end of a slave write job. You can call the I2c_GetBufferStatus to confirm the actual transaction length in
this function.

7.7.1.4 I2c_SlaveRxNotification

Syntax

void I2c_SlaveRxNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished. It will be called at the

end of a slave read job. You can call the I2c_GetBufferStatus to confirm the actual transaction length in

this function.

7.7.1.5 I2c_MasterTxErrorNotification

Syntax

void I2c_MasterTxErrorNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job finished with errors. It will be called at
the end of a master write job. It is also recommended that you call the I2c_Cancel API to completely
terminate the transaction in which the error occurred before executing the next transaction.

User guide 81 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.7.1.6 I2c_MasterRxErrorNotification

Syntax

void I2c_MasterRxErrorNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished with error. It will be
called at the end of a master read job. It is also recommended that you call the I2c_Cancel API to completely
terminate the transaction in which the error occurred before executing the next transaction.

7.7.1.7 I2c_SlaveTxErrorNotification

Syntax

void I2c_SlaveTxErrorNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished with error. It will be

called at the end of a slave write job. It is also recommended that you call the I2c_Cancel API to completely

terminate the transaction in which the error occurred before executing the next transaction.

7.7.1.8 I2c_SlaveRxErrorNotification

Syntax

void I2c_SlaveRxErrorNotification(uint8 Channel)

Parameters (in)

None

User guide 82 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished with error. It will be

called at the end of a slave read job. It is also recommended that you call the I2c_Cancel API to completely
terminate the transaction in which the error occurred before executing the next transaction.

7.7.1.9 I2c_MasterComReqNotification

Syntax

void I2c_MasterComReqNotification(uint8 Channel)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a master job finished in repeated start mode.
In this callback, you can call the next communication request (I2c_MasterWrite or I2c_MasterRead or

I2c_Cancel), and also call I2c_SetupEb to change the buffer or length. Infineon recommends calling the
next communication request in this callback, but if you do not call the next communication request in this
callback, then the I2C driver starts to wait for the next communication request. In this case, you can call the

corresponding APIs after this callback. However, note that until the next communication request, the bus is

occupied by the previous transaction.

If the previous transaction is MasterWrite, then confirm that the Tx transaction has ended by calling

I2c_ConfirmTxTransaction, before you call the next communication request.

You should not call both the stop request (I2c_Cancel) and the start transaction request

(I2c_MasterWrite/I2c_MasterRead) at the same time in this callback.

7.7.1.10 I2c_SlaveSrNotification

Syntax

void I2c_SlaveSrNotification (uint8 Channel)

Parameters (in)

None

Parameters (out)

User guide 83 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a slave job has been finished in repeated start
mode. In this callback, call I2c_SetupEb or I2c_UpdateTxBuffer or I2c_SlaveAwaitRequest to prepare
the next transaction.

7.7.1.11 I2c_SlaveCompleteNotification

Syntax

void I2c_SlaveCompleteNotification(uint8 Channel, I2c_SlaveCompleteEventType

Event, uint32 TransferCount)

Parameters (in)

• Channel – Channel ID

• Event - Slave transfer complete event. See I2c_SlaveCompleteEventType.

• TransferCount - Indicator of the Transferred count

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that the slave transaction has been finished. The
transaction complete event kind (param:Event) and data length informations (param:TransferCount) are
provided through this notification function. In this callback, call I2c_SetupEb or I2c_UpdateTxBuffer or
I2c_SlaveAwaitRequest to prepare the next transaction.

7.7.1.12 I2c_SlaveAddressMatchNotification

Syntax

I2c_AcknowledgeType I2c_SlaveAddressMatchNotification(uint8 Channel, uint8

SlaveAddress, I2c_TransferDirectionType Direction)

Parameters (in)

• Channel – Channel ID

• SlaveAddress – Slave matching address

• Direction – Indicator of the Transfer direction (Read/Write). See I2c_TransferDirectionType.

Parameters (out)

None

Return value

User guide 84 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

• I2C_NACK: I2C transfer non-acknowledge

• I2C_HOLDACK: I2C hold acknowledge

• I2C_ACK: I2C transfer acknowledge

Description

This notification is a user-provided callback routine to notify that a slave-matching address has been received.

The corresponding slave address (param:SlaveAddress) and transfer direction (param:Direction) are

provided through this notification function. In this callback, you can call I2c_UpdateTxBuffer to prepare the
next transaction, and you must not call I2c_SetupEb or I2c_SlaveAwaitRequest in this notification.

Note: The application must return the response as I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification

function, when returning I2C_ACK/I2C_NACK, the I2C driver will send the corresponding

acknowledge to the bus. However, when returning I2C_HOLDACK, the I2C will enter clock stretching
status until I2c_SlaveStartTransfer is called, during this notification function or after you
return I2C_HOLDACK (means that before sent the acknowledge), clock stretch will be applied to the

bus.

User guide 85 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.7.2 DET

If default error detection is enabled, the I2C driver uses the following callback function provided by DET. If you
do not use DET, you must implement this function within your application.

7.7.2.1 Det_ReportError

Syntax

Std_ReturnType Det_ReportError

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId – Module ID of the calling module

• InstanceId – Instance ID of the calling module

• ApiId – ID of the API service that calls this function

• ErrorId – ID of the detected development error

Return value

Always returns E_OK.

Description

Service for reporting development errors.

User guide 86 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.7.3 DEM

If DEM notifications are enabled, the I2C driver uses the following callback function provided by DEM. If you do
not use DEM, you must implement this function within your application.

7.7.3.1 Dem_ReportErrorStatus

Syntax

void Dem_ReportErrorStatus

(

 Dem_EventIdType EventId,

 Dem_EventStatusType EventStatus

)

Reentrancy

Reentrant

Parameters (in)

• EventId – Identification of an event by the assigned event ID

• EventStatus – Monitor the test result of the given event

Return value

None

Description

Service for reporting diagnostic events.

User guide 87 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

7 Appendix A

7.7.4 Error callout functions

7.7.4.1 Error callout API

The I2C driver requires an error callout handler. Every error is reported to this handler; error checking cannot

be switched off. The name of the function to be called can be configured by the I2cErrorCalloutFunction
parameter.

Syntax

void Error_Handler_Name

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId – Module ID of the calling module

• InstanceId – Instance ID of the calling module

• ApiId – ID of the API service that calls this function

• ErrorId – ID of the detected error

Return value

None

Description

Service for reporting errors

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

88

002-3
127

4 R
ev. *L

2024-11-29

8 Appendix B - Access register table

8.1 SCB

Table 23 SCB access register table

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

CTRL 31:0 Word

(32 bits)

0x00000000 Initialize the

CTRL register

After calling I2c_Init 0x8300400F 0x00000000

0x0300400F Deinitialize the

CTRL register

After calling
I2c_DeInit

0x8300400F 0x0300400F

0x80000000 Set up the CTRL

register

During master write /
master read / slave

mode operation

0x8300400F 0x80000000

I2C_CTRL 31:0 Word

(32 bits)

0x00000000 Initialize the

I2C_CTRL register

During calling I2c_Init 0xC000FBFF 0x00000000

0x0000FB88 Deinitialize the

I2C_CTRL register

After calling
I2c_DeInit

0xC000FBFF 0x0000FB88

0x80000000 |

OvsValue

Depends on API

and configuration

Set up the
I2C_CTRL

register.

During master write

operation

0xC000FBFF 0x800000**

* = Depends on API

and configuration

0x80000200 |
1 or 0 << 8 |

OvsValue

Depends on API

and configuration

Set up the
I2C_CTRL

register.

During master read

operation

0xC000FBFF 0x80000***

* = Depends on API

and configuration

0x4000C800 |
1 or 0 << 12 |

1 or 0 << 13

Depends on API

and configuration

Set up the

I2C_CTRL register

During slave mode

operation

0xC000FBFF 0x4000*800

* = Depends on API

and configuration

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

89

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

TX_CTRL 31:0 Word (32

bits)

0x00010107 Initialize the

TX_CTRL register

After calling I2c_Init 0x00010107 0x00010107

0x00000107 Deinitialize the

TX_CTRL register

After calling
I2c_DeInit

0x00010107 0x00000107

TX_FIFO_CTRL 31:0 Word

(32 bits)
0x00000000 Deinitialize the

TX_FIFO_CTRL

register

After calling
I2c_DeInit

0x0001007F 0x00000000

0x00000000 |

Invalidate FIFO <<

16 | Trigger level

Depends on API

and configuration

Set up the

TX_FIFO_CTRL

register

During master write

operation

0x0001007F 0x000*00**

bit[16]: clear FIFO

(end of job:1,

other:0)

bit[6:0]: trigger

level

(configured trigger
level or DMA

usage:1)

0x00000000 |
Invalidate FIFO <<

16 | Trigger level

Depends on API

and configuration

Set up the
TX_FIFO_CTRL

register

During slave mode

operation

0x0001007F 0x000*00**

bit[16]: clear FIFO

(end of job:1,

other:0)

bit[6:0]: trigger

level

(configured trigger
level or DMA usage:

1)

TX_FIFO_STATUS 31:0 Word

(32 bits)

- Read-only

register

Always 0x00000000

(Monitoring

not needed.)

0x00000000

(Monitoring not

needed.)

TX_FIFO_WR 31:0 Word

(32 bits)

Transfer data Transfer data During transfer - Write-only register

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

90

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

RX_CTRL 31:0 Word

(32 bits)

0x00000107 Initialize the

RX_CTRL register

After calling I2c_Init 0x00000307 0x00000107

0x00000107 Deinitialize the

RX_CTRL register

After calling
I2c_DeInit

0x00000307 0x00000107

0x00000107

Depends on API

and configuration

Set up the

RX_CTRL register

During master read /

slave mode operation
0x00000307 0x00000*07.

bit[9]: Depends on
the glitch filter

configuration

RX_FIFO_CTRL 31:0 Word

(32 bits)

0x00000000 Deinitialize the
RX_FIFO_CTRL

register

After calling
I2c_DeInit

0x0001007F 0x00000000

0x00000000 |
Freeze FIFO << 17

| Invalidate FIFO

<< 16 | Trigger

level

Depends on API

and configuration

Set up the
RX_FIFO_CTRL

register

During master read /

slave mode operation

0x0003007F 0x0000*0**

bit[17]: freeze
FIFO(full of external

RX buffer when
sending

acknowledge by

HW:1, other:0)

bit[16]: clear FIFO

(end of job:1,

other:0)

bit[6:0]: trigger

level

(configured trigger

level or DMA

usage:1 or sending

acknowledge by

SW:1)

RX_FIFO_STATUS 31:0 Word

(32 bits)

- Read-only

register

Always

(Depends on FIFO

situation.)

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is not

needed.)

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

91

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

RX_MATCH 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x00FF00FF 0x00000000

0x00000000 Initialize After calling
I2c_DeInit

0x00FF00FF 0x00000000

Slave address |
Slave address

mask << 16

Depends on API

and configuration

Set up the
RX_MATCH

register

During slave mode

operation
0x00FF00FF 0x00**00**

bit[23:16]:slave

address mask

bit[7:0]:slave

address

RX_FIFO_RD 31:0 Word

(32 bits)

- Read-only

register

When reading the

received data

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is not

needed.)

INTR_CAUSE 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is not

needed.)
0x00000000 Deinitialize After calling

I2c_DeInit

0x00000000 | RX

interrupt << 3 | TX

interrupt << 2 |
Slave interrupt <<

1 | Master

interrupt

Read only

Interrupt cause

(Read-only)

During transfer

INTR_M 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is not

needed.)
0x00000000 Deinitialize After calling

I2c_DeInit

0x00000000 |

I2C_BusError << 8

| Stop << 4 | Ack

<< 2 | Nack << 1 |

Arb_lost

Master mode

interrupt cause

(read and clear

with write)

During transfer

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

92

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

INTR_M_MASK 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x00000113 0x00000000

0x00000000 Deinitialize After calling
I2c_DeInit

0x00000113 0x00000000

0x00000000 |
I2C_BusError << 8

| Stop << 4 | Nack

<< 1 | Arb_lost

Enable or disable
the master mode

interrupt.

During transfer with
master operation

(interrupt)

0x00000113 0x00000113

INTR_M_MASKED 31:0 Word

(32 bits)

- Read-only

register

During transfer with

master operation

(interrupt)

0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring is not

needed.)

INTR_S 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x00000000

(Monitoring

not needed.)

0x00000000

(Monitoring not

needed.)
0x00000000 Deinitialize After calling

I2c_DeInit

0x00000000 |

I2C_BusError << 8
| Stop << 4 | Nack

<< 1 | Arb_lost |

Addr_Match << 6

Slave mode

interrupt cause
(read and clear

with write)

During transfer

INTR_S_MASK 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x000007FF 0x00000000

0x00000000 Deinitialize After calling
I2c_DeInit

0x000007FF 0x00000000

0x00000000 |
I2C_BusError << 8
| Stop << 4 | Nack

<< 1 | Arb_lost |

Addr_Match << 6

Enable or disable
the slave mode

interrupt

During transfer with
slave operation

(interrupt)

0x000007FF 0x000001*3

* = Depends on

configuration

INTR_S_MASKED 31:0 Word

(32 bits)

- Read-only

register

During transfer with
slave operation

(interrupt)

0x00000000

(Monitoring

not needed.)

0x00000000

(Monitoring not

needed.)

INTR_TX 31:0 0x00000000 Initialize After calling I2c_Init 0x00000000 0x00000000

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

93

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

Word

(32 bits)

0x00000000 Deinitialize After calling
I2c_DeInit

(Monitoring

not needed.)

(Monitoring not

needed.)

0x00000000 |
Overflow << 5 |

Empty << 4 |

Trigger

TX interrupt
cause (read and

clear with write)

During Tx transaction

(interrupt)

INTR_TX_MASK 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x0000007F 0x00000000

0x00000000 Deinitialize After calling
I2c_DeInit

0x0000007F 0x00000000

0x00000000 |
Overflow << 5 |

Empty << 4 |

Trigger

Enable or disable
the TX interrupt

cause

During Tx transaction 0x0000007F 0x000000**

Depends on the

transfer status.

INTR_TX_MASKED 31:0 Word

(32 bits)

- Read-only

register

During Tx transaction 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring not

needed.)

INTR_RX 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x00000000

(Monitoring is

not needed.)

0x00000000

(Monitoring not

needed.)
0x00000000 Deinitialize After calling

I2c_DeInit

0x00000000 |
Underflow << 6 |

Overflow << 5 |

Full << 3 | Not

empty << 2 |

Trigger

Rx interrupt
cause (read and

clear with write)

During RX transaction

(interrupt)

INTR_RX_MASK 31:0 Word

(32 bits)

0x00000000 Initialize After calling I2c_Init 0x0000007F 0x00000000

0x00000000 Deinitialize After calling
I2c_DeInit

0x0000007F 0x00000000

0x00000000 |

Underflow << 6 |
Overflow << 5 |
Full << 3 | Not

Rx interrupt

cause (read and

clear with write)

During Rx transaction 0x0000007F 0x000000**

Depends on the

transfer status.

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

94

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

empty << 2 |

Trigger

INTR_RX_MASKED 31:0 Word

(32 bits)

- Read-only

register

During Rx transaction 0x00000000

(Monitoring

not needed.)

0x00000000

(Monitoring not

needed.)

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

95

002-3
127

4 R
ev. *L

2024-11-29

8.2 DMA (DW)

Table 24 DMA (DW) access register table

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

CH_CTL 31:0 Word

(32 bits)

0x00000002 Initialize the channel

control register

After calling I2c_Init 0x80000BF4 0x00000000

0x00000002 Deinitialize the

channel control

register

After calling
I2c_DeInit

0x80000BF4 0x00000000

0x00000000 |

DMA channel

enable << 31

Start or stop DMA During transfer with DMA 0x80000BF4 0x00000000

bit[31]:Set on transfer

(DMA) start/Cleared on

transfer (DMA) end

CH_STATUS 31:0 Word

(32 bits)

- Read-only register Always 0x00000000

(Monitoring

is not

needed.)

0x00000000

(Monitoring not

needed.)

CH_IDX 31:0 Word

(32 bits)

0x00000000 Initialize the
channel’s current

indices

After calling I2c_Init 0x0000FFFF 0x00000000

0x00000000 Deinitialize the
channel’s current

indices

After calling
I2c_DeInit

0x0000FFFF 0x00000000

0x00000000 |
Y loop index
<< 8 | X loop

index

Calculate the buffer

position

During transfer with DMA 0x0000FFFF 0x00000000

bit[15:8] | bit[7:0]

Changed during

transfer

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

96

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

CH_CURR_PTR 31:0 Word

(32 bits)

0x00000000 Initialize the
channel’s current

indices

After calling I2c_Init 0x0000FFFF 0x00000000

0x00000000 Deinitialize the
channel’s current

indices

After calling
I2c_DeInit

0x0000FFFF 0x00000000

0x00000000 |
Address of

descriptor

Descriptor position During transfer with DMA 0xFFFFFFFF 0x00000000

bit[31:2]:Set to current

descriptor address on

start of transfer

INTR 31:0 Word

(32 bits)

0x00000000 Initialize the
channel’s current

indices

After calling I2c_Init 0x00000000

(Monitoring
is not

needed.)

0x00000000

(Monitoring not

needed.)

0x00000000 Deinitialize the
channel’s current

indices

After calling
I2c_DeInit

0x00000001 Descriptor position During transfer with DMA

INTR_MASK 31:0 Word

(32 bits)

0x00000000 Initialize the
channel’s current

indices

After calling I2c_Init 0x00000001 0x00000000

0x00000000 Deinitialize the
channel’s current

indices

After calling
I2c_DeInit

0x00000001 0x00000000

0x00000000 |
Enable

interrupt

Descriptor position During transfer with DMA 0x00000000 0x00000000

bit[0]:Set on DMA

start/Cleared on DMA

end

INTR_MASKED 31:0 Word

(32 bits)

- Read-only register During transfer with DMA 0x00000000

(Monitoring

not needed.)

0x00000000

(Monitoring not

needed.)

I2
C

 d
riv

e
r u

se
r g

u
id

e

 8
 A

p
p

e
n

d
ix

 B
 - A

cce
ss re

g
iste

r ta
b

le

 U
ser g

u
id

e

97

002-3
127

4 R
ev. *L

2024-11-29

Register Bit

no.

Access

size

Value Description Timing Mask value Monitoring value

SRAM_DATA0 31:0 Word

(32bit)

0x00000000 Initialize the current

data

After calling I2c_Init 0xFFFFFFFF 0x00000000

SRAM_DATA1 31:0 Word

(32bit)

0x00000000 Initialize the current

data

After calling I2c_Init 0xFFFFFFFF 0x00000000

User guide 98 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Revision history

Revision history

Version Date Description

** 2020-09-24 Initial release.

*A 2021-01-18 4.2 I2C Configuration

Changed “Note” in I2cChannelId

4.2.3 I2C Channel OVS config

Deleted “Note” in I2cOvsId

5.1.2.3 Using DMA, 5.1.3.3 Using DMA, 5.1.4.1.3 Using DMA and 6.4 DMA

Added conditions for DMA transfer to operate

5.1.6 Cancel the Operation

Added “Note” about cancel in slave write mode operation.

5.6.2 Unrecoverable Failure

Added “Note” in slave write operation

7.7.1 I2C Notification Functions

Added note about notifications

Migrated to Infineon template.

*B 2021-03-31 2.6.2 Memory allocation and constraints

Add the restriction for VRAM

*C 2021-06-15 Added a note in 5.8 Sleep mode

*D 2021-08-18 Added a note in 6.3 Interrupts

*E 2021-12-21 Updated to the latest branding guidelines.

*F 2022-07-05 Deleted "Unintended interrupt cause"

-Table 5 General configuration

-5.6.1 Recoverable failure

Deleted "I2C_E_HW_INVALID_INTERRUPT_ERROR" and the

description or value related to this error code.

-5.6.1 Recoverable failure

-Table 15 Error codes

-7.5.1 I2c_MainFunction_Handling

-7.6.1 I2c_Interrupt_SCB<n>_CatX

-7.6.2 I2c_Interrupt_DMA_CH<m>_Isr_CatY

*G 2023-03-08 Added description for repeated start mode in the following sections

5.1.2.1 Using interrupt

5.1.2.2 Using polling

5.1.2.3 Using DMA

5.1.3.1 Using interrupt

5.1.3.2 Using polling

5.1.3.3 Using DMA

5.1.4.1.1 Using interrupt

5.1.4.1.2 Using polling

5.1.4.1.3 Using DMA

5.1.4.2.1 Using interrupt

User guide 99 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Revision history

Version Date Description

5.1.4.2.2 Using polling

5.1.4.2.3 Using DMA

5.1.6 Cancel the operation

7.4.6 I2c_MasterWrite (adding note)

7.4.7 I2c_MasterRead (adding note)

Added Set repeated start mode API in the following sections

5.1.7.3 Repeated Start mode

7.3.4 API service IDs

7.4.14 I2c_SetRepeatedStart

Added/Changed description due to repeated start in the following

sections

7.7.1 I2C notification functions

7.7.1.1 I2c_MasterTxNotification

7.7.1.2 I2c_MasterRxNotification

7.7.1.3 I2c_SlaveTxNotification

7.7.1.4 I2c_SlaveRxNotification

Added callback function for repeated start mode in the following

sections

2.3 Adapting your application

7.7.1.9 I2c_MasterComReqNotification

7.7.1.10 I2c_SlaveSrNotification

Added description for data length is shorter or longer case in the

following section

5.1.4 Slave mode operation

Added description for checking the actual transaction length in the

following section

5.1.5.3 Buffer status

Removed the data length error and tx underflow error in the following

sections

5.6.1 Recoverable failure

5.6.2 Unrecoverable failure

7.3.1 Error codes

7.6.1 I2c_Interrupt_SCB<n>_CatX

7.6.2 I2c_Interrupt_DMA_CH<m>_Isr_CatY

Added Get repeated start API in the following sections

7.3.4 API service IDs

User guide 100 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Revision history

Version Date Description

7.4.15 I2c_GetRepeatedStart

*H 2023-04-21 Modified and Added the description regarding to repeated start

callback and I2c_ConfirmTxTransaction.

5.1.2.1 Using interrupt

5.1.2.2 Using polling

5.1.2.3 Using DMA

5.1.3.1 Using interrupt

5.1.3.2 Using polling

5.1.3.3 Using DMA

5.1.5.4 Confirm Tx Transaction

Table 18 API service IDs

7.4.16 I2c_ConfirmTxTransaction

7.7.1.9 I2c_MasterComReqNotification

Removed the Tx underflow error in the following sections

4.1 General configuration

*I 2023-10-06 Table 7 I2C trigger level setting - Fixed typo

5.1.4 Slave mode operation:

Updated the note description regarding unexpected length of data

requested from master node.

8.2 DMA(DW):

Updated the description regarding register access.

*J 2023-12-08 No content updates.

Web release.

*K 2024-04-12 Added description about CONST generated during CODE section to

the following section

2.6.2 Memory allocation and constraints

Fixed typo

5.1.2.1 Using interrupt

5.1.2.2 Using polling

5.1.2.3 Using DMA

5.1.3.1 Using interrupt

5.1.3.2 Using polling

5.1.3.3 Using DMA

5.1.5.2 Latest job result

5.1.6 Cancel the operation

5.1.7.1 OVS settings

7.4.11 I2c_ChangeOvs

Table 19 SCB access register table

User guide 101 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Revision history

Version Date Description

*K (Contd.) 2024-04-12 Improved the descriptions in the following sections

5.1.4 Slave mode operation

5.1.4.1.1 Using interrupt

5.1.4.1.2 Using polling

5.1.4.1.3 Using DMA

5.1.4.2.1 Using interrupt

5.1.4.2.2 Using polling

5.1.4.2.3 Using DMA

5.1.5.3 Buffer status

6.3 Interrupts

7.4.10 I2c_GetBufferStatus

7.7.1.9 I2c_MasterComReqNotification

Modified and added the description regarding to I2c_TxUpdateBuffer

5.1.4.1.4 Update Buffer

Table 12 Execution-time dependencies

Table 18 API service IDs

7.4.17 I2c_UpdateTxBuffer

Added notes descriptions on NACK receive in the following sections

5.6.1 Recoverable failure

Added descriptions about recommendations when detecting errors

7.7.1.5 I2c_MasterTxErrorNotification

7.7.1.6 I2c_MasterRxErrorNotification

7.7.1.7 I2c_SlaveTxErrorNotification

7.7.1.8 I2c_SlaveRxErrorNotification

*L 2024-11-29 Added description for two new configuration parameters in the

following sections

2.2.1 Configuration outline

4.2 I2C configuration

5.1.5.3 Buffer status

7.4.17 I2c_UpdateTxBuffer

Added description for two new notifications in the following sections

2.3 Adapting your application

7.2.8 I2c_TransferDirectionType

7.2.9 I2c_AcknowledgeType

7.2.10 I2c_Slave CompleteEventType

7.7.1 I2C notification functions

User guide 102 002-31274 Rev. *L

 2024-11-29

I2C driver user guide

Revision history

Version Date Description

*L (Contd.) 2024-11-29 Modified and added the description regarding to slave mode

operation

5.1.4 Slave mode operation

7.3.4 API service IDs

7.4.18 I2c_SlaveStartTransfer

7.7.1.11 I2c_SlaveCompleteNotification

7.7.1.12 I2c_SlaveAddressMatchNotification

8.1 SCB

Modified the description related to removing the channel state check

in I2c_DeInit.

5.1.8 Disabling the I2C driver

5.5.1 Vendor-specific development errors

7.4.2 I2c_DeInit

 Important notice Warnings

Edition 2024-11-29

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document reference

002-31274 Rev. *L

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction of I2C driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding

	2 Using the I2C driver
	2.1 Installation and prerequisites
	2.2 Configuring the I2C driver
	2.2.1 Configuration outline

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring the stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keywords
	2.6.2 Memory allocation and constraints

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 PORT driver
	3.4.2 MCU driver
	3.4.3 AUTOSAR OS
	3.4.4 BSW scheduler
	3.4.5 DET
	3.4.6 DEM
	3.4.7 Error callout handler
	3.4.8 DMA

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 I2C configuration
	4.2.1 I2C trigger level setting
	4.2.2 I2C use DMA channel info
	4.2.3 I2C channel OVS config

	4.3 Other modules
	4.3.1 PORT driver
	4.3.2 MCU driver
	4.3.3 DET
	4.3.4 DEM
	4.3.5 AUTOSAR OS
	4.3.6 BSW scheduler

	5 Functional description
	5.1 I2C driver functionality
	5.1.1 Initialize and prepare the buffer for the I2C driver
	5.1.1.1 Initialize the I2C driver
	5.1.1.2 Prepare the external buffer

	5.1.2 Master write operation
	5.1.2.1 Using interrupt
	5.1.2.2 Using polling
	5.1.2.3 Using DMA

	5.1.3 Master read operation
	5.1.3.1 Using interrupt
	5.1.3.2 Using polling
	5.1.3.3 Using DMA

	5.1.4 Slave mode operation
	5.1.4.1 Slave write operation
	5.1.4.1.1 Using interrupt
	5.1.4.1.2 Using polling
	5.1.4.1.3 Using DMA
	5.1.4.1.4 Update Buffer

	5.1.4.2 Slave read operation
	5.1.4.2.1 Using interrupt
	5.1.4.2.2 Using polling
	5.1.4.2.3 Using DMA

	5.1.4.3 Auto acknowledge configuration

	5.1.5 Confirm the I2C driver status
	5.1.5.1 Driver status
	5.1.5.2 Latest job result
	5.1.5.3 Buffer status
	5.1.5.4 Confirm Tx Transaction

	5.1.6 Cancel the operation
	5.1.7 Change I2C driver settings
	5.1.7.1 OVS settings
	5.1.7.2 Accept slave address / slave address mask
	5.1.7.3 Repeated Start mode

	5.1.8 Disabling the I2C driver

	5.2 What is included
	5.3 Initialization
	5.4 Runtime reconfiguration
	5.5 API parameter checking
	5.5.1 Vendor-specific development errors

	5.6 Production errors
	5.6.1 Recoverable failure
	5.6.2 Unrecoverable failure

	5.7 Reentrancy
	5.8 Sleep mode
	5.9 Debugging support
	5.10 Execution-time dependencies
	5.11 Deviation from AUTOSAR

	6 Hardware resources
	6.1 Ports and pins
	6.2 Timer
	6.3 Interrupts
	6.4 DMA

	7 Appendix A
	7.1 Include files
	7.2 Data types
	7.2.1 I2c_ChannelIdType
	7.2.2 I2c_BufferType
	7.2.3 I2c_BufferSizeType
	7.2.4 I2c_OvsIdType
	7.2.5 I2c_SlaveAddressType
	7.2.6 I2c_ChannelStatusType
	7.2.7 I2c_JobResultType
	7.2.8 I2c_TransferDirectionType
	7.2.9 I2c_AcknowledgeType
	7.2.10 I2c_SlaveCompleteEventType
	7.2.11 I2c_ConfigType

	7.3 Constants
	7.3.1 Error codes
	7.3.2 Version information
	7.3.3 Module information
	7.3.4 API service IDs

	7.4 Functions
	7.4.1 I2c_Init
	7.4.2 I2c_DeInit
	7.4.3 I2c_GetStatus
	7.4.4 I2c_GetJobResult
	7.4.5 I2c_Cancel
	7.4.6 I2c_MasterWrite
	7.4.7 I2c_MasterRead
	7.4.8 I2c_SlaveAwaitRequest
	7.4.9 I2c_SetupEb
	7.4.10 I2c_GetBufferStatus
	7.4.11 I2c_ChangeOvs
	7.4.12 I2c_ChangeSlaveAddress
	7.4.13 I2c_GetVersionInfo
	7.4.14 I2c_SetRepeatedStart
	7.4.15 I2c_GetRepeatedStart
	7.4.16 I2c_ConfirmTxTransaction
	7.4.17 I2c_UpdateTxBuffer
	7.4.18 I2c_SlaveStartTransfer

	7.5 Scheduled functions
	7.5.1 I2c_MainFunction_Handling

	7.6 Interrupt service routine
	7.6.1 I2c_Interrupt_SCB<n>_CatX
	7.6.2 I2c_Interrupt_DMA_CH<m>_Isr_CatY

	7.7 Required callback functions
	7.7.1 I2C notification functions
	7.7.1.1 I2c_MasterTxNotification
	7.7.1.2 I2c_MasterRxNotification
	7.7.1.3 I2c_SlaveTxNotification
	7.7.1.4 I2c_SlaveRxNotification
	7.7.1.5 I2c_MasterTxErrorNotification
	7.7.1.6 I2c_MasterRxErrorNotification
	7.7.1.7 I2c_SlaveTxErrorNotification
	7.7.1.8 I2c_SlaveRxErrorNotification
	7.7.1.9 I2c_MasterComReqNotification
	7.7.1.10 I2c_SlaveSrNotification
	7.7.1.11 I2c_SlaveCompleteNotification
	7.7.1.12 I2c_SlaveAddressMatchNotification

	7.7.2 DET
	7.7.2.1 Det_ReportError

	7.7.3 DEM
	7.7.3.1 Dem_ReportErrorStatus

	7.7.4 Error callout functions
	7.7.4.1 Error callout API

	8 Appendix B - Access register table
	8.1 SCB
	8.2 DMA (DW)

	Revision history
	Disclaimer

