Infineon

12C driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and use of the inter-integrated circuit (12C) driver. This
document explains the functionality of the driver and provides a reference to the driver’s API.

The installation, the build process, and general information on the use of EB tresos are not within the scope of
this document.

Intended audience

This document is intended for anyone who uses the 12C driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the 12C driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the 12C driver details the steps on how to use the I12C driver in your application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the 12C driver.
Chapter 4 EB tresos Studio configuration interface describes the driver’s configuration.

Chapter 5 Functional description gives a functional description of all services offered by the 12C driver.
Chapter 6 Hardware resources gives a description of all hardware resources used.

Appendix A and Appendix B provide a complete API reference and access register table.

Abbreviations and definitions

Table1 Abbreviations
Abbreviation Description
API Application Programming Interface
ASClI American Standard Code for Information Interchange
ASIL Automotive Safety Integrity Level
AUTOSAR Automotive Open System Architecture
DEM Diagnostic Event Manager
DET Default Error Tracer
DMA Direct Memory Access
EB tresos Studio Elektrobit Automotive configuration framework
GCE Generic Configuration Editor
HW Hardware
SW Software
User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-31274 Rev. *L

www.infineon.com

2024-11-29

http://www.infineon.com/

12C driver user guide

(infineon

About this document

Abbreviation

Description

ISR Interrupt Service Routine

LSb Least Significant Bit

MCAL Microcontroller Abstraction Layer
MPU Memory Protection Unit

MSb Most Significant Bit

ovs Oversampling

PCLK Peripheral Clock

uc Microcontroller

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Complexdriver design and integration guideline, AUTOSAR release 4.2.2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of default error tracer, AUTOSAR release 4.2.2.

Elektrobit Automotive documentation

Bibliography

[5] EBtresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[6] Layered software architecture, AUTOSAR release 4.2.2.

User guide

002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

Table of contents

Table of contents

About this dOCUMENT......iuiiiiiiiiiiiiiiiiiiieiiiiiieiiiiiiieetteiiaecsesinitsessestascsessssssesssssssssesssssssssssssssssssssssssnnss 1
Table Of CONTENTS....ciuiiiiiiiiineiiiiniiieriiineiresiaiiaestesiaecrestascsesrestasssesssscssssssssssssssasssssssssassssssasssssssssassses 3
1 GENEIAl OVEIVIEW cuurvuineireiiaeinesreniaesrestascsestostaesssstascssssssssssssssascassssssasssssssssassssssassssssassasssnssassnns 7
1.1 INErOAUCEION OF 12C AIIVET c..evieeteereeteectee ettt et et et e b et saeeerbeebeenbeessbeesbeeaseenbeenseenseeseas 7
1.2 (U ESY =T o o 71 TSRS 7
1.3 Embedding in the AUTOSAR €NVIFONMENT.....c.iiiiiietietetieeeteseetesteeeetesteeeesseseessesseessessesssessessesssenns 8
14 SUPPOIEA NANAWAIEeeieieciecieeseeeteete ettt e te et e et e e s e e s te s te s be s beessaeesaessseesseesseesseessnesseesnsanns 8
15 DeVelopmMENTt ENVIFONMENT.......cccveciieieierteetecte et etee e et estesteseesseetessesseesessesssessassesssessesssessesssessessessenns 8
1.6 Character Set and ENCOAINGcouiiiiriiieieteete ettt ettt et s et e bt et e sbe st et e sae et e sbesatentens 8
2 USING the 12C driVEr .cu.ivuiiuiiuiiiiiniiniiiiiiniieesiiiieecseiisicsestastsesssstsscsssssscsesssssssssssssssssssssssssssssssssssss 9
2.1 INStallation aNd Prer@QUISITES......uiiiiiieiieceeciece ettt se e s esee s te s te s be e baeeseessae s sessbasssasseas 9
2.2 CONFIGUNNG TNE I2C AFIVET .ttt sttt ettt st b s b b s b b et e e e e e st b eee 9
2.2.1 CoONFIGUIAtION OULLINE ..ueiieiiieieieeece ettt st sbe st e b e e e e esaenasseas 9
2.3 Adapting YOUT @PPLICATION .couiriiriieierteieieteteee ettt sttt et et sa s bt e sae st et ene s ee 11
2.4 SEArting the DUILA PrOCESS.....evuieiiiiieietetete ettt sttt ettt be st bbb et saeenes 12
2.5 Measuring the stack CONSUMPLION ..cc.iiiiiriiiiirieiieieeeteree ettt ettt sae st ettt s st e sae s ees 12
2.6 MEMOTY MAPPINE weeuverreetenrertenieneertesstertesseetessesseesaesseestessesstesessesatessesaeesesstensesseentensesaeensessesneensesneenses 13
2.6.1 MemOory alloCation KEYWOIASccuieiieiiieiiecie ettt sae et e te e steesbe e sbaesraesaaesateste e ra e saesneennns 13
2.6.2 Memory allocation and CONSTIAINTS.......cciririerieieeceeee et e e esae e eneas 13
3 SEructure and dePENUENCIES.....ccuceierreieceeierrerrececacesreceecsecassessscsscassassecsscassasssssssassassasssssssasses 15
3.1 R} =Y ol 1 TSRO 15
3.2 CONFIGUIALION FIlES .ttt sttt b et et sb st e st et et e s e naenaenesaeanas 15
3.3 LCTT =T = =T i 1 C=T TSR 15
3.4 DEPENAENCIES ...eueeteeeeeiesteetese st e e st e e teeee e et e aesse e e e sessaessessasssasesseasseaseessessesssessesseessensesssensesssenses 16
3.4.1 PORT IV .ttt ettt ettt et eete e ee e e et e eetveeebeeeesseeesbae e saseesseesseseesseeesesesssesssaeesssensseesseean 16
3.4.2 Y 1L e [Y=Y TSR 16
343 AUTOSAR DSttt ee ettt e e e e e s ettt e ee e s see e bttt aaeesseeessstaaaeaessesanssaaaasesssessnssressasesssnsnsees 16
344 BSW SCREAUIET ...ttt ettt s e e e s e s e s e s s et e sse e s esbessaessessesnsensesseensas 16
3.4.5 DE T ettt ettt et e e e rrrr et et e e s s a et e et e e e s b et e e e e e e e st aaaaeeeeee st ataeeeeseen b aaaaeeeeeeessrrraaaaeeeesessrres 16
3.4.6 D] PRt 16
3.4.7 g oY g or=Y | (o UL o F- 2 o 1 LT TSR 17
3.4.8 B PPN 17
4 EB tresos Studio configuration interface.....ccccceiieiriiniinciininiineiininiieniniiseinnisisesrestsccsssescaece 18
4.1 GENEral CONFIGUIALION .eviiiiiiicicree ettt s b et e s be st e s b e aeaeneenesaeenas 18
4.2 [2C CONFIGUIATION ...ttt sttt et ettt s b e s b e b et et e naenaeseeseesessens 19
4.2.1 [2C LrigEEr LOVEL SETEINE .eveviteieieeete ettt ettt ettt nes 21
422 DL O T L 0 7N o F= oL g 1Y T o J TS 21
423 [2C ChaNNEL OVS CONFIG .euvintiiiiiieietetreree ettt sttt ettt b et et eaas 21
4.3 (018 =Tl 0 g Yo Yo 011 USSR 23
43.1 PORT AFIVEL atiiiiticieeieeitestese sttt ssre e steeste e s e e sa e st e s sbessbassbaessaesssesssessseesseassaesseesssesssesstesssasssessseenses 23
432 Y LI [V7= RS 23
433 D] = PR 23
434 DEM ettt ettt e e e e e st e e e e e e st a e e e e e s ee st aaaaeeeeee ettt eeeeeeen e b aaaaeeeeesesartrbaaaaeeeesenarrres 23
435 AUTOSAR DSttt e e eeecerrtte e e e e e e ee s ettereee e e sese s abaasaaeeeseeesssbsaaaeeesaesassssssaaesesesansssenseseessennnnes 23
4.3.6 BSW SCREAULET ...ttt ettt st st e s be s s be e saa e s s e s s e s ae e aaesbaesaeesanesstesssasssasnsasnseenns 23
5 FUNCHIONAl desSCriPtion .. cieiieiiieiieiiniinteecenienieceecancassossecsscassssssssscassassssssssscassssssssssassassssssssssasse 24
5.1 [2C driver fFUNCHONALITYecveieeececeeeeeeee ettt et e e e et e s et e s b e e e et e sreesesreenaesseesaeneas 24
User guide 3 002-31274 Rev. *L

2024-11-29

12C driver user guide in f| neon

Table of contents

5.1.1 Initialize and prepare the buffer for the 12C driVer ..o 24
5.1.1.1 INTLIAlIZE TN 12C ANIVEN ..ttt ettt sttt 24
5.1.1.2 Prepare the eXternal BUFFENoou et 24
5.1.2 MaStEr WIITE OPEIATION....iiiciieeieieerte ettt ettt e e s sbe e s ba e s sbt e e sbae s baeessbaesssassssaesssaean 25
5.1.2.1 USING INTEITUPT .eoveeiieiieeiertrt ettt sttt st steste s be s be e s e e st e sssessbesssaessnesasesasasssasssasssaesssesnns 26
5.1.2.2 USING POLLING ettt ettt ettt et s st et et e sat et e be e st et e s st et essesnsenees 26
5.1.2.3 USING DMA. ...ttt st st est st st s ssessbe e sae e satessbesbe s baes st esssesssesssesssassseesssesssesssesssesseenseennns 27
5.13 Y T (=TT o] o L] - 1 Lo o PSRRI 27
5.13.1 USING INTEITUPT ..ttt ettt ettt et se e e bt e st e st e s aee s be e bt e e seesmeeeaee 28
5.1.3.2 USING POLLING ettt ettt e e e et e st e et e st e s se s s e sseess et e sseessassesssessesseessessesseenses 28
5.1.33 USING DMA. ettt et ettt et st e s e st s bt e e bt e et e st e et e e e e e bt e smtesaeesatesabesabeeeseenneennee 29
5.14 Y 1Y/ e Te [oY o 1= =Y i o OO 29
5.14.1 SlaVe WITEE OPEIAtION..c.eicieiecteeieeeeeeeee ettt e et sae e e et e s re e s e ssesseesesseess e seessensesseansens 30
5.1.4.2 Y 1Yl (== o oY o 1= - L 4o o OO PSSRRN 35
5.1.4.3 Auto acknowledge CoONfIGUIAtIoNcoceuirieriirieieire ettt 38
5.15 Confirm the [2C driVEr STAtUS c.evvevveieieietreseresesee ettt ettt a e ne 39
5.15.1 DFIVEE STATUS ..ttt ettt et b et s e st e et e bt e s st e st e st e s be s be e bt eeneenaes 39
5.1.5.2 I LTSy o =101 TSRS 39
5.1.5.3 BUFFEI SEALUS 1.ttt sttt et et a et na e e e e s aeebeee 40
5.15.4 CoNFirm TX TrAaNSACHION ..eeueriiieieieteeeieeteetert ettt ettt st st ettt ettt b s s besae e e s e e enaeneenesaees 41
5.1.6 LOF T aTet=Y I o TSN e] o 1CT= o PSRRI 41
5.1.7 Change 12C driver SETEINES ..ccvevutirierereetereeterteet ettt ste ettt s et et e b e s st e be s st et e be s e esbesaaessenee 41
5.1.7.1 OVS SETEINES ..ottt ettt ettt et et e st e e s st e s et e st et e s st et esbesaeesesbeeate st entensesseensens 42
5.1.7.2 Accept slave address / slave address MaskKccceeceeieeieeneecieccecce et 42
5.1.7.3 REPEAtEd StArt MOUE ... ittt e e se et e s re e e besseesesseessesreeseeneas 43
5.1.8 DiSADING the [2C AIVET c.eveniiiiieieeeteeee ettt ettt sb s bbbt ettt e saeenes 43
5.2 WHat IS INCIUAEA ...ttt ettt ettt st st et e st et e sba et essesntensesanensans 43
53 INTEIALIZATION ettt sttt et ettt b e s bt et et e e e et et enenaeas 43
5.4 RUNTIME r€CONTIGUIATION ..etiietiieieeeceeer ettt ettt et e sttt et e saeaesnesaenassens 43
5.5 APL PArameter CECKINGcoiiiiiieietereetere sttt ettt st st et st st e be s e e b e sba st e sesasesesssensesesasensens 44
5.5.1 Vendor-specific deVElOPMENT EITOIS.......vicieieeeeeeree et e e nes 44
5.6 PrOQUCTION EITOIS .ueiiieieieeteieeitete sttt et s et s et st et e s st et esbe st e s eesaessessesntensesasensansesssensesssenses 45
5.6.1 RECOVEIADLE FAIIUIE ...ttt ettt ettt enes 45
5.6.2 UNIeCoVErable failUre ..ottt ettt a e ens 46
5.7 REENEIANCY ittt ettt e e e e e s sre e e e e s s s s e ssaeteeeesse s nnsrataaesssesnnsenaneaeeesesnnnes 46
5.8 RS 1T 0 1 o e [T 46
5.9 DEDUGEING SUPPOI...cueiiieiiiieieeteteetectert et st ettt et et st et e sae st esbe st e s esseessessesntensesasensassesssensesssenss 46
5.10 EXECULION-TIME AEPENAENCIESveiiiiicieiieciectcete st ese e sre s re s re s be s s e e saesssesaesssaessnessnesasesssanas 47
5.11 DeVIation frOM AUTOSARcouiiiietetrteeees ettt ettt sae st st st e sttt e e e e sesbesbesbenbestenaensenseneenessens 47
6 HardWare FE@SOUNCES c..cvueireeiirncrasrsesesesrssrsessssssssssrss 48
6.1 POIES QN PINS..iitiiiriiiiieiecce ettt et eete e e st este e be e be e beesbeesaaesate e baebeesssesssesnseessaensaesaesseesssensenns 48
6.2 M1 ettt ettt ettt s et st e et e bt e s bt e s ae e st e st e e bt e bt e e s e e et e et e bt e bt e e Rt e e R e e st e e be e be e neeeneeenee 48
6.3 LN O TUPTS ceeeeeiieeerteeee ettt e e serrre e e e e e s s ssreeeeeesessnsnsnraaeeessssnsssnnaaeesssssssnsssnaaeessssssnnssnnneeessssssnnnn 48
6.4 DM A ettt ettt et e e s et e e e s s s r bt e e e e e e e s b bt e e e e e e e s e araaeeeese s nn bt aaeeeeeess s nnrnaaaeeesessnnne 49
7 APPENAIX A ooiriiiiiiiniiiiiiniiaiintitsetestessecsecssssssessesssssssssessesssesasss 50
7.1 INCIUAE FILES.unieieieeiieeet ettt sttt ettt ettt e e b e s b e b e be b et e e esaentesesaeas 50
7.2 DATA LY PS .ttt st e st e e a e s bt e s e ra e e s nbane s e raneees 50
7.2.1 120 _ChaNNEUATYPE ettt ettt et et s et e s b st et s st et e sae s st esbessnensesseensensesnsenss 50
7.2.2 Do Lol = 10 {1 g Y/ o1 TSR 50
User guide 4 002-31274 Rev. *L

2024-11-29

12C driver user guide in f| neon

Table of contents

7.2.3 |2C BUIEISIZETYPE ettt ettt ettt et e b e s e e s be st e beesseatesseensebassaansessaensesenssensas 50
7.2.4 Do Lol @ 1YY Lo I 1Y/ o1 RO SR 50
7.2.5 12C S aVEAAAIESSTYPE .eiuvieeeeierieeteieeeeteste et e ste st et esre st e te s e essassesssassessaessesseessassesssensessesssessesssenses 51
7.2.6 DXl - T 0[] K] =Y (1) 3] 1= OSSP 51
7.2.7 Do Lol ToY o 2 LT 1l Y/ 1= TSRS 51
7.2.8 12C_TransSferDirECtIONTYPE ..occiecieeiecieceeteete et rte et este s e e e s te e e e beessetesseessesbessnensessaensessasnsenses 52
7.2.9 120 _ACKNOWIEAZETYPE ..eineieeeeiecteetete ettt ettt sttt et e et e s e e s e s se s s e sessa e s esseessessesssessassesssessesnsenses 52
7.2.10 Do Lo V=T 00T g o] (= =] Y=Y a1 A Y o TSR 53
7.2.11 L20_ CON I TP ettt sttt ettt ettt et b et et eae e b e s b b e b et et et et et eneeaeeaas 53
7.3 (000] 011 7=] 01 £ TP SPR 54
7.3.1 EFTON COURS .ttt ettt ettt e et e e te e e ete e e e tte e e baeeetbeeesbae e basesssaessaeeessaeensaseasseeensaeensssensseesseenn 54
7.3.2 VErsioN INFOIMATION .vecviiiiiieiciccetce ettt et e eear e erteebeebe e teeeseesaeesrasentsenteenssessseenseenns 55
7.3.3 MOAULE INTOIMATION ..vecevieiieciecie ettt et erre e e e e e s b e e b e e beebe e beesbaessaeesbeerbeerbaessaenssesssennns 55
734 FAN e T oV ol | B LSRR 55
7.4 UL Vot (o 13 USRS 56
7.4.1 D o 1 1 PR RUSR RN 56
7.4.2 Do D 1<) [PP PRTRRPRPRPPRRPINE 56
7.4.3 DA o €=) 7= 1 U SRS 57
7.4.4 Dol CT=Y A o] o] 2 T=T U1 SRR 58
7.4.5 DX ol G- 1 o [o1=1 USRS 59
7.4.6 b2l = T (=T L USSR 60
7.4.7 [2C MASEEIREAMciiiieeeeeeteeee ettt ettt e eeesrttteeesseesessaeateeesssesesssasateeeessesessssateeesssssssssssseesesssossnnne 61
7.4.8 12C_SIaVEAWRITREQUEST.....ecueeieteeteeeeetese ettt ettt e e s e e e s re s s e sessa e s e sseessesessaessesseessensesseenses 62
7.4.9 DT oY1 (U] o] =X o RPN 63
7.4.10 |20 GEtBUI EISTATUS ..veeteecteecrectectecre ettt ettt e e be e teesabeeabeebeebe e baesbaessaeesseerbeenbaesssesssesssennns 65
7.4.11 [2C_CRANGEOVS......euieiiriieteietetetete ettt et ettt ettt st s bt st et et et et eaeesesbesbesbenbensententeneenesaeses 66
7.4.12 12C_ChangeSIaveAdAIESS.cccviirieiereetese ettt sttt s ettt st et s et e sae et et e saaesessaessesaesnsansas 67
7.4.13 |20 GEtVEISIONINTO .ccuteetiectieciectecre ettt et rb e e be e te e s b e ebeebeebe e baesbaessseesbeenbaebaesssenssesssennns 68
7.4.14 DT 3 =T 01T 1 (=T] = o TSP 69
7.4.15 DTl =Y d 2T o 1=T- L =T] = o S USSR 70
7.4.16 12C_CoNfIrMTXTIANSACTION ..uvievieriereeiteeceeceecteereerreesteesteesareesseebeeseesseessaessseessesrseesaessaesssessseenns 71
7.4.17 120 _UPAAtETXBUITRI .ttt ettt et a b e ta et e sba e b e beera e beesaensesseensenss 73
7.4.18 120 S aVESEAITTIANSTEE .uvitiecvectecteere ettt ettt e e e e e s b e e b e e b e ebe e bsesbaessaeerbeerbaenbaesssenssesssennns 74
7.5 SCNEAULEA FUNCHIONS vttt ettt ettt et et eae e ese e saeeeaeeeabeebeenseeesseenseenseenseensneseas 75
7.5.1 12¢_MainFUNCtiON_HaNAUiNG....c.cociiriiiiiiiiieieeeteestetee sttt et sae et e st s sa e st e e s s aeaes 75
7.6 INTEITUPT SEIVICE FOUTINE ..evviiiiiieiiterte ettt st s e ssie e st e s e e st e s be s baessaesssessnesssaassaessnesseesssesssanns 76
7.6.1 [2C_INTErrUPt_SCBSNZ_CatX . iiiiiiiieiiieeiriiteereiiteessste e s e srre e s s sareesssraeesssssaeessssssaesssssaesessnseaesssnsnes 76
7.6.2 12c_Interrupt_DMA_CH<M>_ISI_CatY ..ccooiiieieiiieeeteeeeiete st eeirte s esieee s seieee s s sneee s s seeeessmeees 77
1.7 Required callback fUNCLIONSccviiieeeceeee ettt et e s e na e eeennenes 78
7.7.1 12C NOLIFICAtION FUNCHIONS.....veieteeeeeeeteeee et ettt ere e e tv e e ebe e eseeeeaseeeree s 78
7.7.1.1 12C_MasSterTXNOLITICATION. . ccieciieiicieete ettt et et er e b erbeerbeesaeesreeerbeebeebeesssessseenns 78
7.7.1.2 12C_MaStErRXNOLITICAtION ..veiiiieicieiceicctec ettt et eetre e ere e e saeeebeeeesaeenssesenseeeens 79
7.7.1.3 12C_SlaVeTXNOLIFICAtION .c.viiitieciiiciiceettctececee et esbe e be e sae e ereeeabeebeebeessseenseenne 79
7.7.1.4 12C_SlaVERXNOTITICATION . c.vieitiectticiicii ettt et et e e b ebeerbeesbeesaeesreeerbeerbeebaessseenseenne 80
7.7.1.5 12C_MasterTXErrOrNOtIfICAtION ..ccueieeeeeeeiee ettt e be e eeaaeeeaee e aaeeens 80
7.7.1.6 12¢_MasterRXErTOrNOtIfiCatioNiccuieciiiiiecieceecte ettt et erre e sae e e ereebe e beesbeeesaeenns 81
7.7.1.7 12C_SIavVeTXErTOrNOLITICAtION w.veiiieeiiiieieee ettt e et e s sab e e s sabe e s e saaees 81
7.7.1.8 12C_SIaVeRXEITOrNOTIICAtION w.viiiieiiiiieiiee ettt e e ssar e e s sabe e e e saaees 81
7.7.1.9 12¢_MasterCoOmMREGNOIfiCAtioONccvecveeeeeceeeec et 82
7.7.1.10 DAY =Y L=IY N Lo} 1 Tok=Y T o SR 82
User guide 5 002-31274 Rev. *L

2024-11-29

12C driver user guide < in f| neon

Table of contents

7.7.1.11 12¢_SlaveCompleteNOtifiCationcceceeceieeiececee et 83
7.7.1.12 12¢_SlaveAddressMatChNOtIfiCaAtioNccevieiericeccecrcce e 83
7.7.2 D E T e ttteeee ettt et et e eerrrre et e e e e s s arae e e e e e se s e b bt e e e e e ee s rrataaeeeees e ataaaaeeeesss s rnaaaaaeeesesssrrtaaaeeeessssnnns 85
7.7.2.1 DLl il =T o Yo] 1 = o] (RO PO PP O U P TP PPPRUPPPRRI 85
7.7.3 DEM cettteeiiieeeietteee e e e eesrrtt e e e e e s s arat e e e e s ss s s s rraeaeesesss s nrrataaeeeesserraaaaaeeeesess s rnaaaaaeeesesssrraaaaaeeessasnnns 86
7.7.3.1 DEM_REPOMEITOISTATUS ..eeiiiieeieiteeeete ettt srte e e seree e s sree e s s esreeesssraeessnsaessssnseassssnses 86
7.7.4 Error CalloUt FUNCLIONS ..couvieicieeetcececeee ettt ettt et e sre e e et e s e e sesse e s e ssesneeneas 87
7.74.1 oY g or= Y| Lo TU L A = TSRS 87
8 Appendix B - ACCeSS regiSter tablecciiuiieiiniiniiniiniienieiieiiesisiiestasisesresssessestascsnsressssssessascsnss 88
8.1 I 1 TP PO PPPRRP 88
8.2 DIMA (DW) c.eteeteeteeeieeeteeteeite e tee s e e staestaeebe e te e beessaeesbeesseessaessassssssssessseessaesbeenssesssessseessesnsaessaessseesenssenns 95
REVISION NISTOrY..cuiiiiiiiiiiiiiiiiiieiiiiiiiieiiiieiieiiniceecteiiaecsesiestscssstsscssssssssssssssssssssssssssssssssssssssnsssssanss 98
[0 1T E= T T PN 103
User guide 6 002-31274 Rev. *L

2024-11-29

12C driver user guide < in f| neon

1 General overview

1 General overview

1.1 Introduction of 12C driver

The 12C driver is a complex driver, which enables you to support 12C communication on special output pins of
the CPU.

The 12C driver provides services for reading from and writing to devices connected via 12C buses. The 12C driver
provides access to 12C communication for multiple peripherals (e.g., EEPROM, watchdog, and 1/0 ASICs). Master
mode and slave mode are supported.

The 12C driver provides FIFO access by the following methods:

e Interrupt: By using interrupts.
o Polling: By using periodical calls to I2c_MainFunction Handling().
e DMA: By using DMA and interrupts.

The 12C driver is not responsible for initializing or configuring hardware ports. This is done by the PORT driver.
The 12C driver conforms to the AUTOSAR standard and is implemented according to the AUTOSAR complex
driver design and integration guideline [2].

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

e Embedded systems

e Cprogramming language

e AUTOSAR standard

e Target hardware architecture

User guide 7 002-31274 Rev. *L
2024-11-29

12C driver user guide in ﬁ neon

1 General overview

1.3 Embedding in the AUTOSAR environment
Application 1 Application 2 Application 3 Application n Application
Application
Runtime Environment Abstraction
Layer
System Memory Communication Service
Services Services Services ‘g‘ Layer
& o
£ Onbc.nard Memory Communication 1/O Hardware Z EFU
= Device Hardware Hardware Abstraction = Abstraction
g Abstraction Abstraction Abstraction %_ Layer
= £
o o
o Microcontroller
JC Driver Memory Driver COM Driver 1/0 Driver Abstraction
Layer
Microcontroller Type
Figure 1 Overview of AUTOSAR software layers

Figure 1 shows the layered AUTOSAR software architecture. There can be multiple complex device drivers
(CDD) and the 12C driver (Figure 2) is one of them. The 12C driver has similar functionality as the microcontroller
abstraction layer (MCAL).

For an exact overview of the AUTOSAR layered software architecture, see Layered software architecture [6].

MCAL Communication Driver CCD Communication Driver

TVII MCU(HW)
Figure 2 12C driver in CDD
14 Supported hardware

This version of the 12C driver supports the TRAVEO™ T2G family. No special external hardware devices are
required.

The supported derivatives are listed in the release notes.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The Base, Make, Mcu, Port, and
Resource modules are needed for the proper functionality of the 12C driver.

1.6 Character set and encoding

All source code files of the 12C driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

User guide 8 002-31274 Rev. *L
2024-11-29

12C driver user guide

(infineon

2 Using the I12C driver

2 Using the 12C driver

This chapter describes all necessary steps to incorporate the 12C driver into your application.

2.1

Installation and prerequisites

Before you start, see the EB tresos Studio for ACG8 user’s guide [5] for the following information.

How to install EB tresos ECU AUTOSAR components.

How to use EB tresos Studio.

How to use the EB tresos ECU AUTOSAR build environment (includes an explanation of how to set up and
integrate your application within the EB tresos ECU AUTOSAR build environment).

The installation of the 12C driver corresponds to the general installation procedure of EB tresos ECU AUTOSAR
components given in the documents mentioned above. If the driver is successfully installed, it will appear in the
module list of the EB tresos Studio (see EB tresos Studio for ACG8 user's guide [5]).

In the following section, it is assumed that the project is properly set up and is using the application template
as described in the EB tresos Studio for ACG8 user’s guide [5]. This template provides the necessary folder
structure, project and Makefiles needed to configure and compile your application within the build
environment. You need to be familiar with the usage of the command shell.

2.2

Configuring the 12C driver

The 12C driver can be configured with any AUTOSAR-compliant GCE tool. Save the configuration in a separate
file, for example, I2c.epc. For more information about the 12C driver configuration, see Chapter 4 EB tresos

Studio configuration interface.

2.2.1 Configuration outline
Table 2 Containers and parameters
Container Description

I2cDemEventParameterRefs

Turns the DEM feature used in the 12C driver ON/OFF

I2C_DEM RECOVERABLE FAILURE

Specifies the DEM event for recoverable failures

I2C_DEM UNRECOVERABLE FAILURE

Specifies the DEM event for unrecoverable failures

I2cGeneral

Turns the optional APIs and features of the 12C driver ON/OFF

I2cDevErrorDetect

Specifies whether development error detection is used

I2cVersionInfoApi

Specifies whether 12c_vVersionInfois used

I2cChangeOvsApi

Specifies whether the 12c_ChangeOvs is used

I2cChangeSlaveAddressApi

Specifies whether 12c_ChangeSlaveaAddress is used

I2cErrorCalloutFunction

Specifies the name of the callout function, which is called when an
error occurs

I2cOsCounterRef Specifies the OS counter which is used by the 12C driver
I2cIncludeFiles Used for including external declaration files into the 12C driver.
Specifies the header files which should be included in the 12C driver.
I2cConfigSet Used for setting each 12C channel configuration
I2cChannelConfig Specifies the container name for a channel configuration
User guide 9 002-31274 Rev. *L

2024-11-29

12C driver user guide

Infineon

2 Using the I12C driver

Container Description
I2cChannelld Specifies the index number of an 12C channel
I2cScbChannelNumber

Specifies the SCB resource used for an 12C channel

I2cDefaultSlaveAddress

Specifies the default slave address for this I12C channel

I2cDefaultSlaveAddressMask

Specifies the default slave address mask for this 12C channel

I2cMasterWriteProcessing

Select interrupt or polling for master write transactions of this 12C
channel

I2cMasterReadProcessing

Select interrupt or polling for master read transactions of this 12C
channel

I2cSlaveProcessing

Select interrupt or polling for slave read and slave write transactions
of this 12C channel

I2cUseDmaMasterTx

Specifies whether DMA is used for master write transactions

I2cUseDmaMasterRx

Specifies whether DMA is used for master read transactions

I2cUseDmaSlaveTx

Specifies whether DMA is used for slave write transactions

I2cUseDmaSlaveRx

Specifies whether DMA is used for slave read transactions

I2cChannelDefaultOvs

Specifies the default OVS settings ID

I2cBusIdleCheck

Specifies whether the bus idle check feature is used before starting a
master transaction

I2cHwAutoAckSlaveAddress

Specifies whether to send an acknowledgment by HW/SW when the
slave address matches

I2cHwAutoAckSlaveRxData

Specifies whether to send acknowledgment by HW/SW when
receiving data in slave mode

I2cChannelOvsConfig Contains the filter and OVS settings

I2cOvsId Specifies the OVS settings index

I2cClockRef Specifies the SCB input clock reference point in the MCU
configuration

I2cClockRefInfo Specifies the SCB input clock speed (Hz)

I2cDataRateMode Specifies the SCB bus speed mode

I2cGlitcFiltering Specifies the filter (digital, analog) used

I2cOVS Specifies the OVS total value (low phase + high phase)

I2cLowPhaseOVS Specifies the low phase OVS value

12cHighPhaseOVsS Specifies the high phase OVS value

I2cBusFrequencylInfo

Specifies the 12C bus clock speed (Hz) calculated by other
parameters

I2cTriggerlevelSetting

Contains the trigger level settings

I2cTxTriggerLevelMaster

Specifies the trigger level for master write transactions

I2cRxTriggerLevelMaster

Specifies the trigger level for master read transactions

I2cTxTriggerLevelSlave

Specifies the trigger level for slave write transactions

I2cRxTriggerLevelSlave

Specifies the trigger level for slave read transactions

I2cUseDmaChannelInfo

Contains the DMA channel settings

I2cDmaTxChannel

Specifies the DMA resource used for this channel’s write transactions

User guide

10 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

2 Using the I12C driver

Container Description
I2cDmaRxChannel Specifies the DMA resource used for this channel’s read transactions
2.3 Adapting your application

To use the 12C driver in your application, include the header files of 12C, MCU and PORT driver by adding the
following lines of code to your source file:

#include "Mcu.h" /* AUTOSAR MCU Driver */
#include "Port.h" /* AUTOSAR PORT Driver */
#include "I2c.h"™ /* I2C Driver */

This makes all required functions, data types, and symbolic names known to the application.

To use the 12C driver, you must configure appropriate port pins, SCB clock settings, and 12C interrupts in the
PORT driver, MCU driver, and OS. For detailed information, see Chapter 6 Hardware resources.

You must initialize the MCU, PORT, and I12C driver in the following order:
Mcu Init (&Mcu Config[O0]);
Port Init (&Port Configl[0]);
I2c Init(&I2c Config[O0]);

The function port_Init () is called with a pointer to a structure of type Port ConfigType, which is exported
by the PORT driver itself.

If “interrupt” or “DMA” is used for periodic processes, an interrupt service routine must be configured in the
AUTOSAR OS for each 12C peripheral, as described in 6.3 Interrupts.

If “polling” is used for periodic processes, you must call the I12c MainFunction Handling function cyclically.
This can either be done by configuring the BSW scheduler accordingly, or by calling the
I2c MainFunction Handling function from any other cyclic task.

All required input clocks for the configured hardware units (SCB) must be activated before initializing the 12C
driver. See 3.4.2 MCU driver.

Your application must provide notification functions and their declarations. The file containing the declarations
must be included using the T2cIncludeFile parameter. See the following example of function declarations:

extern void I2c MasterTxNotification (uint8 Channel);

extern void I2c MasterRxNotification (uint8 Channel);

extern void I2c SlaveTxNotification(uint8 Channel);

extern void I2c SlaveRxNotification(uint8 Channel);

extern void I2c MasterTxErrorNotification (uint8 Channel);

extern void I2c MasterRxErrorNotification (uint8 Channel);

extern void I2c SlaveTxErrorNotification (uint8 Channel);

extern void I2c SlaveRxErrorNotification (uint8 Channel);

extern void I2c MasterComRegNotification (uint8 Channel) ;

extern void I2c_SlaveSrNotification(uint8 Channel);

User guide 11 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

2 Using the I12C driver

extern void ErrorCalloutHandler (uintl6 ModuleId,uint8 InstanceId,uint8
ApiId,uint8 ErrorId);

extern void I2c_SlaveCompleteNotification (uint8 Channel,
I2c_SlaveCompleteEventType Event,uint32 TransferCount);

extern I2c AcknowledgeType I2c_ SlaveAddressMatchNotification (uint8
Channel,uint8 SlaveAddress,I2c TransferDirectionType Direction);

The notification functions are called from an interrupt or polling context.

2.4 Starting the build process

Do the following to build your application.

Note: For a clean build, use the build command with target ciean all before executing “make
clean all”

1. Inthe command shell, type the following command. This will generate the necessary configuration-
dependent files. See 3.3 Generated files.

> make generate

2. Type the following command to generate file dependency lists:
> make depend
3. Compile and link the application with the following command:

> make (optional target: all)

The application is built now. All files are compiled and linked to a binary file which can be downloaded to the
target hardware.

2.5 Measuring the stack consumption

Do the following to measure the stack consumption. The Base module is needed for a proper measurement.

Note: All files (including library files) should be rebuilt with the ‘stack analysis’ compiler option. The
executable file built in this step must be used for stack consumption measurement only.

1. Add the following compiler option to the makefile to enable stack consumption measurement.
-DSTACK ANALYSIS ENABLE

2. Type the following command to clean library files.

make clean lib

3. Follow the build process described in 2.4 Starting the build process.
Follow the instructions in the release notes and measure the stack consumption.

User guide 12 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

2 Using the I12C driver

2.6 Memory mapping

The 12c_MemMap.h file in the S(TRESOS_BASE)/plugins/I2c_MemmapSmaple directory is a sample. This file is
replaced by the file generated by the MEMMAP module. The input to the MEMMAP module is described in the
12¢c_Bswmd.arxml file in the S(PROJECT_ROOT)/ output/generate_swcd/swcd directory of your project folder.

2.6.1 Memory allocation keywords

I2C START SEC CODE ASIL B / I2C STOP SEC CODE ASIL B

Memory section type is CODE. All executable code is allocated in this section.

I2C_START SEC CONST ASIL B UNSPECIFIED / I2C_STOP SEC_CONST ASIL B UNSPECIFIED
Memory section type is CONST. All configuration data is allocated in this section.

I2C_START SEC VAR NO INIT ASIL B UNSPECIFIED /
I2C_STOP_SEC VAR NO INIT ASIL B UNSPECIFIED

Memory section type is VAR. All non-initialized variables without alignment restrictions are allocated in this
section.

I2C_START SEC VAR SLOW NO INIT ASIL B UNSPECIFIED /

I2C_STOP_SEC VAR SLOW NO INIT ASIL B UNSPECIFIED

Memory section type is VAR. DMA related variables are allocated in this section.

This section has restrictions on the allocated memory region. See 2.6.2 Memory allocation and constraints
for details

I2C_START SEC VAR INIT ASIL B UNSPECIFIED /
I2C_STOP_SEC VAR INIT ASIL B UNSPECIFIED

Memory section type is VAR. All initialized variables without alignment restrictions are allocated in this
section.

2.6.2 Memory allocation and constraints

The CPU has a private cache that is not shared with the DMA bus master. Therefore, you must ensure that the
data accessed by DMA are in uncached memory regions. The 12C driver does not support the memory allocation
of DMA-related memory and data buffer to the CPU’s tightly coupled memories (TCMs) and internal video RAM
(VRAM).

The section that contains the external buffers (EB) used for read transactions:

When using DMA for read transactions, the section must be allocated to a user-specific memory region
configured by the CPU's memory protection unit (MPU) as non-cacheable.

There are no restrictions when not using DMA for read transactions.

The section that contains the external buffers (EB) used for write transactions:

When using DMA for write transactions, the section must be allocated to a user-specific memory region
configured by the MPU as write-through or non-cacheable.

There are no restrictions when DMA is not used for write transactions.

The section surrounded by 12C_START SEC VAR SLOW NO INIT ASIL B UNSPECIFIED /

I2C_STOP SEC VAR SLOW NO INIT ASIL B UNSPECIFIED:

When using DMA, this section must be allocated to a user-specific memory region configured by the MPU as
write-through or non-cacheable.

There are no restrictions when DMA is not used.

Note: These restrictions are applied only to the Cortex®-M7 CPU because it includes TCMs, VRAM and cache.
These restrictions do not apply when using the Cortex®-M4 CPU.
The areas mentioned above must be accessible through DMA and require 4-byte alignment.

User guide 13 002-31274 Rev. *L

2024-11-29

12C driver user guide < in ﬁ neon

2 Using the I12C driver

Note: A CONST(rodata) data may also be generated for the CODE memory sections. An example is the jump
address output by the compiler. Therefore, it is recommended to specify a CONST(rodata) data
allocation keyword to the CODE memory section too. If you do not specify it in the CODE memory
section, the generated CONST(rodata) data in the CODE memory section is placed in the default
memory section.

User guide 14 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

3 Structure and dependencies

3 Structure and dependencies

The 12C driver consists of static, configuration, and generated files.

3.1 Static files
Table 3 Static files

Folder Description

S(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/I2c_TS_* Path to the I2C driver plugin.

S(PLUGIN_PATH)/lib_src Contains all static source files of the 12C driver. These
files contain the functionality of the driver that does
not depend on the current configuration. The files
are used to build a static library.

S(PLUGIN_PATH)/src Comprises configuration-dependent source files or
derivative-specific files. Each file will be rebuilt when
the configuration is changed. All necessary source
files will automatically be compiled and linked
during the build process and all include paths will be
set if the 12C driver is enabled.

S(PLUGIN_PATH)/include Basic public include directory needed by the user to
include I2¢.h.

S(PLUGIN_PATH)/autosar Contains the AUTOSAR ECU parameter definition
with vendor-, architecture-, and derivative-specific
adaptations to create a correctly matching
parameter configuration for the 12C driver.

3.2 Configuration files

The configuration of the I12C driver is done via EB tresos Studio. The file containing the 12C driver’s configuration
is named /2c.xdm and is in the S(PROJECT_ROOT)/config directory. This file serves as the input to generate
configuration-dependent source and header files during the build process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description. They
are in the output/generated subfolder of your project folder.

Table 4 Generated files
File Description
include/I2c_Cfg.h Contains all symbolic names for the configured 12C channels.
include/I2c_PBcfg.h Contains the configured constants for the 12C driver.
include/I2¢c_Externalinclude.h | Contains the include directives for user-configured external header files.
include/I2¢c_Irg.h Contains the declaration of ISR functions.
src/I2¢_PBcfg.c Contains the configured constants for the 12C driver.
src¢/l2c_lIrg.c Contains the definition of ISR functions.
swcd/I2¢_Bswmd.arxml Contains BswModuleDescription.

User guide 15 002-31274 Rev. *L

2024-11-29

12C driver user guide < in f| neon

3 Structure and dependencies

Note: Generated source files need not to be added to your application make file. These files will be compiled
and linked automatically during the build process.

Note: Additional steps are required to generate the BSW module description. In EB tresos Studio, select
Project > Build Project, and click generate_swcd.

3.4 Dependencies

3.4.1 PORT driver

Although the 12C driver can be successfully compiled and linked without an AUTOSAR-compliant PORT driver,
the latter is required to configure and initialize all ports. Otherwise, the 12C driver will show undefined behavior.
The PORT driver needs to be initialized before the 12C driver is initialized.

3.4.2 MCU driver

The MCU driver must be initialized, and all MCU clock reference points referenced by the hardware units (SCB)
viathe 12cClockRef configuration parameter must have been activated (via calls of MCU API functions)
before initializing the 12C driver. See the MCU driver’s user guide for details.

Note that the clock, pre-scaler, or PLL settings are controlled by the MCU driver. There are no resources shared
with the I2C driver. Depending on the configuration, changes in the clock settings may affect the operation of
the 12C driver.

3.4.3 AUTOSAR 0OS

The AUTOSAR operating system handles the interrupts used by the 12C driver. See 6.3 Interrupts for more
information.

The counter provided by the operating system is used by the 12C driver in the bus idle check feature.

3.4.4 BSW scheduler

The BSW scheduler handles the critical sections that are used by the 12C driver.

3.4.5 DET

If default error detection is enabled in the 12C driver configuration, DET needs to be installed, configured, and
integrated into the application as well.

This driver reports DET error codes as ‘instance 0’.

3.4.6 DEM

If DEM event reporting is enabled in the 12C driver configuration, DEM needs to be installed, configured, and
integrated into the application as well.

To enable DEM support in the 12C driver, the I12C DEM RECOVERABLE FAILURE and
I2C DEM UNRECOVERABLE FAILURE production error needs to be defined in the DEM configuration in the
I2cDemEventParameterRefs container.

User guide 16 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

3 Structure and dependencies

3.4.7 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It is
configured via the 12cErrorCalloutFunction configuration parameter.

3.4.8 DMA

DMA is supported for some hardware instances (see the datasheet for details). If a hardware instance that does
not support DMA is configured to use DMA, an error will be generated.

The 12C driver does not modify the global status of the DMA hardware. You must ensure that DMA is globally
enabled before using the DMA feature of the 12C driver.

User guide 17 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see EB tresos Studio for ACG8 user’s guide [5].

4.1 General configuration

The module comes preconfigured with default settings. You must adapt these to your environment when
necessary.

Table 5 General configuration

Parameter Description

I2cDemEventParameterRefs

Enables or disables the DEM functionality for the 12C driver. If this
parameter is disabled, both of the following DEM functionalities are
disabled:

I2C_DEM RECOVERABLE FAILURE enables or disables the DEM
functionality for recoverable failures, categorized as follows:

e Bus protocol error (NACK, ARB_LOST, unintended STOP from
external master)

e RxFIFO handling error (OVER_FLOW)

I2C_DEM UNRECOVERABLE FAILURE enables ordisables the DEM
functionality for unrecoverable failures, categorized as follows:

e Buserror

e TxFIFO handling error (OVER_FLOW)

e RxFIFO handling error (UNDER_FLOW)
e DMAerror

I2cDevErrorDetect

Enables or disables the DET functionality for the 12C driver

I2cVersionInfoApi

Specifies whether the 12c_GetversionInfo APl functionis available

I2cChangeOvsApi

Specifies whether the 12c_ChangeOvs API function is available

I2cChangeSlaveAddressApi

Specifies whether the 12c_ChangeSlaveAddress APlfunctionis
available

I2cErrorCalloutFunction

Specifies the name of the error callout function, which is called
whenever an error occurs.

I2cOsCounterRef Specifies the reference to the OS counter which is used by the 12C
driver. This parameter must be enabled if T2cBusTdleCheck is
enabled.

I2cIncludeFile

Specifies the external include files used in the 12C driver.

If using this feature, the notification function and callout function
declaration must be included.

I2c ConfigSet

Specifies the configuration set for the 12C driver and its name

User guide

18 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

4 EB tresos Studio configuration interface

4.2 12C configuration
Table 6 12C configuration
Parameter Description
T2cChannelConfig Specifies the container name for channel configuration
I2cChannelld Specifies the ID for the channel used in the 12C driver. It is used as a
parameter for API functions.
Note: The combination of this parameter and the
I2cChannelConfigcontainer name should be the same
in all configuration sets.
I2cScbChannelNumber

Specifies the SCB resource number

Note: This parameter should be unique within a configuration set.

I2cDefaultSlaveAddrress

Specifies the default slave address. This value is used for accepting
slave transactions.

Note: This value does not include the R/W bit. It should not set the
“general call” value (zero).

I2cDefaultSlaveAddrressMask

Specifies the default slave address mask. This value is used for
accepting slave transactions.

Note: This value does not include the R/W bit.

I2cMasterWriteProcessing

Specifies the periodic process for master write transactions:
e INTERRUPT: Using HW interrupt
¢ POLLING: Using I2c MainFunction Handling

I2cMasterReadProcessing

Specifies the periodic process for master read transactions:
e INTERRUPT: Using HW interrupt
¢ POLLING: Using I2c MainFunction Handling

I2cSlaveProcessing

Specifies the periodic process for slave write/read transactions:
e INTERRUPT: Using HW interrupt
e POLLING: Using 12¢ MainFunction Handling

I2cUseDmaMasterTx

Enables or disables the DMA feature for master write transactions.

Note: Ifenabled, T2cMasterwriteProcessing must be set to

INTERRUPT.

User guide

19 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

4 EB tresos Studio configuration interface

Parameter

Description

I2cUseDmaMasterRx

Enables or disables the DMA feature for master read transactions.

Note: Ifenabled, I2cMasterReadProcessing must be set to
INTERRUPT.

I2cUseDmaSlaveTx

Enables or disables the DMA feature for slave write transactions.

Note: Ifenabled, I2cSlaveProcessing must be set to
INTERRUPT.

I2cUseDmaSlaveRx

Enables or disables the DMA feature for slave read transactions.

Note: Ifenabled, 12cSlaveProcessing must be setto
INTERRUPT.

I2cChannelDefaultOvs

Specifies the default OVS settings

I2cBusIdleCheck

Enables or disables the bus idle check feature before sending the
“START” bit.

Note: Ifenabled, each master mode API checks the bus idle state
before sending the “START” bit to the bus. It is useful for
multi-master buses. However, to check the bus idle state,
the hardware must wait for the stabilization of the SCB
unit. Thus, the APl needs more execution time than without
this check.

I2cHwAutoAckSlaveAddress

Specifies whether to send an acknowledgment by HW/SW when the
slave address matches.

Note: Ifyou need strict control flow and/or cannot avoid the
interrupt delay for 12C handling, recommend to disable.

I2cHwAutoAckSlaveRxData

Specifies whether to send an acknowledgment by HW/SW when
receiving data in slave mode.

Note: Ifyou need strict control flow and/or cannot avoid the
interrupt delay for 12C handling, recommend to disable.

Note: When using DMA for receiving data in slave mode
(I2cUseDmaSlaveRx is enabled),
I2cHwAutoAckSlaveRxData must also be enabled, as
software acknowledgment is not possible.

Note: Ifdisabled, 12cRxTriggerLevelSlave mustbe 0and
cannot be edited.

User guide

20 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

4 EB tresos Studio configuration interface

4.2.1 12C trigger level setting
Table 7 12C trigger level setting
Parameter Description
I2cTxTriggerLevelMaster Specifies the trigger level for the master write operation. If the FIFO fill

level falls below this value, the periodic process is triggered.

I2cRxTriggerLevelMaster Specifies the trigger level for the master read operation. This
parameter is fixed to 0.

I2cTxTriggerLevelSlave Specifies the trigger level for the slave write operation. If the FIFO fill
level falls below this value, the periodic process is triggered.

I2cRxTriggerLevelSlave Specifies the trigger level for the slave read operation. If the FIFO rises
above this value, the periodic process is triggered.

Note: Ifthese values are set higher, the interrupt (periodic process) frequency will decrease; however, the
process load in one interrupt will increase. In other words, the interrupt handler execution time will
be longer. Therefore, you should select an appropriate value suitable for your application.

4.2.2 12C use DMA channel info
Table 8 12C use DMA channel info
Parameter Description
I2cDmaTxChannel Specifies the DMA resource number to use for the Tx periodic processes.

This resource is used for both master and slave transactions.

I2cDmaRxChannel Specifies the DMA resource number to use for the Rx periodic processes.
This resource is used for both master and slave transactions.

Note: The runtime system is responsible for globally activating DMA before using the 12C driver, if DMA is
used. The selectable range of DMA resources is limited by the SCB resource in use.

4.2.3 12C channel OVS config
Table 9 12C channel OVS config
Parameter Description
12cOvsld Specifies the ID for the OVS configuration set. It is used as a parameter for

I2c ChangeOvs.

I2cClockRef Reference to the clock source configuration, which is set in the MCU driver
configuration.

Note: The runtime system is responsible for activating the selected clock
before using the 12C driver.

I2cClockRefInfo Specifies the SCB resource input clock value in Hz, which is referenced as
I2cClockRef.
I2cDataRateMode Specifies the 12C bus speed mode, selected from the following:
User guide 21 002-31274 Rev. *L

2024-11-29

12C driver user guide

Infineon

4 EB tresos Studio configuration interface

Parameter

Description

e I2C STANDARD MODE
e I2C FAST MODE
e I2C FAST MODE PLUS

I2cGlitchFiltering

Specifies whether the glitch filter should use a digital filter or an analog filter.
e I2C DF in:digitalfilter
e I2C AF in:analogfilter

I2cOVSs

Specifies the divider value of the selected frequency in T2cClockRref. The
frequency divided by this value is the 12C bus speed.

Note: This value must be the same as 12cLowPhase0OVS plus
I2cHighPhaseOVS.

I2cLowPhaseOVS

Specifies the divider value of the low phase part of the frequency selected by
I2cClockRef.

I2cHighPhaseOVS

Specifies the divider value of the high phase part of the frequency selected by
I2cClockRef.

User guide

22 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

4 EB tresos Studio configuration interface

Parameter Description

I2cBusFrequencyInfo | |ndicates the frequency specified by 12cclockref divided by the value
specified by 12covs.

Note: This value should match 12cbataRateMode.

Note: The I12C bus speed is specified by above parameters. See the hardware TRM for details. You should
select appropriate values for these parameters to ensure communication with external nodes.

4.3 Other modules

4.3.1 PORT driver

The pins given in 6.1 Ports and pins must be configured in the PORT driver. The trigger multiplexer given in 6.4
DMA must be configured in the PORT driver if the DMA is configured to use.

4.3.2 MCU driver

The SCB clock must be configured.

4.3.3 DET

DET must be configured if the DET functionality is activated.

4.3.4 DEM

DEM must be configured if the DEM functionality is activated.

4.3.5 AUTOSAR OS

The 12C driver’s interrupts (listed in 6.3 Interrupts) must be configured in the AUTOSAR operating system. If
DMA is used, the corresponding DMA interrupt must also to be configured. The counter used by the 12C driver
must be configured if 12cBusIdleCheck is enabled.

4.3.6 BSW scheduler

The 12C driver uses the following services of the BSW scheduler (SchM) to enter and leave critical sections:

e SchM Enter I2c I2C EXCLUSIVE AREA 0 (void)
e SchM Exit I2c I2C_EXCLUSIVE AREA 0 (void)

You must ensure that the BSW scheduler is properly configured and initialized before using 12C services. The
critical sections must prevent any task or interrupt from calling any 12C API function or 12C interrupt service
routine.

User guide 23 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

5 Functional description

5 Functional description

The 12C driver supports master and slave transaction modes. These modes are specified with the API call. Each
mode is processed with the preconfigured method (interrupt, polling, or interrupt with DMA).

This chapter describes the basic operation of the I2C driver.
5.1 12C driver functionality
5.1.1 Initialize and prepare the buffer for the 12C driver

5.1.1.1 Initialize the 12C driver
Before using other APIs, you must initialize the 12C driver.
1. Calll2c_Init.

In this function, the 12C driver initializes the configured SCB resource and internal variables.

Code Listing 1 Example using the 12¢c_Init() function with the first configuration set

I2c Init(&I2cConf IZ2cConfigSet I2cConfigSet 0);

5.1.1.2 Prepare the external buffer

Before starting a transaction, you must prepare the external buffer (EB). This buffer is used for both master and
slave operations.

1. Define the external buffer area for transmit and receive.

Code Listing 2 Example definition of the external buffer area for transmit and receive

uint8 TxBuffer[DATA SIZE OF TRANSMIT]; /* external buffer for
transmit */
uint8 RxBuffer[DATA SIZE OF RECEIVE]; /* external buffer for

receive */

Note: This buffer size is restricted by the memory allocation. (See 2.6.2 Memory allocation and constraints.)

Note: Ifthe I12C driver is in the 12C IDLE status, you can access the external buffer (read/write); do not
access the external buffer otherwise.

2. Store the transmit data in the prepared to transmit buffer.
3. Calll2c_SetupEb.

Code Listing 3 Example using 12c_SetupEb() with the defined external buffer

Ret = I2c SetupEb (channelld, &TxBuffer[0], transmit size, &RxBuffer[0],
receive size);

Note: This APl must be called in the IDLE state.

User guide 24 002-31274 Rev. *L
2024-11-29

12C driver user guide in ﬁ neon

5 Functional description

Note: The transmit data is read from the address given by the second parameter. The transmit length is
specified by the third parameter.

Note: The received data is stored at the address given by the fourth parameter. The receive length is
specified by the fifth parameter.

Note: After calling this function, the specified external buffer and length will be cyclically reused in every
master or slave operation. To change the buffer address or length, you should call 12c_SetupEb.
5.1.2 Master write operation
A master write operation is started as follows:
1. Calll2c_MasterWrite.

Code Listing 4 Example using 12c_MasterWrite()

Ret = I2c MasterWrite (channelld, target slave address); /*
target slave address is not contain the read/write bit */

Note: The target slave address should be set as a 7-bit number, starting with the MSb. (LSb is don’t care.)

Note: The Tx buffer must be prepared before starting the master operation. This APl should be called in the
idle state.

In this function, the prepared external buffer (EB) data is stored into the Tx FIFO, and the START bit is sent to
the bus.

If 12cBusTdleCheck is set, the bus idle state is checked before the START bit is sent. If the bus is busy (another
master is using the bus), this APl is declined.

Write data transfer (Master writes the data) !

START Slave address (7 bits) Write ACK Data(8 bits) ACK STOP
LEGEND :
SDA: Serial Data Line
SCL: Serial Clock Line (always driven by the master
= Slave Transmit / Master Receive
Figure 3 Master write transaction / (slave read transaction)
User guide 25 002-31274 Rev. *L

2024-11-29

12C driver user guide in f| neon

5 Functional description

5.1.2.1 Using interrupt
The following operations are performed by the ISR.
If the transmit data length is greater than the Tx FIFO depth, the ISR stores the remaining data to the Tx FIFO.

If all transmit data has been sent, the ISR sends the STOP bit to the bus. After sending the STOP bit, the ISR calls
the transmit complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call I12c_SetupEbor I2c_MasterWrite Or I2c_MasterRead

or I2c Cancel. Therepeated start bitis sentin the next APl call (I12c_MasterWrite or I2c_MasterRead),
and the STOP bitissentin I2c Cancel.

Note: Confirm that the Tx transaction ended by using the 12c ConfirmTxTransaction, before you
proceed to the next transaction with the repeated start bit.

Note: You can start the next transaction with repeated start (calling 12c_SetupEbor I2c Masteririte
or I2c_MasterRead) or Stop request (calling 12c_Cancel), notonly in the callback but also
external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the
next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 12c_MasterComReqgNotification.

5.1.2.2 Using polling

The following operations are performed by calling 12c MainFunction Handling.

If the transmit data length is longer than the Tx FIFO depth, 12c_MainFunction Handling stores the
remaining data to the Tx FIFO.

If all transmit data has been sent, 12c MainFunction Handling sends the STOP bit to the bus. After sending
the STOP bit, 12c_MainFunction Handling calls the transmit complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call 12c_SetupEb or I2c_MasterWrite Or I2c_MasterRead

or I12c_Cancel. The repeated start bitis sent in the next APl call (I12c_MasterWrite or I2c_MasterRead),
and the STOP bitis sentin 12c_Cancel.

Note: Confirm that the Tx transaction ended by using the 12c ConfirmTxTransaction, before you
proceed to the next transaction with repeated start bit.

Note: You can start the next transaction with repeated start (calling 12c_SetupEbor I2c_MasterWrite
or I12c MasterRead) or Stop request (calling 12c cancel), notonly in the callback but also
external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the
next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 I12c_MasterComReqgNotification.

User guide 26 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

5.1.2.3 Using DMA
The following operations are performed by the ISR and DMA:

DMA stores the remaining transmit data to the Tx FIFO. If all transmit data is sent, the ISR sends the STOP bit to
the bus. After sending the STOP bit, the ISR calls the transmit complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call I12c_SetupEbor I2c_MasterWrite Or I2c_MasterRead

or I2c Cancel. Therepeated start bitis sentin the next APl call (I12c_MasterWrite or I2c_MasterRead),
and the STOP bitissentin I2c Cancel.

Note: DMA transfer operates when the external buffer size is 2 bytes or more.

Note: Confirm that the Tx transaction ended by using the 12c_ConfirmTxTransaction, before you
proceed to the next transaction with repeated start bit.

Note: You can start the next transaction with repeated start (calling 12c _SetupEbor I2c MasterWrite
or I2c_MasterRead) or Stop request (calling 12c_Cancel), notonly in the callback but also
external of the callback. If you want to call these APIs external of the callback, then take care to
ensure that the corresponding situation is not judged only by status or job result. Therefore, ensure
that the next communication request is notified is already done by your own implementation (such
as a set variable in callback). The relevant information is also described in 7.7.1.9
12¢_MasterComReqgNotification.

5.1.3 Master read operation
The master read operation is started as follows:
1. Calll2c_MasterRead.

Code Listing 5 Example using 12c_MasterRead()

Ret = I2c MasterRead(channelld, target slave address);
/* target slave address does not contain the read/write bit */

Note: The target slave address should be set as a 7-bit number, starting from MSb. (LSb is don’t care.)

Note: The Rx buffer must be prepared before starting the master operation. This APl should be called in the
IDLE state.

In this function, the START bit is sent to the bus.

If 12cBusTdleCheck is set, the bus idle state is checked before the START bit is sent. If the bus is busy (another
master is using the bus), this APl is declined.

User guide 27 002-31274 Rev. *L
2024-11-29

12C driver user guide in fi neon

5 Functional description

to Read data transfer (Master reads the data)

START Slave address (7 bits) Read ACK Diata(® bits) MACK -SE)-P
LEGEND
SDA Serial Data Line
SCL Serial Clock Line (always driven by the master)
Slave Transmit / Master Receive
Figure 4 Master read transaction / (slave write transaction)

5.1.3.1 Using interrupt
The following operations are performed by the ISR.

When the data is received, the ISR copies the Rx FIFO data to the external buffer. If the expected amount of data

has been copied, the ISR sends the NACK and STOP bits to the bus. After sending the STOP bit, the ISR calls the
receive complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call 12c_SetupEb or I2c_MasterWrite Or I2c_MasterRead

or I2c Cancel. Therepeated start bitis sentin the next APl call (I12c_MasterWrite or I2c_MasterRead),
and the STOP bitissentin I2c Cancel.

Note: You can start the next transaction with repeated start (calling 12c_SetupEbor I2c Masteririte
or I2c_MasterRead) or Stop request (calling 12c_Cancel), notonly in the callback but also
external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the
next communication request notification is already done by your own implementation (e.g. set
variable in callback). The relevant information is also described in 7.7.1.9
12¢_MasterComReqNotification.

5.1.3.2 Using polling
The following operations are performed by calling 12c MainFunction Handling.

When the datais received, I2c MainFunction Handling copiesthe Rx FIFO data to the external buffer. If the
expected amount of data has been copied, I12c MainFunction Handling sendsthe NACKand STOP bits to

the bus. After sending the STOP bit, I12c MainFunction Handling calls the receive complete notification
function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call 12c SetupEbor I2c MasterWrite Oor I2c MasterRead

or I2c Cancel. Therepeated start bitis sentin the next APl call (I12c_MasterWrite or I12c MasterRead),
and the STOP bitissentin 12c Cancel.

Note: You can start the next transaction with repeated start (calling 12c_SetupEbor I2c MasterWrite
or 12c_MasterRead) or Stop request (calling 12c cancel), notonly in the callback but also
external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the
next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 12c_MasterComReqgNotification.

User guide 28 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

5.1.3.3 Using DMA

The following operations are performed by the ISR and DMA.

When the data is received, DMA copies the Rx FIFO data to the external buffer. However, the remaining 128
bytes are copied by the ISR. If the expected amount of data has been copied, the ISR sends the NACK and STOP
bits to the bus. After sending the STOP bit, the ISR calls the receive complete notification function.

If repeated start mode is set, the driver calls the next communication request notification instead of sending
the STOP bit to the bus. In this callback, you can call 12c_SetupEb or I2c_MasterWrite Or I2c_MasterRead
or I2c Cancel. The repeated start bitis sentin the next APl call (I12c_MasterWrite or I2c MasterRead),
and the STOP bitissentin I12c_Cancel.

Note: DMA transfer operates when the external buffer size is 129 bytes or more.

Note: You can start the next transaction with repeated start (calling 12c_SetupEbor I2c Masteririte
or I12c_MasterRead) or Stop request (calling 12c_Cancel), notonly in the callback but also
external of the callback. If you want to call these APIs external of the callback, take care to ensure
that the corresponding situation is not judged only by status or job result. Therefore, ensure that the
next communication request is notified by your own implementation (such as a set variable in
callback). The relevant information is also described in 7.7.1.9 12c_MasterComReqgNotification.

5.1.4 Slave mode operation
A slave operation is started as follows:
1. Calll2c_SlaveAwaitRequest.

Code Listing 6 Example using 12¢_SlaveAwaitRequest()

Ret = I2c SlaveAwaitRequest (channelld);

Note: After the start of the slave operation, external bus master requests for the configured slave address
are accepted.

Note: Both Tx and Rx buffers must be prepared before starting the slave operation. This APl must be called
in the IDLE state.

This function stores the prepared external buffer (EB) data into the Tx FIFO and waits for an external bus master
request.

A slave write operation or slave read operation is performed when an external master request is received.

Note: Based on the different methods for sending an acknowledgment when slave address matching, there
are two ways to confirm the actual data transfer length:

- When an acknowledgment is sent by hardware (12cHwAutoAckSlaveAddress is enabled),
confirm the actual transaction length by using 12c_GetBufferStatus. This APl returns
the remaining data length (the length not sent/received) as specified by 12c SetupEb.

- When an acknowledgment is sent by software (12cHwAutoAckSlaveAddress is disabled),
confirm the actual transaction length by using 12c_SlaveCompleteNotification.The

User guide 29 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

TransferCount parameter in this APl represents the actual data transfer length, and the
transfer completion event can be obtained through the Event parameter.

Note: For slave operation, if the actual transaction length is longer than the specified length, the driver
handles the following transactions as follows:
In the receive operation, the data which over the specified length are read from Rx FIFO but not
stored in the Rx buffer. (This means that the received data is ignored). And if further data is received,
driver tries to send NACK to stop the current transaction. In the transmit operation, the default data
(OXFF) is transmitted in repeatedly. Therefore, Infineon recommends use of the longer buffer (for
example, max data length) for slave operation, to avoid these situations.-Even in such cases, each
notification is called by receiving a STOP bit or Repeated start bit from the master.

5.1.4.1 Slave write operation

If a read request is received from the external bus master, the 12C driver starts the slave write transaction.

5.1.4.1.1 Usinginterrupt

The handling of slave write operations (using interrupt) differs depending on the method used to send an
acknowledgment when slave address matching.

e When the slave address matches the acknowledgment is sent by hardware (12cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by the ISR.
If the transmit data length is greater than the Tx FIFO depth, the ISR stores the remaining data in the Tx FIFO.

After receiving the STOP bit, the ISR calls the transmit complete notification function
(I2c_SlaveTxNotification).

The driver also calls the repeated start notification (I12c_SlavesrNotification), when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call 12c_SetupEb or

I2c UpdateTxBuffer Or I2c SlaveAwaitRequest to prepare the next transaction. To handle the repeated
start, handle the ISR without delay. Infineon recommends setting a higher priority to the corresponding ISR.

e When the slave address matches the acknowledgment is sent by software (12cHwAutoAckSlaveAddress
is disabled)

The following operations are performed by the ISR.

If the slave address matching occurs, the ISR calls the slave address match notification
(12c_slaveaddressMatchNotification),and the application must return the response as
I2C_ACK/I2C_HOLDACK/I2C_NACK to this notification function whenreturning 12c_ACK/I2C NACK, the ISR
will send the corresponding acknowledge to the bus when returning 12¢c HOLDACK, the ISR does nothing.

If the transmit data length is greater than the Tx FIFO depth, the ISR stores the remaining data in the Tx FIFO.

After receiving the STOP bit, the ISR calls the transmit complete notification function
(12c_slaveCompleteNotification)and notifies the application layer of the
I2C_SLAVE COMPLETE STOP TX xX eventthrough the Event parameter.

The driver also calls the transmit complete notification function (12c_slaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the

User guide 30 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

I2C_SLAVE COMPLETE RESTART TX XX eventthrough the Event parameter.In this callback, call
I2c_SetupEb, I2c UpdateTxBuffer,Or I2c SlaveAwaitRequest to prepare the next transaction.

Note: If I12cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce the
bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for example,
critical section), the control flow to the bus may lost. You should carefully enable this configuration,
depending on the use case. see 5.1.4.3 for more detail.

5.1.4.1.2 Using polling

The handling of the slave write operations (using polling) differs depending on the method used to send an
acknowledgment when slave address matching.

e When the slave address matches the acknowledgment is sent by hardware (I12cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by calling 12c MainFunction Handling.

If the transmit data length is greater than the Tx FIFO depth, I12c_MainFunction Handling stores the
remaining data in the Tx FIFO.

After receiving the STOP bit, 12c_MainFunction Handling calls the transmit complete notification function
(I2c_SlaveTxNotification).

The driver also calls the repeated start notification (I2c_SlavesrNotification), when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call 12c_SetupEb

I2c UpdateTxBuffer, Or I2c_SlaveAwaitRequest to prepare the next transaction. However, Infineon
does not recommend polling in the repeated start mode. Because the 12c_MainFunction Handling should
be called without any delay at the timing of Repeated Start receiving, to detect the next transaction start. If the
I2c MainFunction Handlingis delayed, the 12C driver shall not handle the next transaction as expected.

e When the slave address matches the acknowledgment is sent by software (12cHwAutoAckSlaveAddress
is disabled)

The following operations are performed by calling 12c MainFunction Handling.

If the slave address matching occurs, 12c_MainFunction Handling calls the slave address match
notification (I2c SlaveAddressMatchNotification),and the application must return the response as
I2C ACK/I2C HOLDACK/I2C NACK to this notification function, when returning 12C_ACK/I2C NACK,
I2c MainFunction Handling will send the corresponding acknowledge to the bus when returning
I2C_HOLDACK, I2c MainFunction Handling does nothing.

If the transmit data length is greater than the Tx FIFO depth, I12c MainFunction Handling stores the
remaining data in the Tx FIFO.

After receiving the STOP bit, I12c MainFunction Handling calls the transmit complete notification function
(12c_slaveCompleteNotification)and notifies the application layer of the
I2C_SLAVE COMPLETE STOP TX XX eventthrough the Event parameter.

The driver also calls the transmit complete notification function (I12c_slaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C_SLAVE COMPLETE RESTART TX XX eventthrough the Event parameter.In this callback, call

I2c_ SetupEb, I2c UpdateTxBuffer,Or I2c SlaveAwaitRequest to prepare the next transaction.

User guide 31 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

5.1.4.1.3 Using DMA

The handling of the slave write operations (using DMA) differs depending on the method used to send an
acknowledgment when the slave address matches.

e When the slave address matches the acknowledgment is sent by hardware (12cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by the ISR and DMA.

The DMA stores the remaining transmit data to Tx FIFO. After receiving the STOP bit, the ISR calls the transmit
complete notification function (I12c_SlaveTxNotification).

The driver calls the repeated start notification (I2c_SlavesrNotification)also when detectingthe
Repeated Start (detection of the STOP bit and bus busy). In this callback, call 12c_SetupEb,
I2c_UpdateTxBuffer,Or I2c_ SlaveAwaitRequest to prepare the next transaction.

e When the slave address matches the acknowledgment is sent by software (12cHwAutoAckSlaveAddress
is disabled)

The following operations are performed by the ISR and DMA.

If slave address matching occurs, the ISR calls the slave address match notification
(12c_SslaveaddressMatchNotification),and the application must return the response as

I2C ACK/I2C HOLDACK/I2C NACK to this notification function when returning 12Cc_ACK/I2C NACK, the ISR
will send the corresponding acknowledge to the bus when returning 12¢c_HOLDACK, the ISR does nothing.

The DMA stores the remaining transmit data to Tx FIFO. After receiving the STOP bit, the ISR calls the transmit
complete notification function (I12c_SlaveCompleteNotification)and notifies the application layer of the
I2C_SLAVE COMPLETE STOP TX xX eventthroughthe Event parameter.

The driver also calls the transmit complete notification function (12c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C SLAVE COMPLETE RESTART TX XX eventthroughthe Event parameter. In this callback, call
I2c_SetupEb, I2c UpdateTxBuffer,Or I2c SlaveAwaitRequest to prepare the next transaction.

Note: DMA transfer operates when the external buffer size is 2 bytes or more.

Note: If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce
the bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for
example, a critical section), the control flow to the bus may lost. You should carefully enable this
configuration, depending on the use case. see 5.1.4.3 for more detail.

5.1.4.1.4 Update Buffer

In the slave write operation, the buffer address and transmit length can be updated by calling
I2c_UpdateTxBuffer.

Code Listing 7 Example using 12c_UpdateTxBuffer() with the defined external buffer

Ret = I2c UpdateTxBuffer (channelld, &TxBuffer[0], transmit size);

Note: Keep the external buffer area while the transmit operation is ongoing.

User guide 32 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

Note: Do not access the external buffer while the transmit operation is ongoing.
Note: The buffer must be set at least once via 12c_SetupEb before using this API.

Note: For external buffers, see 5.1.1.2 Prepare the external buffer

I2c_SetupEb can update the buffer information, but the 12c_SetupEb requires the driver state to be IDLE.
After changing the buffer, the driver should be in the BUSY state to respond to the master by calling
[2c_SlaveAwaitReqgeust. Therefore, if you are using this sequence to update the buffer information, thereis a

period of IDLE state (this is a No response duration). The 12c_UpdateTxBuffer allows you to update buffer
information without setting the driver state to IDLE.

I2c_UpdateTxBuffer isused when the driveris in the BUSY state or slave address match window. This API
can call before the data transmission starts. If this APl is called during data transmission, the request is
declined to keep the transmit data consistency.

Note: The slave address match window occurs when the slave address matches the acknowledgment sent
by software (12cHwAutoAckSlaveAddress is disabled). If a slave address match occurs, the ISR
will call the slave address match notification (12c_SlaveAddressMatchNotification). Ifthis
notification returns 12¢ HOLDACK, clock stretching will be applied to the bus, and the slave address
match window will open. The window remains open until the application calls

I2c SlaveStartTransfer to startthe transfer, after which the slave address match window will
close.

User guide 33 002-31274 Rev. *L

2024-11-29

Infineon

12C driver user guide

5 Functional description

SDA

SCL

LEGEND :
:Accept(Return E_OK) SDA : Serial Data Line R/W : Direction bit(R:Read, W:Write)
. SCL : Serial Clock Line ACK : Acknowledge
:Decline (Return NOT_E_OK) START : Start condition NACK :NotAcknowledge
Sr : Repeated Start condition
When I2cHwAutoAckSlaveAddress isenabled

Declinethe I2c_UpdateTxBuffer, f - - - g
If I2¢c SlaveAwaitRequest is not called. even if the driver state is IDLE (this means that before calling T12c_SlaveAwaitRequest)

\LOO0CO0C0U00000000 T Lo

Onlyinthe I2c SlaveSrNotification,acceptthe I2c UpdateTxBuffer,

Accept the I2c_UpdateTxBuffer.
(during BUSY state and before start data transmission)

Decline the I2c UpdateTxBuffer.
(after starting data transmission)

- O

%

NANVVVNARARRAAAAAA AL VUL

Same as "Slave address
(7bit)" and later

Data(8 bits) NACK orACK Sr

START Slave address (7bit) R/W ACK

bit

SCL

When I2cHwAutoAckSlaveAddress isdisabled

SDA

Accept the I2¢c UpdateTxBuffer.
(during clock stretch state and before start data transmission)

—
O LA000OO0d COOCO0 OF A XK

»¢ < »
Data NACK orACK Sr Sameas "Slave address

VUVUVVVVA - ARAAA AT WU

P
START Slave address (7bit) R/W\ HOLDACK
bit

When return 12C_HOLDACK from 12c_SlaveAddressMatchNotification, I12C will enter clock
stretching status until "12c_SlaveStartTransfer" is called, This period is called the "slave address

(7bit)" and later

match window"

Figure5 l2c_UpdateTxBuffer Accept /[Decline

User guide

34 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

5.1.4.2 Slave read operation

When a write request is received from the external bus master, the 12C driver starts the slave read transaction.

5.1.4.2.1 Usinginterrupt

The handling of the slave read operations (using interrupt) differs depending on the method used to send an
acknowledgment when the slave address matches and receives data.

e When slave address match acknowledgment is sent by hardware (12cHwAutoAckSlaveAddress is
enabled)

The following operations are performed by the ISR.

When the data is received, the ISR copies the Rx FIFO data to the external buffer and sends ACK/NACK to the
master when receiving data acknowledgment is sent by software (I12cHwAutoAckSlaveRxData is disabled).
After receiving the STOP bit, the ISR calls the receive complete notification function
(12c_SlaveRxNotification).

The driver also calls the repeated start notification (I12c_SlaveSrNotification), when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call 12c_SetupEb or
I2c_SlaveAwaitRequest to prepare the next transaction. To handle the repeated start, handle the ISR
without delay. Infineon recommends setting a higher priority to the corresponding ISR.

e When the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress is disabled)
The following operations are performed by the ISR.

If slave address matching occurs, the ISR calls the slave address match notification
(12c_slaveaddressMatchNotification),and the application mustreturn the response as

I2C ACK/I2C HOLDACK/I2C NACK to this notification function when returning 12c ACK/I2C NACK, the ISR
will send the corresponding acknowledge to the bus when returning 12¢c_HOLDACK, the ISR does nothing.

When the data is received, the ISR copies the Rx FIFO data to the external buffer and sends ACK/NACK to the
master when receiving data acknowledgment is sent by software (I12cHwAutoaAckSlaveRxData is disabled).
After receiving the STOP bit, the ISR calls the receive complete notification function
(12c_slaveCompleteNotification)and notifies the application layer of the

I2C_SLAVE COMPLETE STOP RX xXeventthroughthe Event parameter.

The driver also calls the transmit complete notification function (12c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C_SLAVE COMPLETE RESTART RX XX eventthrough the Event parameter. In this callback, call

I2c SetupEborI2c SlaveAwaitRequest to prepare the next transaction.

Note: If T2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce the
bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for example,
critical section), the control flow to the bus may lost. Enable this configuration, depending on the use
case. See 5.1.4.3 for more details.

5.1.4.2.2 Using polling

The handling of the slave read operations (using polling) differs depending on the method used to send an
acknowledgment when the slave address matches and receives data.

User guide 35 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

e When the slave address matches the acknowledgment is sent by hardware (12cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by calling 12c MainFunction Handling.

When the data is received, I2c MainFunction Handling copiesthe Rx FIFO datainto the external buffer and
sends ACK/NACK to master when receiving data acknowledgment is sent by software
(12cHwWAUtoAckSlaveRxData is disabled). After receiving the STOP bit, I2c_ MainFunction Handling calls
the receive complete notification function (I2c_SlaveRxNotification).

The driver also calls the repeated start notification (I2c_SlavesrNotification), when detecting the
Repeated Start (detection of the STOP bit and bus busy). In this callback, call 12c_SetupEb or
I2c_SlaveAwaitRequest to prepare the next transaction. However, Infineon does not recommend polling in
repeated start mode. Call the 12c MainFunction Handling withoutany delay at the timing of Repeated
Start receiving, to detect the next transaction start. If the 12c_MainFunction Handlingis delayed, the 12C
driver shall not handle the next transaction as expected.

e When the acknowledgment is sent by software (I2cHwAutoAckSlaveAddress is disabled)
The following operations are performed by calling 12c MainFunction Handling.

If slave address matching occurs, I2c_MainFunction Handling calls the slave address match notification
(12c_SslaveaddressMatchNotification),and the application must return the response as
I2C_ACK/I2C HOLDACK/I2C_ NACK to this notification function when returning 12¢_ ACK/I2C NACK,
I2c_MainFunction Handling will send the corresponding acknowledge to the bus when returning
I2C_HOLDACK, I2c MainFunction Handling do nothing.

When the data is received, I12c_MainFunction Handling copies the Rx FIFO data into the external buffer and
sends ACK/NACK to master when receiving data acknowledgment is sent by software
(I2cHwAutoAckSlaveRxData is disabled).

After receiving the STOP bit, I12c_MainFunction Handling calls the transmit complete notification function
(12c_slaveCompleteNotification)and notifies the application layer of the
I2C SLAVE COMPLETE STOP RX XX eventthrough the Event parameter.

The driver also calls the transmit complete notification function (I12c_slaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C SLAVE COMPLETE RESTART RX XX eventthroughthe Event parameter.

5.1.4.2.3 Using DMA

The handling of the slave read operations (using DMA) differs depending on the method used to send an
acknowledgment when the slave address matches.

e When the slave address matches the acknowledgment is sent by hardware (12cHwAutoAckSlaveAddress
is enabled)

The following operations are performed by the ISR and DMA.

When the data is received, the DMA copies the Rx FIFO data to the external buffer. After receiving the STOP bit,
the ISR calls the receive complete notification function (I12c_SlaveRxNotification).

The driver calls the repeated start notification (I12c_SlaveSrNotification)also when detectingthe
Repeated Start (detection of the STOP bit and bus busy). In this callback, call 12c SetupEb or
I2c_SlaveAwaitRequest to prepare the next transaction.

e When the acknowledgment is sent by software (12cHwAutoAckSlaveAddress is disabled)

User guide 36 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

The following operations are performed by the ISR and DMA.

If slave address matching occurs, the ISR calls the slave address match notification
(12c_SslaveaddressMatchNotification), and the application must return the response as

I2C ACK/I2C HOLDACK/I2C NACK to this notification function when returning 12Cc_ACK/I2C NACK, the ISR
will send the corresponding acknowledge to the bus when returning 12¢c_HOLDACK, the ISR does nothing.

When the data is received, the DMA copies the Rx FIFO data to the external buffer. After receiving the STOP bit,
the ISR calls the receive complete notification function (I2c_SlaveCompleteNotification)and notifies the
application layer of the 12C_SLAVE COMPLETE STOP RX XX eventthrough the Event parameter.

The driver also calls the transmit complete notification function (I12c_SlaveCompleteNotification), when
detecting the Repeated Start (detection of the STOP bit and bus busy) and notifies the application layer of the
I2C SLAVE COMPLETE RESTART RX XX eventthrough the Event parameter. In this callback, call
I2c_SetupEboOrI2c SlaveAwaitRequest to prepare the next transaction.

Note: When using DMA for receiving data in slave mode, the configuration of 12cHwAutoAckSlaveRxData
must be enabled. (Can not be acknowledged by software)

Note: If 12cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce
the bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (e.g.
critical section), the control flow to bus may lost. You should carefully to enabling this configuration,
depending on use case. see 5.1.4.3 for detail.

User guide 37 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

5 Functional description

5.1.4.3 Auto acknowledge configuration

There are two configurations for controlling the method of sending acknowledgment in slave mode:

I2cHwAutoAckSlaveAddress and I2cHwAutoAckSlaveRxData. below is a description of the functionality of

these two configurations, as well as the trade-offs when they are enabled or disabled.

e TI2cHwAutoAckSlaveAddress isenabled

Table 10

Description of the functionality when I2cHwAutoAckSlaveAddress is enabled

Functionality

Option

Send acknowledge method when matching the slave address

Hardware

I2c_SlaveAddressMatchNotification

Not called

Slave transfer complete notification when detecting the Stop
condition

I2c_SlaveTxNotification/
I2c_SlaveRxNotification

Slave transfer complete notification when detecting the
Repeated Start condition

I2c_SlaveSrNotification

e TI2cHwAutoAckSlaveAddress is disabled

Table 11

Description of the functionality when I2cHwAutoAckSlaveAddress is disabled

Functionality

Option

Send acknowledge method when matching the slave address

Software

I2c_SlaveAddressMatchNotification

Called

Slave transfer complete notification when detecting the Stop
condition

I2c_SlaveCompleteNotification with
I2C_SLAVE COMPLETE STOP_ XX XX

event

Slave transfer complete notification when detecting the
Repeated Start condition

I2c_SlaveCompleteNotification with
I2C_SLAVE COMPLETE RESTART XX XX

event

Note:

If the master performs continuous data transmission in the START -> STOP -> START -> STOP sequence

and the delay between the intermediate STOP and START is very short, due to the HW spec, SW

cannot distinguish between the repeated start and standard start bit. As a result, it will treat the
second START as a repeated start condition and pass the 12C SLAVE COMPLETE RESTART XX XX
event through the Event parameter in the final transmission completion notification

(I2qﬁSlaveCompleteNotification}

Note:

If I2cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, it can reduce the

latency to bus acknowledge. In other words, you can reduce the clockstretch. However, if this is
enabled and the driver’s interrupt is disturbed by some reason (e.q. critical section), hardware
acknowledges to the bus without software interaction. This may cause the application to lose the
control flow to the bus. For example, there is a risk of transmitting the remaining data from a
previous transaction to the next transaction in a repeated start scenario. Another example is
incorrectly sending a NACK in response to a repeated start request. Such situations can occur when
the driver ISR is not handled in time. Therefore, you should carefully select this configuration based

on your system requirements.

e TI2cHwAutoAckSlaveRxData isenabled

User guide 38

002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

Table 12 Description of the functionality when I2cHwAutoAckSlaveRxData is enabled
Functionality Option
Send acknowledge method when receiving data Hardware

Note: The acknowledgment will be sent by hardware when receiving data under the expected length, once
the received data length reaches the expected length, the 12C driver changes the HW setting to send
the further acknowledgment from software, and a NACK will be sent.

e TI2cHwAutoAckSlaveRxData isdisabled

Table 13 Description of the functionality when I2cHwAutoAckSlaveRxData is disabled
Functionality Option
Send acknowledge method when receiving data Software

5.1.5 Confirm the 12C driver status

To confirm the driver progress or driver status, you can use the following features.

5.1.5.1 Driver status
1. Calll2c_GetStatus.

This function returns one of the following statuses.

I2C UNINIT: Notyetinitialized

12C IDLE: No transaction request

I2C_BUSY MASTERTX: A master write operation isin progress.
I2C_BUSY MASTERRX: A master read operation isin progress.

I2C BUSY SLAVE:Waiting for the slave operation to complete.

I2C BUSY SLAVETX:A slave write operation is in progress.
I2C_BUSY SLAVERX: Aslave read operation isin progress.

I2C UNKNOWN STATUS: Cannot return the status (invalid channel ID)

Code Listing 8 Example using 12c_GetStatus()

Status = I2c GetStatus (channelId);

5.1.5.2 Latest job result
A job means a transaction. Thus, the job result is the same as the result of the transaction.
1. Calll2c_GetJobresult.

This function returns one of the following statuses.

I2C NORESULT: No job after initialization

I2C_PENDING:Ajobisin progress.

I2C_CANCEL: The previous job was canceled.

I2C MASTER TX SUCCESS: The previous master Tx job was successful.
I2C_MASTER RX SUCCESS: The previous master Rx job was successful.
I2C SLAVE TX SUCCESS: The previous slave Tx job was successful.

User guide 39 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

I2C_SLAVE RX_ SUCCESS: The previous slave Rx job was successful.
I2C MASTER TX ERROR: The previous master Tx job failed .
I2C MASTER RX ERROR: The previous master Rx job failed .

I2C_SLAVE TX ERROR: The previous slave Tx job failed.
I2C SLAVE RX ERROR: The previous slave Rx job failed.

I2C_UNKNOWN RESULT: Cannot return a result (the channel ID was invalid or uninitialized)

Code Listing 9 Example using 12c_GetJobResult()

JobResult = I2c GetJobResult (channellId);

5.1.5.3 Buffer status

You can check the progress of the transaction when it is underway.

1. Call 12c_GetBufferStatus.

This function outputs the current Tx and Rx buffer pointer address and the length of the remaining data.
If the pointer address or the length of the remaining data does not change (the bus transaction appears
stalled) for reasons such as waiting for an external node’s reaction, you can take action such as canceling
the operation to prevent the system from freezing.

This function can be used to confirm the actual transaction length in slave mode. If you use it for this
purpose, you can call this function in each transaction’s complete notification. If there is any difference
between the specified length in I2c SetupEb and the actual transaction length, the difference length can
be found in this function parameter. In slave mode, when the default data sending (TX) or receiving (RX) is
ignored by a longer data request from the Master, this function returns the last position and the length 0.
This is because the external buffer data transaction is already complete.

Note: This function returns the calculated buffer status (position/length). Thus, the returned value has
limited accuracy. If DMA is used, the return value is a rough estimate.

Note: When I2cHwAutoAckSlaveAddress isenabled, using I12c GetBufferStatus to confirm the
actual transaction length may become inaccurate in slave mode. Therefore, Infineon recommends
using the transfer completion notification (12c SlaveCompleteNotification)to confirm the

actual data transfer length.

Code Listing 10 Example using the 12c_GetBufferStatus()

Ret = I2c GetBufferStatus (channelld,
&SrcAddressPtr,
&DestAddressPtr,
&SrcSize,

&DestSize) ;

I2c BufferType * SrcAddressPtr; /* variable definition */
I2c BufferType * DestAddressPtr; /* variable definition */
I2c BufferSizeType SrcSize; /* variable definition */
I2c BufferSizeType DestSize; /* variable definition */

User guide 40

002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

5.1.5.4 Confirm Tx Transaction

After calling the MasterWrite in repeated start mode, make sure that all the Tx transactions are complete before
you start the next transaction with repeated start.

1. Calll2c_ConfirmTxTransaction.
This function confirms if the Tx transaction has ended or not.
E_OK: Tx Transaction ended

E_NOT OK: Tx Transaction not ended

Code Listing 11 Example using 12c_ConfirmTxTransaction()

Ret = I2c ConfirmTxTransaction (channelId);

Note: Ifyou start the next Master transaction without confirming the Tx transaction ended, there is a
possibility to broken the current transaction.

Note: This function is intended for use in the Master mode channel.

5.1.6 Cancel the operation
You can terminate an operation underway.
1. Calll2c_Cancel.

Code Listing12 Example using 12¢_Cancel()

Ret = I2c Cancel (channelId);

Note: Ifthis function is called, the I12C driver tries to stop the transaction (For example, if a master read
operation is ongoing, it tries to send NACK and STOP). However, the communication partner may
ignore this request. For example, if a slave write operation is underway, the driver clears the FIFO and
disables the SCB, but the external master may continue to read the data. Such cases are difficult to
avoid; therefore, you should pay extra attention when calling this function.

Note: Ifthis function is called during slave write operation, the external master may detect a bus error.

This function terminates the currently ongoing operation. If the operation is terminated, the callback
notification will not be called.

If repeated start mode is set and call this function in the next communication request notification, the driver
sends the STOP bit in this function. In this case, the transaction complete callback notification will be called.

5.1.7 Change 12C driver settings

Even if not using reinitialization, the following settings can be changed.

User guide 41 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

5 Functional description

5.1.7.1 OVS settings
The OVS settings can be changed as follows:
1. Calll2c_ChangeOvs.

Code Listing 13 Example using the 12c_ChangeOvs()

Ret = I2c ChangeOvs (channelId, OvsId);
/* OvsId should be select from the configured one */

Note: This APl should be called in the IDLE state. You should ensure that the clock setting is in sync with the
input SCB clock setting.

This function changes the current OVS setting to another configured one, which is specified by the given
parameter (OVS setting ID).

5.1.7.2 Accept slave address [slave address mask
The slave address / slave address mask value can be changed as follows:
1. Calll2c_ChangeSlaveAddress.

Code Listing 14 Example using the 12c_ChangeSlaveAddress()

Ret = I2c ChangeSlaveAddress (channelld, Address, AddressMask);

Note: This APl should be called in the IDLE state. The slave address should be set as a 7-bit number, starting
with MSb.
You should avoid setting a slave address which only accepts the “general call (12C protocol)”
(address =0, address mask = OxFF).

User guide 42 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

5 Functional description

5.1.7.3 Repeated Start mode
The repeated start mode can be changed as follows:
1. Call12c_SetRepeatedStart.

Code Listing15 Example using the 12c_SetRepeatedStart ()

Ret = I2c SetRepeatedStart (channelld, RepeatedFlag);
/* parameter: RepeatedFlag */

/* TRUE: Repeated start mode */

/* FALSE: Normal mode */

Note: This APl should be called in the IDLE state.

5.1.8 Disabling the 12C driver
To stop the 12C driver, use the following API:
1. Calll2c_Delnit.

Code Listing 16 Example using 12c_Delnit()

I2c DelInit();

Note: In this function, the I2C driver resets the SCB settings to their reset values.

5.2 What is included

The I2c.h file includes all necessary external identifiers. Thus, your application only needs to include /2¢c.h to
make all APl functions and data types available.

5.3 Initialization
The 12C driver must be initialized before use by callingthe 12c_1nit APIfunction.
Before using the 12C driver, the following is needed:

e The PORT and MCU module must be initialized
o Ifyou use DMA, ensure that DMA is globally enabled before using the DMA feature of the 12C driver.
e Prepare other BSW modules (see 4.3 Other modules).

5.4 Runtime reconfiguration

To change the configuration set, disable the 12C driver (using 12c_DeInit). After this, initialize the 12C driver
(using 12c_1Init)with another configuration set.

To change a part of the configuration, see 5.1.7 Change 12C driver settings. This feature does not require
disabling the 12C driver.

User guide 43 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

5.5 API parameter checking
The 12C driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via T2cErrorCalloutFunction)is called with the
error code, service ID, module ID, and instance ID as parameters.

If default error detection is enabled, all errors are also reported to DET, a central error hook function within the
AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

See 7.4 Functions for a description of APl functions and associated error codes.

5.5.1 Vendor-specific development errors

The 12C driver is not included in the AUTSOAR specification; therefore, all parameter error checks are vendor-
specific.

Table 14 Vendor-specific development errors
Error Description
I2C_E_UNINIT An API (exceptthe 12c Init, I2c GetStatus,
I2c_GetVersionInfo)is called before the initialization of the 12C
driver.
12C_E_ALREADY INITIALIZED I2c_ Initiscalled when the driveris already initialized, without

calling 12c_DeInit.

I2C_E_TRANSACTION AnAPI (I2c_SetupEb, I2c MasterWrite, I2c MasterRead,
I2c_SlaveAwaitRequest, I2c ChangeOvs,
I2c_ChangeSlaveAddress) is called when the driveris notin

IDLE state.

I2C_E_OS_TIME_REFUSED GetCounterValue Or GetElapsedvalue (OS reference
functions) reports an error.

12C_E_PARAM CONFIG I2c_Initis called with aninvalid parameter (the configuration
structure is not found in the configuration set).

I2C_E_PARAM CHANNEL An APl is called with incorrect channel ID (channel ID not found in
the configuration set).

12C_E_PARAM_POINTER An APl is called with an invalid pointer. One of the following cases:

e I2c SetupEb and I2c UpdateTxBuffer are called with
NULL pointers.

e I2c GetBufferStatusandI2c GetVersionInfo are called
with a NULL pointer.

I2C_E_PARAM LENGTH AnAPI (I2c_SetupEb, I2c UpdateTxBuffer)is called with an
invalid length (Srcsize orDstSize is0 or greater than 65536u).
I2C_E_PARAM OVSID I2c ChangeOvs is called with an invalid OVS ID (OVS ID not found

in the configuration set).

12C_E_PARAM ADDRESS_ MATCHING I2c ChangeSlaveAddress is called with an invalid combination
of address and address mask (the value of address is equal to 0,
and the address mask is equal to OxFF; this combination would
resultin only accepting the “general call”).

User guide 44 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

5 Functional description

Error Description

I2C_E_PARAM POINTER_AND_LENGTH | One of the following cases:
I2c_Setupkb is called with an invalid combination of length and
pointer.

e Length(Srcsize/DstSize)is0, butthe pointer
(srcPtr/DstPtr)isavalid address.

e Pointeris NULL, but the length is valid.
I2c MasterWrite is called with invalid parameters:

e Previously set srcsizeisequalto0or Srcptris NULL.
I2c_MasterRead is called with invalid parameters:

e Previously set DstSize isequalto0or DstpPtris NULL.
I2c_SlaveAwaitRequest is called with invalid parameters:

e Previously set SrcSize orDstSize isequalto0or Srcptror
DstPtris NULL.

5.6 Production errors

There are two types of production errors: recoverable failure and unrecoverable failure.

These errors are reported to the DEM module with the category name, and to the error hook (configured via
I2cErrorCalloutFunction) with the detailed error code.

5.6.1 Recoverable failure
These are temporary errors, which are cleared when the operation is retried.

e Bus protocol error (NACK, ARB_LOST, unintended STOP from external master)
e RxFIFO handling error (OVER_FLOW)

I2C_E HW NACK ERROR: NACK received from an external node.

Note: Inthe master mode (write direction) of the repeated start mode, if the last acknowledgement is
delayed due to clock stretching on the slave node, reception of a NACK may not be detected. So, it is
possible the driver does not report the NACK via the Error report feature. However, note that in any
case, the corresponding last byte is already sent.

If the Tx data length is 1 byte (Master Write transaction) and depending on the interrupt handling
timing, there is a possibility to ignore the NACK reception of a slave address. In this case, the driver
does not report the NACK via the Error report feature.

Note: NACK may not be detected if the interrupt delay or the 12c MainFunction Handlingcall cycleis
long in master mode.

I2C_E HW ARB LOST ERROR: The |2C driver lost bus arbitration.

I2C_E HW RX OVERFLOW ERROR: Rx FIFO overflow. This occurs when the periodic process is slower than the
bus transaction speed.

User guide 45 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

5 Functional description

5.6.2

Unrecoverable failure

These errors are typically caused by a hardware failure; if retried, the error may occur again.

e Buserror

e TxFIFO handling error (OVER_FLOW)

e RxFIFO handling error (UNDER_FLOW)
e DMAerror

Table 15 Unrecoverable failure

Error

Description

I2C_E_HW_BUS_ERROR

SCB detected an 12C bus error

I2C_E_HW TX OVERFLOW_ERROR

Tx FIFO overflow

I2C_E_HW_RX UNDERFLOW ERROR

Rx FIFO underflow

I2C_E_HW DMA SRC_BUS_ERROR

DMA source bus error

I2C_E_HW DMA DST BUS_ERROR

DMA destination bus error

I2C_E_HW DMA SRC_MISAL_ ERROR

DMA source buffer misaligned

I2C_E_HW DMA DST MISAL ERROR

DMA destination buffer misaligned

I2C_E_HW DMA CURR PTR NULL ERROR

Tried to activate DMA with NULL pointer

I2C_E_HW DMA CH DISABLED ERROR

DMA channel disabled

I2C_E_HW DMA DESCR BUS_ERROR

DMA descriptor bus error

Note:
error.

5.7 Reentrancy

If the slave write operation occurs an unrecoverable failure, the external master may detect a bus

All services except I2c_Init,I2c DelInitand I2c MainFunction Handling arereentrantif they are
executed with different channel IDs (I12c_GetVersionInfo isalwaysreentrant) .

5.8 Sleep mode

The 12C driver does not provide a dedicated sleep mode.

Note:

All 12C sequences must be completed or stopped before entering deep sleep mode. 12C operation in

deep sleep mode is not guaranteed.

5.9 Debugging support

The 12C driver does not support debugging.

User guide

46 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

5 Functional description

5.10 Execution-time dependencies

The execution time of the API functions depends on certain factors listed in Table 16.

Table 16 Execution-time dependencies

Affected function

Dependency

I2c_Init(),
I2c Delnit ()

Number of configured hardware units

I2c_MainFunction Handling(),
(Interrupt)

Number of configured hardware units, trigger level setting, DMA
usage, master or slave operation

I2c_MasterWrite(),
I2c_MasterRead ()

Trigger level setting, DMA usage, send/receive data length, and
bus idle check

I2c_SlaveAwaitRequest(),
I2c_GetBufferStatus|()

Trigger level setting, DMA usage, send/receive data length

I2c Cancel()

Length of remaining data and transaction status

I2c UpdateTxBuffer ()

Trigger-level setting, DMA usage, send data length, driver status,
and bus status

5.11 Deviation from AUTOSAR

12C is not defined in AUTOSAR. Thus, there is no specific requirement about where the 12C driver deviates from.

User guide

47 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

6 Hardware resources

6 Hardware resources

6.1 Ports and pins

The 12C driver uses the SCB instances of the TRAVEO™ T2G family microcontrollers. The pins listed in Table 17
are used. Make sure that the pins are correctly set in the PORT driver’s configuration.

Table 17 Pins for 12C operation
Pin name Direction Description
SCB<n>_I2C_SDA Output SCB channel <n> 12C data pin
SCB<n>_TI2C_SCL Output SCB channel <n> 12C clock pin
6.2 Timer

The 12C driver does not use any hardware timers directly (An OS timer is referenced).

6.3 Interrupts

The interrupt services listed in Table 18 must be configured correctly for peripherals used by the 12C driver. If a
peripheral is not used, the corresponding interrupt service must not be present in the configuration.

Table 18 IRQ vectors and ISR names
IRQ vector ISR name Catl ISR name Cat2
SCB<n> interruptrequest | 12c_Interrupt_SCB<n>_Catl [2c_Interrupt_SCB<n>_Cat2

DMA completion interrupt | 12c_Interrupt_DMA_CH<i>_Isr_Catl [2¢_Interrupt_DMA_CH</>_lsr_Cat2
request ch.<i>for TX

DMA completion interrupt | 12c_Interrupt_DMA_CH<j>_lIsr_Catl [2¢_Interrupt_DMA_CH<j>_lIsr_Cat2
request ch.<j>for RX

Note: The OS must associate the named ISRs with the corresponding SCB interrupt.
For example, if the hardware unit SCB ch.2 is configured, 12c_Interrupt SCB2 Cat2 () mustbe
called from the (OS-)interrupt service routine of the SCB ch.2 interrupt. For categoryl usage, the
addressof 12c_Interrupt SCB2 Catl () must be the entry for the SCB ch.2 interrupt in the (0S)
interrupt vector table.
DMA completion ISRs are generated only if the given DMA channel is used by an SCB channel
configured to I12C. If an SCB channel uses DMA, the interrupt handlers for SCB are required in addition
to the DMS completion ISRs.

Note: The DMA interrupt priority must be higher than the SCB interrupt priority.

Note: Ifthe I12C interrupt priority is too low, FIFO access may be inhibited by other interrupts. This may cause
FIFO overflow or underflow, and unintended behavior (especially during the repeated start
operation). Thus, you should ensure an appropriate priority of the 12C interrupts.

Note: Onthe Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing
conditions in the integrated system with I2C. For more details, see the following errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:

User guide 48 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

6 Hardware resources

“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at the
end of the interrupt function to avoid the priority inversion.

12C interrupts are handled by an ISR wrapper (handler) in the integrated system. Thus, if necessary,
the DSB instruction should be added just before the end of the handler by the integrator.

6.4 DMA

The 12C driver uses DMA channels. The DMA channels can be configured by the user and are enabled or disabled
by the 12C driver as required. The DMA hardware itself must be enabled by the user before the 12C driver uses
them for DMA transfers. The conditions under which DMA transfer operates vary depending on the specified
external buffer size and each mode. See 5.1.2.3 Using DMA, 5.1.3.3 Using DMA and 5.1.4.1.3 Using DMA.

When using DMA, ensure that “one-to-one trigger multiplexer” is correctly configured in the PORT driver’s
configuration. In addition, ensure proper memory allocation. See 2.6.2 Memory allocation and constraints.

User guide 49 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

7 Appendix A
7 Appendix A
7.1 Include files

The I2c.hfile is the only file that needs to be included to use the functions of the I2C driver.

7.2 Data types

7.2.1 12c_ChannelldType
Type

uint8

Description

I2c_ChannelIdType: Channel D

Range of values from 0 to <number of Channels-1>

7.2.2 12c_BufferType
Type

uint8

Description

I2c_BufferType: Type of external buffer elements

7.2.3 I12c_BufferSizeType

Type

uint32

Description

I2c BufferSizeType: Size of the external buffer as the number of data elements of the 12c_BufferType
type

7.2.4 12¢_OvsldType

Type

uints8

Description

I2c OvsIdType: OVS settings D

User guide 50 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

7 Appendix A

7.2.5 12c_SlaveAddressType
Type

uint8

Description

This type is used for the slave address and slave address mask.

7.2.6 12c_ChannelStatusType

Type
typedef enum
{

I2C_UNKNOWN STATUS = 0,

I2C_UNINIT =1,

I2C_IDLE = 2,

I2C_TX = 3,

I2C_RX = 4,

I2C BUSY MASTER = 16,

I2C_BUSY MASTERTX = (I2C TX + I2C_BUSY MASTER),
I2C_BUSY MASTERRX = (I2C RX + I2C_BUSY MASTER),
I2C BUSY SLAVE = 32,

I2C BUSY SLAVETX = (I2C_TX + I2C BUSY SLAVE),

I2C BUSY SLAVERX
} I2c_ChannelStatusType;

Description

(I2C_RX + I2C_BUSY SLAVE)

I2c ChannelStatusType : Status of the 12C driver. This datatype holds the 12C channel status and can be

obtained by calling 12c_Getstatus.

7.2.7 12c_JobResultType

Type

typedef enum

{
I2C_UNKNOWN RESULT,
I 2C_NORE SULT,
I 2C_PENDING ’
I2C_CANCEL,
I2C MASTER TX SUCCESS,
I2C_MASTER RX SUCCESS,
I2C_SLAVE TX SUCCESS,
I2C_SLAVE RX SUCCESS,

User guide 51

002-31274 Rev. *L
2024-11-29

12C driver user guide in fi neon

7 Appendix A

I2C MASTER TX ERROR,
I2C MASTER RX ERROR,
I2C_SLAVE TX ERROR,
I2C_SLAVE RX ERROR

} I2c_JobResultType;

Description

I2c_JobResultType: Job status of the [2C driver. This datatype holds the I12C job status and can be obtained
by calling 12c_GetJobResult.

7.2.8 I12c_TransferDirectionType

Type
typedef enum

{
I2C WRITE,
I2C_READ

} I2c _TransferDirectionType;
Description

I2c_TransferDirectionType: The kind of 12c transfer direction. This datatype is used to determine the 12C
transfer directionin 12c_SlaveAddressMatchNotification.

Note: Since 12c SlaveAddressMatchNotification isonly called when
I2cHwAutoAckSlaveAddress is disabled, this datatype can only be used when
T2cHwAutoAckSlaveAddress is disabled.

7.2.9 12c_AcknowledgeType

Type

typedef enum

{
I2C_NACK,
I2C_HOLDACK,
I2C_ACK

} I2c_AcknowledgeType;

Description
I2c AcknowledgeType: The kind of 12¢ transfer acknowledge. This datatype is used to determine the 12C

transfer acknowledge in 12c_SlaveAddressMatchNotification.

Note: Since 12c SlaveAddressMatchNotification isonly called when
I2cHwAutoAckSlaveAddress is disabled, this datatype can only be used when
T2cHwAutoAckSlaveAddress is disabled.

User guide 52 002-31274 Rev. *L
2024-11-29

12C driver user guide in ﬁ neon

7 Appendix A

7.2.10 12c_SlaveCompleteEventType

Type

typedef enum

{
/* STOP : Slave write greater than expected */
I2C_ SLAVE COMPLETE STOP TX GT,
/* STOP : Slave write equal to expected */
I2C_SLAVE COMPLETE STOP TX EQ,
/* STOP : Slave write less than expected */
I2C_SLAVE COMPLETE STOP TX LT,
/* STOP : Slave read greater or equal expected */
I2C_SLAVE COMPLETE STOP RX GE,
/* STOP : Slave read less than expected */
I2C_SLAVE COMPLETE STOP RX LT,
/* RESTART : Slave write greater than expected */
I2C_SLAVE COMPLETE RESTART TX GT,
/* RESTART : Slave write equal to expected */
I2C_SLAVE COMPLETE RESTART TX EQ,
/* RESTART : Slave write less than expected */
I2C_SLAVE COMPLETE RESTART TX LT,
/* RESTART : Slave read greater or equal expected */
I2C_SLAVE COMPLETE RESTART RX GE,
/* RESTART : Slave read less than expected */
I2C_SLAVE COMPLETE RESTART RX LT

} I2c_SlaveCompleteEventType;

Description

I2c_SlaveCompleteEventType: The kind of I2c transfer complete event. This datatype is used to determine
the 12C transfer complete eventin 12c_SlaveCompleteNotification.

Note: Since 12c SlaveCompleteNotification isonlycalled when 12cHwAutoAckSlaveAddressis
disabled, this datatype can only be used when 12cHwAutoAckSlaveAddress is disabled.

7.2.11 12c_ConfigType

Type
typedef struct

{

P2CONST (IZ2c_ScbChannelConfigType, TYPEDEF, TYPEDEF)
I2c_ScbChannelConfigsPtr;

P2CONST (I2c_ChannelIdType, TYPEDEF, TYPEDEF) I2c ChannelIdListPtr;

User guide 53 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

7 Appendix A

CONST (uint8, TYPEDEF)

} I2c ConfigType;

Description

NumberOfChannel;

The type of the external data structure containing the initialization data for the 12C driver.

7.3 Constants

7.3.1 Error codes

A service may return one of the error codes, listed in Table 19, if default error detection is enabled.

Table 19 Error codes
Name Value Description
I2C_E_UNINIT 0x0A No initialization done
12C_E_ALREADY_ INITIALIZED 0x0B Initialization is already done
12C_E_TRANSACTION 0x0C Not called in IDLE status
12C_E_OS_TIME_REFUSED 0x0D OS reference function returned an error code
12C_E_PARAM_CONFIG 0x10 Configuration pointer out of range
12C_E_PARAM_CHANNEL 0x11 Channel ID out of range
12C_E_PARAM POINTER 0x12 Pointer out of range
12C_E_PARAM_ LENGTH 0x13 Length out of range
12C_E_PARAM OVSID 0x14 OVS ID out of range
12C_E_PARAM_ADDRESS_MATCHING 0x15 Address/address mask out of range
12C_E_PARAM_POINTER_AND_LENGTH 0x16 Pointer and length combination invalid
12C_E_HW_NACK_ERROR 0x20 NACK received
I2C_E_HW_ARB_LOST_ERROR 0x21 Arbitration lost
I2C_E HW BUS ERROR 0x22 Bus error
I2C_ E HW TX OVERFLOW ERROR 0x23 TX FIFO overflow
I2C_E HW RX OVERFLOW ERROR 0x25 RX FIFO overflow
I2C_E HW RX UNDERFLOW ERROR 0x26 RX FIFO underflow
12C_E_HW_DMA_SRC_BUS_ERROR 0x29 Internal bus error in source DMA
I12C_E_HW_DMA_DST_BUS_ERROR 0x2A Internal bus error in destination DMA
12C_E_HW_DMA_SRC_MISAL_ERROR 0x2B DMA source buffer misaligned
12C_E_HW_DMA_DST_MISAL_ERROR 0x2C DMA destination buffer misaligned
I2C_E_HW_DMA_CURR_PTR_NULL_ERROR | (Ox2D Current DMA pointeris NULL
I2C E HW DMA CH DISABLED ERROR 0x2E DMA channel disabled
12C_E_HW_DMA_DESCR_BUS_ERROR 0x2F A bus error occurred when loading the descriptor
User guide 54 002-31274 Rev. *L

2024-11-29

12C driver user guide

Infineon

7 Appendix A
7.3.2 Version information
Table 20 Version information
Name Value Description

IZC_SW_MAJOR_VERSION See release notes

Vendor-specific major version number

IZC_SW_MINOR_VERSION See release notes

Vendor-specific minor version number

IZC_SW_PATCH_VERSION See release notes

Vendor-specific patch version number

7.3.3 Module information

Table 21 Module information
Name Value Description
I2C MODULE ID 255 Module ID
IZC_VENDOR_ID 66 Vendor |D

7.3.4 API service IDs

Table 22 lists the APl service IDs used when reporting errors via DET or via the error callout function.

Table 22 APl service IDs

Name Value APl name

I2C_API INIT 0x00 I2c Init

I2C_API DEINIT 0x01 I2c_Delnit

I2C_API GET STATUS 0x02 I2c_Getstatus

I2C_ API GET JOB RESULT 0x03 I2c_GetJobResult

I2C API CANCEL 0x04 I2c Cancel

I2C_API MASTER WRITE 0x05 I2c MasterWrite

I2C_API MASTER READ 0x06 I2c_MasterRead

I2C API SLAVE AWAIT REQUEST 0x07 I2c_SlaveAwaitRequest

I2C_API SETUP EB 0x08 I2c_SetupEb

I2C_ API MAINFUNCTION HANDLING 0x09 I2c_MainFunction Handling

I2C_API GET BUFFER STATUS 0X0A I2c_GetBufferStatus

I2C_API CHANGE OVS 0x0B I2c_ChangeOvs

I2C_API CHANGE SLAVE ADDRESS 0x0C I2c_ChangeSlaveAddress

I2C_API GET VERSION INFO 0x0D I2c_GetVersionInfo

I2C_API INTERRUPT SCB OXOE I2c_Interrupt SCB<n> Catl,
I2c_Interrupt SCB<n> Cat2

I2C API INTERRUPT DMA OxOF I2c _Interrupt DMA CH<m> Isr Catl,
I2c Interrupt DMA CH<m> Isr Cat2

I2C_API SET REPEATEDSTART 0x10 I2c_SetRepeatedStart

I2C_ API GET REPEATEDSTART Ox11 I2c_GetRepeatedStart

I2C API CONFIRM TXTRANSACTION 0x12 I2c ConfirmTxTransaction

I2C API UPDATE TX BUFFER 0x13 I2c UpdateTxBuffer

User guide 55 002-31274 Rev. *L

2024-11-29

12C driver user guide in f| neon

7 Appendix A
Name Value APl name
I2C_API SLAVE START TRANSFER Ox14 I2c_SlaveStartTransfer
7.4 Functions
7.4.1 12c_Init
Syntax

FUNC (void, I2C CODE) I2c Init

(
P2CONST (I2c ConfigType, AUTOMATIC, I2C APPL CONST) ConfigPtr

)

Service ID

0x00

Sync/Async

Sync
Reentrancy
Non-reentrant
Parameters (in)

e ConfigPtr - Pointer to a configuration
Parameters (out)
None

Return value
None

DET errors

e I2C E ALREADY INITIALIZED - Driveralready initialized
e I2C E PARAM CONFIG - Invalid pointer

DEM errors
None
Description

This function initializes all local data for the configured channels. The driver state will be set to 12c_1DLE, and
all job results will be setto I12C_NORESULT.

7.4.2 12c_Delnit

Syntax

FUNC (void, I2C CODE) I2c DeInit (void)

User guide 56 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Service ID

0x01

Sync/Async

Sync
Reentrancy
Non-reentrant
Parameters (in)
None
Parameters (out)
None

Return value
None

DET errors

e I2C E UNINIT - Driver uninitialized
DEM errors

None
Description

Initializes all local data and registers to reset values. The driver state will be set to 12c_UNINIT, and all job
results will be set to 12C_NORESULT.

This API can be used for force initialize the HW regardless the SW state. If there is a case to hang the
communication, you can recover the 12C HW to default state with this API.

7.4.3 12c_GetStatus

Syntax

FUNC (I2c_ChannelStatusType, I2C CODE) I2c GetStatus

(
const IZc ChannelIdType ChannelId

)

Service ID
0x02
Sync/Async
Sync
Reentrancy

Reentrant

User guide 57 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Parameters (in)

e ChannelId -ChannellID
Parameters (out)

None

Return value

e I2C UNINIT:Notyetinitialized

e 12C IDLE:No transactionrequest

e I2C BUSY MASTERTX:Ongoing master write operation

e I2C BUSY MASTERRX: Ongoing master read operation

e I2C BUSY SLAVE:Waiting for external master request

e 1I2C BUSY SLAVETX:Ongoing slave write operation

e I2C BUSY SLAVERX:Ongoingslave read operation

e I2C UNKNOWN_ STATUS:Cannot return the status (invalid channel ID)

DET errors

e I2C E PARAM CHANNEL - Invalid channel ID
DEM errors

None

Description

Returns the current driver/channel status

7.4.4 12c_GetJobResult

Syntax
FUNC (I2c_JobResultType, I2C CODE) I2c_ GetJobResult

(
const IZ2c¢c ChannelldType ChannelId

)

Service ID

0x03

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e ChannelId -ChannellD

Parameters (out)

User guide 58 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

7 Appendix A

None

Return value

I2C_NORESULT: Initial status, there is no job yet.
I2C_PENDING: Ongoing job

I2C_CANCEL: Previous job cancelled

I2C MASTER TX SUCCESS: Previous master Tx job success
I2C MASTER RX SUCCESS: Previous master Rx job success
I2C SLAVE TX SUCCESS: Previous slave Txjob success
I2C SLAVE RX SUCCESS: Previous slave Rx job success
I2C MASTER TX ERROR:Previous master Tx job failed
I2C_MASTER RX ERROR: Previous master Rx job failed
I2C_SLAVE TX ERROR: Previous slave Tx job failed
I2C_SLAVE RX ERROR: Previous slave Rx job failed

I2C_UNKNOWN RESULT: Cannot return the result (channel ID invalid or channel uninitialized)

DET errors

I2C_E UNINIT - Thedriveris uninitialized.

I2C_E_PARAM CHANNEL - Aninvalid channel ID was specified.

DEM errors

None

Description

Returns the newest driver/channel job status

7.4.5 12c_Cancel

Syntax

FUNC (Std ReturnType, I2C CODE) I2c Cancel

(

)

const I2c ChannelIdType ChannelId

Service ID

0x04

Sync/Async

Async

Reentrancy

Reentrant

Parameters (in)

ChannelId -ChannellD

User guide 59

002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Parameters (out)

None

Return value

E_OK:Accepted and completed

E_NOT OK: Not completed or declined with error
DET errors

e I2C E UNINIT - Driver uninitialized
e I2C_E PARAM CHANNEL - Invalid channel ID

DEM errors

None

Description

Terminates the current operation.

If the bus state does not allow an immediate stop, this function returns & NOT 0K (without DET error). In such
cases, this call should be retried untilE_0K is returned.

The channel state will be set to 12Cc_1DLE, and the job result will be setto 12¢ CANCEL.

7.4.6 12c_MasterWrite

Syntax

FUNC (Std ReturnType, I2C CODE) I2c MasterWrite

(
const I2c ChannelIdType ChannellId,
const I2c SlaveAddressType SlaveAddr

)

Service ID

0x05
Sync/Async
Async
Reentrancy
Reentrant
Parameters (in)

e ChannelId -ChannellD
e SlaveAddr - Targetslave address (bit 7-bit 1 is used, bit 0 is ignored)

Parameters (out)

None

User guide 60 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Return value

e E_OK:Requestaccepted
e E NOT OK:Requestdeclined

DET errors

e I2C _E UNINIT - Driveruninitialized

e I2C _E PARAM CHANNEL - Invalid channel ID

e I2C _E TRANSACTION - Driver/channel notin IDLE state

e I2C E PARAM POINTER AND LENGTH - Invalid pointer or length set with 12c_SetupEb.

DEM errors

None

Description

Starts the master write operation.

This function sets the SCB registers and local data. If DMA was configured to perform a periodic process, the
DMA channel s also set in this function. The external “Src" buffer is referenced, and the stored data is used for
transmission.

If the 12cBusIdleCheck is enabled, and the bus state is busy, this function returns £ NOT OK without DET
error. In such cases, this call should be retried until E_0x is returned.

The channel state will be setto 12Cc_BUSY MASTERTX, and the job result will be setto 12¢ PENDING.

Note: This bus idle check is not applied on Repeated Start mode.

7.4.7 12c_MasterRead

Syntax
FUNC (Std ReturnType, I2C CODE) I2c MasterRead

(
const I2c ChannelIdType Channelld,
const I2c SlaveAddressType SlaveAddr

)

Service ID

0x06
Sync/Async
Async
Reentrancy
Reentrant
Parameters (in)

e ChannelId -ChannellID

User guide 61 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

e SlaveAddr - Targetslave address (bit 7-bit 1is used, bit 0 is ignored)
Parameters (out)

None

Return value

e E_OK:Request accepted
e E NOT OK:Requestdeclined

DET errors

e I2C _E UNINIT - Driveruninitialized

e I2C E PARAM CHANNEL - Invalid channel ID

e I2C E TRANSACTION - Driver/channelnotin IDLE state

e I2C E PARAM POINTER AND LENGTH - Invalid pointer or length set with 12c_SetupEb

DEM errors

None

Description

Starts the master read operation.

This function sets the SCB registers and local data. If DMA was configured for periodic processes, the DMA
channelis also set in this function. The external “Dst” buffer is used to store received data.

If I2cBusIdleCheck is enabled, and the bus state is busy, this function returns E_ NOT OK without DET error.
In such cases, you should retry untilE_0x is returned. The channel state will be setto 12c_BUSY MASTERRX,
and the job result will be set to 12C_PENDING.

Note: This bus idle check is not applied on repeated start mode.

7.4.8 12c_SlaveAwaitRequest

Syntax

FUNC (Std ReturnType, I2C CODE) I2c SlaveAwaitRequest

(
const IZc ChannelIdType ChannelId

)

Service ID
0x07
Sync/Async
Async
Reentrancy
Reentrant

Parameters (in)

User guide 62 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

e ChannelId -ChannellID
Parameters (out)

None

Return value

E_OK: Request accepted
E_NOT OK:Request declined
DET errors

e I2C E UNINIT - Driveruninitialized

e I2C E PARAM CHANNEL - Invalid channel D

e I2C E TRANSACTION - Driver/channelnotin IDLE state

e I2C E PARAM POINTER AND LENGTH - Invalid pointer or length was set with I12¢c_SetupEb.

DEM errors

None

Description

Starts the slave operation.

The operation to start (Tx or Rx) depends on the external master request. This function prepares the SCB for
both operations (Tx and Rx). If DMA was configured to periodic process, the DMA channel is also set in this
function. The external “Src” buffer is referenced, and the stored data is used for transmission. The external
“Dst” buffer is used to store the received data.

The channel state will be setto 12C_BUSY SLAVE, and the job result will be setto 12¢c_PENDING. The state will
be changedto 12Cc BUSY SLAVETXOr I2C_BUSY SLAVERX inthe periodic process.

7.4.9 12c_SetupEb

Syntax

FUNC (Std ReturnType, I2C CODE) I2c SetupEb

(
const I2c ChannelIdType Channelld,
P2VAR (I2c BufferType, AUTOMATIC, I2Z2C APPL DATA) SrcPtr,
const I2c BufferSizeType SrcSize,
P2VAR (I2c_BufferType, AUTOMATIC, I2C APPL DATA) DstPtr,
const IZ2c BufferSizeType DstSize

)

Service ID
0x08
Sync/Async
Sync

User guide 63 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Reentrancy

Reentrant

Parameters (in)

Channelld -ChannelID

SrcPtr - External buffer address for transmit
SrcSize - Transmit data length in bytes (0 to 65536)
DstPtr - External buffer address for receive
DstSize - Receive datalengthin bytes (0 to 65536)

Parameters (out)

None

Return value

E_OK: Request accepted
E_NOT OK:Request declined

DET errors

I2C_E UNINIT - Driver uninitialized

I2C_E PARAM CHANNEL - Invalid channel ID

I2C_E TRANSACTION - Driver/channel notin IDLE state

I2C_E PARAM POINTER - Invalid pointer

I2C_E PARAM LENGTH -Invalid length

I2C_E PARAM POINTER AND LENGTH -Invalid combination of pointer and length

DEM errors

None

Description

Saves the buffer information for subsequent operations.

The saved data will be used repeatedly in subsequent operations until this request is invoked again. srcptr
and SrcSize are used for data transmission. The transmit data will be read from the srcpPtr buffer; the total
transmit length is specified as srcsize.

DstPtr and DstSize are used to receive the data. The received data will be stored into the bstpPtr buffer; the
total buffer length is specified as Dstsize.

Note: If you want to use the same external buffer repeatedly, you can omit calling this function for each
transaction. (only once is needed).
If you omit this call, the same buffer address (specified by Srcptr and DstPtr)and size (specified by
SrcSizeand DstSize) are reused, both in the first and the following operations. It means that the
same data will be transmitted from the srcptr buffer and received data will be overwritten in the
DstPtr buffer.

If only used for master mode, the unused parameters can be set as NULL and 0. (For example, if the driver is
used only for master write operations, DstPtr can be NULL, DstSize can be0.)

User guide 64 002-31274 Rev. *L

2024-11-29

12C driver user guide in fi neon

7 Appendix A

However, inconsistent data (for example, a NULL pointer and a valid size or a valid pointer and a size of 0) is not
allowed. Because slave mode needs both buffers, these cannot be set to NULL or 0.

The channel state and job result will not be changed.

Note: Keep the external buffer area while the transmit/receive operation is ongoing. Do not access the
external buffer while the transmit/receive operation is ongoing.

7.4.10 12c_GetBufferStatus

Syntax

FUNC (Std _ReturnType, I2C CODE) IZ2c GetBufferStatus

(
const IZ2c ChannelIdType ChannellId,
P2VAR (P2VAR (I2c BufferType, AUTOMATIC, I2C APPL DATA), AUTOMATIC,
I2C_APPL DATA) SrcPtrPtr,
P2VAR (P2VAR (I2c BufferType, AUTOMATIC, I2C APPL DATA), AUTOMATIC,
I2C APPL DATA) DstPtrPtr,
P2VAR (I2c_BufferSizeType, AUTOMATIC, I2C APPL DATA)
SrcRemainingLengthPtr,
P2VAR (I2c BufferSizeType, AUTOMATIC, I2C APPL DATA)
DstRemainingLengthPtr

Service ID

0x0A

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e ChannelId -ChannellD
Parameters (out)

e SrcPtrPtr - Pointerto the location where the current srcptr address is written (next address using for
Tx)

e DstPtrPtr - Pointerto the location where the current DstPtr address is written (next address using for
Rx)

e SrcRemainingLengthPtr - Pointerto the location where the length of remaining data to transmit is
written

User guide 65 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

e DstRemainingLengthPtr - Pointerto the location where the length of remaining data to receive is
written

Return value

e E OK:Requestaccepted
e E NOT OK:Requestdeclined

DET errors

e I2C E UNINIT - Driver uninitialized
e I2C E PARAM CHANNEL - Invalid channel ID
e I2C E PARAM POINTER - Given pointeris pointed to NULL_PTR.

DEM errors

None

Description

Gives the current job’s buffer status. (buffer address and length)

If the job is ongoing, the buffer status will be changed by the periodic process.

For example, if a master write operation is ongoing, the address of the referenced external buffer (SrcPtrptr)
and the remaining data length (SrcrRemainingLengthptr) for sending will be changed by each periodic
process (such as interrupts). If the output values are not changed in a sufficiently long interval, the transaction
is suspended by an external node or stopped because of a detected error. Thus, in addition to receiving error
notifications, you can observe the transaction progress to determine the transaction status.

Note: The required interval depends on the type of periodic process and the SCB/Bus frequency.
For example, if polling is selected, the output value will not change until the scheduled function is
called. The channel state and job result will not be changed.

Note: Do not rely on this APl value if it is not in the transaction direction (Tx or Rx) of the target job. For
example, do not rely on the remaining DST data length of the slave Tx transaction. This is because,
when the Tx transaction is in progress, the remaining length of the external SRC buffer can be
calculate with accuracy, but the external DST buffer remaining length cannot be handled well.

Note: When an error is detected or a job is canceled, this APl value may not be accurate.

7.4.11 12¢_ChangeOvs

Syntax

FUNC (Std ReturnType, I2C CODE) IZ2c ChangeOvs

(
const IZ2c ChannelIdType ChannellId,
const IZ2c OvsIdType OvsId

User guide 66 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Service ID

0x0B
Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e ChannelId -ChannellD
e OvsId -OvssettingsID

Parameters (out)
None
Return value

e E OK:Requestaccepted
e E NOT OK:Requestdeclined

DET errors

e I2C E UNINIT - Driveruninitialized

e I2C E PARAM CHANNEL - Invalid channel ID

e I2C E TRANSACTION - Driver/channelnotin IDLE state
e I2C E PARAM OVSID - Invalid OVS settings ID

DEM errors

None

Description

This operation changes the current OVS settings.

The 12C driver uses the default OVS settings for initialization. The default OVS settings are specified with the
configuration, these values are related to the MCU clock settings. However, the MCU clock settings can be
changed by the MCU functionality at run time. In such cases, by using this service, you can continue to use the
12C driver even if the SCB clock was changed.

Note: You should ensure proper configuration of the OVS settings and select the proper OVS settings. There
is no check for coherency between the SCB clock and the OVS settings. After reinitialization, the
default settings will be used again. The channel state and the job result will not be changed.

7.4.12 12c_ChangeSlaveAddress

Syntax
FUNC (Std ReturnType, I2C CODE) IZ2c ChangeSlaveAddress
(

User guide 67 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

const IZ2c ChannelIdType Channelld,
I2c_SlaveAddressType Address,
I2c_SlaveAddressType Mask

)

Service ID

0x0C
Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e ChannelId -ChannellD
e Address - Slave address
e Mask -Slave address mask

Parameters (out)
None
Return value

e E OK:Requestaccepted
e E NOT OK:Requestdeclined

DET errors

e I2C E UNINIT - Driverisuninitialized

e I2C E PARAM CHANNEL - Invalid channel ID

e I2C E TRANSACTION - Driver/channel notin IDLE state

e I2C E PARAM ADDRESS MATCHING -Invalid address and mask combination

DEM errors
None
Description

This service changes the slave address setting which is used to accept messages when the 12C driver is in slave
mode.

The default slave address/slave address mask setting is specified by the configuration. After reinitialization, the
default settings will be used again. The channel state and the job result will not be changed.

7.4.13 12c_GetVersioninfo

Syntax

FUNC (void, I2C CODE) I2c GetVersionInfo

User guide 68 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

P2VAR (Std VersionInfoType, AUTOMATIC, I2C APPL DATA) VersionInfo
)

Service ID

0x0D

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

e Versioninfo - Pointer to the location where the version information will be written
Return value

None

DET errors

e I2C E PARAM POINTER - Version infois NULL pointer.
DEM errors

None

Description

This function returns the version information of this module. This includes module ID, vendor ID, and vendor-
specific version numbers.

7.4.14 12c_SetRepeatedStart

Syntax
FUNC (Std ReturnType, I2C CODE) I2c SetRepeatedStart

(
const IZ2c ChannelIdType ChannellId,

const boolean RepeatedFlag

)

Service ID
0x10
Sync/Async
Sync

User guide 69 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Reentrancy
Reentrant
Parameters (in)

e ChannelId -ChannellD
e RepeatedFlag - Repeated Start Mode (TRUE: Repeated Start mode, FALSE: Normal mode)

Parameters (out)
None
Return value

e E OK:Requestaccepted
e E NOT OK:Requestdeclined

DET errors

e I2C E UNINIT - Driverisuninitialized
e I2C E PARAM CHANNEL - Invalid channelID
e I2C E TRANSACTION - Driver/channelnotin IDLE state

DEM errors
None
Description

This function changes the repeated start mode of this module. In the repeated start mode, Master job will not
send the STOP bit at the end of the transaction. Instead, the driver sends the repeated start bit instead of the
START bit in the next API call. In the repeated start mode, Slave job will invoke the additional callback if it
detects the repeated start bit. In this callback, set the buffer for the following transaction.

Once you set the repeated start mode, it will be continued until calling delnit function or changing the mode by
calling this APl again.

7.4.15 12c_GetRepeatedStart

Syntax
FUNC (boolean, I2C CODE) I2c_ GetRepeatedStart

(
const IZ2c ChannelIdType ChannelId

)

Service ID
0x11
Sync/Async
Sync

Reentrancy

User guide 70 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

7 Appendix A

Reentrant

Parameters (in)

e ChannelId -ChannellID
Parameters (out)

None

Return value

e TRUE: Driver is in Repeated Start mode
e FALSE: Driverisin Normal mode

DET errors

e I2C E UNINIT - Driveris uninitialized
e I2C E PARAM CHANNEL - Invalid channel ID

DEM errors
None
Description

Returns the current driver mode (Repeated start mode or normal mode).

7.4.16 12c_ConfirmTxTransaction

Syntax

FUNC (Std ReturnType, I2C CODE) IZ2c ConfirmTxTransaction

(
const I2c ChannelIdType ChannelId

)

Service ID

0x12

Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e ChannelId -ChannellD
Parameters (out)
None

Return value

User guide 71

002-31274 Rev. *L
2024-11-29

12C driver user guide in ﬁ neon

7 Appendix A

e E OK: Txtransaction is ended
e E NOT OK: Txtransaction is not ended

DET errors

e I2C_E UNINIT - Driverisuninitialized
e I2C _E PARAM CHANNEL - Invalid channel ID

DEM errors
None
Description

Returns the Tx transaction is ended or not. This confirmation is required after the MasterWrite transaction in
repeated start mode.

User guide 72 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

7.4.17 12c_UpdateTxBuffer

Syntax
FUNC (Std ReturnType, I2C CODE) I2c UpdateTxBuffer

(
const IZ2c ChannelIdType Channelld,
P2VAR (I2c_BufferType, AUTOMATIC, I2C APPL DATA) SrcPtr,

const IZ2c BufferSizeType SrcSize

)

Service ID

0x13
Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e ChannellId-ChannellD
e SrcPtr - External buffer address for transmit
e SrcSize - Transmit data length in bytes (0 to 65536)

Parameters (out)
None
Return value

e E OK:Requestaccepted
e E NOT OK:Requestdeclined

DET errors

e I2C E UNINIT - Driver uninitialized

e I2C E PARAM CHANNEL - Invalid channel ID
e I2C E PARAM POINTER - Invalid pointer

e I2C E PARAM LENGTH -Invalid length

DEM errors

None

Description

This APl updates the Tx buffer set by 12c_setupEb. This APl is accepted in the following cases:

e I2c SlaveAwaitRequest was called but did not start the I12c transaction.

e Duringthecallback 12c_slaveSrNotification onrepeated start mode, and before calling the
I2c SlaveAwalitRequest.

User guide 73 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

This APl declines the update request when the bus transaction is in progress.

Note: If 12cHwAutoAckSlaveAddress and/or I2cHwAutoAckSlaveRxData is enabled, you can reduce
the bus latency to acknowledge. However, if the driver’s interrupt is disturbed by some reason (for
example, critical section), the control flow to the bus may lost. You should carefully enable this
configuration, depending on the use case. see 5.1.4.3 for more detail.

If the request is accepted (API returns E_OK), the Tx buffer stored in the driver is updated. If a new transaction
starts, the data in the new Tx buffer is transmitted.
If the request is declined (APl returns E_NOT OK), the Tx bufferis not updated with a new one. If a new

transaction starts, the data in the stored buffer (previous setup buffer) is transmitted.

Note: The constraints and usage of the buffer to be updated are the same as the buffer to be updated with
I2c SetUpEb.

7.4.18 12c_SlaveStartTransfer
Syntax
FUNC (Std ReturnType, I2C CODE) I2c SlaveStartTransfer

(

const IZ2c¢c ChannelldType ChannelId
) ;
Service ID
0x14
Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)
e ChannelId- Channel D
Parameters (out)
None
Return value

e E OK:Succeeded to start slave transfer
e E NOT_OK: Failed to start slave transfer

DET errors
e I2C E UNINIT - Driveruninitialized

e I2C E PARAM CHANNEL - Invalid channel ID

User guide 74 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

e I2C E TRANSACTION - Invalid configuration and call timing
DEM errors

None

Description

This APl is used to restart the slave transfer when:

After the 12C bus enters the clock stretching state due to 12c_SlaveAddressMatchNotification returns
I2C HOLDACK, and ensure that I2c UpdateTxBuffer has been called before this function is used.

7.5 Scheduled functions
7.5.1 12c_MainFunction_Handling
Syntax

FUNC (void, I2C CODE) I2c¢c MainFunction Handling(void)
Service ID

0x09

Sync/Async

Async

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

I2C_E UNINIT - Driveris uninitialized.

DEM errors

I2C_DEM RECOVERABLE FAILURE:
I2C_E_HW NACK ERROR: “NACK” received from an external node
I2C_E_HW ARB LOST_ ERROR:|2C driver lost the arbitration for the bus.

I2C_E_HW RX OVERFLOW_ ERROR:Rx FIFO overflow

I2C_DEM UNRECOVERABLE FAILURE:

I2C_E HW BUS ERROR: SCBdetected an I12C bus error.

User guide 75 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

I2C_E_HW TX OVERFLOW ERROR: Tx FIFO overflow
I2C_E_HW RX UNDERFLOW ERROR:Rx FIFO underflow
Description
This function is used for polling.

This function progresses the jobs and operation of all configured channels. If a job has ended, the
corresponding notification function will be called. Then the channel state will be set to 12¢_1DLE, and the job
result will be set according to the job’s outcome.

7.6 Interrupt service routine
7.6.1 12c_Interrupt_SCB<n>_CatX
Syntax

ISR NATIVE (I2c_ Interrupt SCB<n> Catl) or
ISR(I2c Interrupt SCB<n> Cat2)

Service ID

OxO0E
Sync/Async
Sync
Reentrancy
Non-reentrant
Parameters (in)
None
Parameters (out)
None

Return value
None

DET errors
None

DEM errors

e I2C DEM RECOVERABLE FAILURE:
- I2C_E_HW NACK ERROR: “NACK” received from an external node
- I2C_E_HW ARB LOST_ ERROR:2C driver lost the arbitration for the bus
- I2C_E_HW RX OVERFLOW ERROR:RXFIFO overflow
e I2C DEM UNRECOVERABLE FAILURE:
- I2C _E HW BUS ERROR: SCBdetected an12C bus error

User guide 76 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

7 Appendix A

- I2C_E_HW TX OVERFLOW ERROR: Tx FIFO overflow

- I2C_E_HW RX UNDERFLOW ERROR:Rx FIFO underflow

- 12C_E HW DMA SRC BUS ERROR': Source DMA detected an error.

- 12C_E HW DMA DST BUS ERROR': Destination DMA detected an error

- I2C_E HW DMA SRC_MISAL ERROR': Source DMA bufferis misaligned

- I2C_ E HW DMA DST MISAL ERROR': Destination DMA buffer is misaligned
- I2C_E HW DMA CURR PTR NULL ERROR': Current DMA pointeris NULL

- 12C_E HW DMA CH DISABLED ERROR':DMA channelis disabled

- I2C_E _HW DMA DESCR_BUS_ERROR': A bus error occurred when loading the descriptor

Description

This function is an ISR.

This function progresses the jobs and operation of the affected channels. If a job has ended, the corresponding
notification function will be called. Then the channel state will be setto 12c_IDLE, and the job result will be set

according to the job’s outcome.

7.6.2 12c_Interrupt_DMA_CH<m>_lIsr_CatY

Syntax

ISR NATIVE (I2c_ Interrupt DMA CH<m> Isr Catl)

ISR(I2c Interrupt DMA CH<m> Isr Cat2)
Service ID

OxO0F

Sync/Async

Sync
Reentrancy
Non-reentrant
Parameters (in)
None
Parameters (out)
None

Return value
None

DET errors

None

L This error causes both an SCB interrupt and a DMA interrupt.
User guide 77

002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

DEM errors

e I2C DEM RECOVERABLE FAILURE:
- I2C_E HW NACK ERROR': “NACK” received from an external node
- 12C_E HW ARB LOST ERRORY:I2C driver lost arbitration for the bus
- 12C_E HW RX OVERFLOW ERROR':Rx FIFO overflow
e I2C DEM UNRECOVERABLE FAILURE:
- I2C_E_HW BUS_ERROR': SCBdetected an 12C bus error
- 12C_E HW TX OVERFLOW ERROR': Tx FIFO overflow
- 12C_E _HW RX UNDERFLOW ERROR':Rx FIFO underflow
- I2C_E HW DMA SRC BUS ERROR: Source DMA detected an error.
- I2C E HW DMA DST BUS ERROR: Destination DMA detected an error
- I2C _E HW DMA SRC MISAL ERROR: Source DMA bufferis misaligned
- I2C E HW DMA DST MISAL ERROR:Destination DMA bufferis misaligned
- I2C_E HW DMA CURR PTR NULL ERROR: Current DMA pointeris NULL
- I2C E HW DMA CH DISABLED ERROR: DMA channelis disabled.
- I2C E HW DMA DESCR BUS ERROR:A buserroroccurred when loading the descriptor

Description
This function is an ISR.

This function performs the jobs and operation of the affected channels.
7.7 Required callback functions

7.7.1 12C notification functions

The 12C driver uses the following callback routines to inform other software modules about certain states or
state changes. These other modules are required to handle the conditions indicated by the callback routines.

All notification functions must be reentrant. Basically, 12C driver API calls are not allowed from callback
functions. Some exceptions are described in each notification function’s description.

Note: Ifthe job is finished by cancellation (12c_cancel was called), the notification function will not be
called.

However, if the Master job finishes without the slave sending or receiving a single data, the slave notification
function (I2c_slaveTxNotification or I2c SlaveRxNotification)will be called.

7.7.1.1 12c_MasterTxNotification

Syntax

void I2c MasterTxNotification (uint8 Channel)

Parameters (in)

! This error causes both SCB and DMA interrupts.

User guide 78 002-31274 Rev. *L
2024-11-29

12C driver user guide < in f| neon

7 Appendix A

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished.
It will be called at the end of a master write job.

If the driver is in the repeated start mode, this callback is only called after sending the STOP bit. This means,
that, this callback is called only once in the one continuous transaction. And if the last transaction was a
MasterWrite operation, then this callback is called.

7.7.1.2 12c_MasterRxNotification

Syntax

void I2c MasterRxNotification (uint8 Channel)
Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished.
It will be called at the end of a master read job.

If the driver is in the repeated start mode, this callback is only called after sending the STOP bit. This means,
that, this callback is called only once in the one continuous transaction. And if the last transaction was a
MasterRead operation, then this callback is called.

7.7.1.3 12c_SlaveTxNotification

Syntax

void I2c_SlaveTxNotification(uint8 Channel)
Parameters (in)

None

Parameters (out)

None

User guide 79 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Return value
None
Description

This notification is a user-provided callback routine to notify that a job has been finished. It will be called at the
end of a slave write job. You can call the I2c GetBuffersStatus to confirm the actual transaction lengthin
this function.

7.7.1.4 12c_SlaveRxNotification

Syntax

void I2c SlaveRxNotification(uint8 Channel)
Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished. It will be called at the
end of aslave read job. You can call the 12c GetBuffersStatus to confirm the actual transaction length in
this function.

7.7.1.5 12c_MasterTxErrorNotification

Syntax

void I2c MasterTxErrorNotification (uint8 Channel)
Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job finished with errors. It will be called at
the end of a master write job. It is also recommended that you call the 12c_Cancel APl to completely
terminate the transaction in which the error occurred before executing the next transaction.

User guide 80 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

7.7.1.6 12c_MasterRxErrorNotification

Syntax

void I2c MasterRxErrorNotification (uint8 Channel)
Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished with error. It will be
called at the end of a master read job. It is also recommended that you call the 12c_cancel APl to completely
terminate the transaction in which the error occurred before executing the next transaction.

7.7.1.7 12c_SlaveTxErrorNotification

Syntax

void I2c SlaveTxErrorNotification (uint8 Channel)
Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a job has been finished with error. It will be
called at the end of a slave write job. It is also recommended that you call the 12c_cancel API to completely
terminate the transaction in which the error occurred before executing the next transaction.

7.7.1.8 I12c_SlaveRxErrorNotification

Syntax

void I2c SlaveRxErrorNotification (uint8 Channel)
Parameters (in)

None

User guide 81 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

Parameters (out)
None

Return value
None
Description

This notification is a user-provided callback routine to notify that a job has been finished with error. It will be
called at the end of a slave read job. It is also recommended that you call the 12c_Ccancel APl to completely
terminate the transaction in which the error occurred before executing the next transaction.

7.7.1.9 12c_MasterComReqNotification

Syntax

void I2c MasterComRegNotification (uint8 Channel)
Parameters (in)

None

Parameters (out)

None

Return value

None

Description

This notification is a user-provided callback routine to notify that a master job finished in repeated start mode.
In this callback, you can call the next communication request (I2c_MasterWrite Or I2c_MasterRead Or
I2c_Cancel),andalso call 12c_setupEb to change the buffer or length. Infineon recommends calling the
next communication request in this callback, but if you do not call the next communication request in this
callback, then the 12C driver starts to wait for the next communication request. In this case, you can call the
corresponding APIs after this callback. However, note that until the next communication request, the bus is
occupied by the previous transaction.

If the previous transaction is MasterWrite, then confirm that the Tx transaction has ended by calling
I2c_ConfirmTxTransaction, before you call the next communication request.

You should not call both the stop request (I12c_Cancel) and the start transaction request
(I2c_MasterWrite/I2c MasterRead) atthe sametime in this callback.

7.7.1.10 l2c_SlaveSrNotification

Syntax

void I2c_SlaveSrNotification (uint8 Channel)
Parameters (in)

None

Parameters (out)

User guide 82 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

None
Return value
None
Description

This notification is a user-provided callback routine to notify that a slave job has been finished in repeated start
mode. In this callback, call I12c_SetupEb or I2c_UpdateTxBuffer Of I2c_SlaveAwaitRequest to prepare
the next transaction.

7.7.1.11 12c_SlaveCompleteNotification

Syntax

void I2c SlaveCompleteNotification (uint8 Channel, I2c SlaveCompleteEventType
Event, uint32 TransferCount)

Parameters (in)

e Channel - ChannelID
e Event - Slave transfer complete event. See 12¢_SlaveCompleteEventType.
e TransferCount - Indicator of the Transferred count

Parameters (out)
None

Return value
None
Description

This notification is a user-provided callback routine to notify that the slave transaction has been finished. The
transaction complete event kind (param:Event) and data length informations (param:TransferCount) are
provided through this notification function. In this callback, call 12c_SetupEb or I12c_UpdateTxBuffer or
I2c_SlaveAwaitRequest to prepare the next transaction.

7.7.1.12 12c_SlaveAddressMatchNotification

Syntax

I2c AcknowledgeType I2c SlaveAddressMatchNotification (uint8 Channel, uint8
SlaveAddress, I2c TransferDirectionType Direction)

Parameters (in)

e Channel - Channel ID
e SlaveAddress - Slave matching address
e Direction -Indicator of the Transfer direction (Read/Write). See 12c_TransferDirectionType.

Parameters (out)
None

Return value

User guide 83 002-31274 Rev. *L
2024-11-29

12C driver user guide in fi neon

7 Appendix A

e I2C NACK:I2C transfer non-acknowledge
e I2C HOLDACK:I2C hold acknowledge
e I2C ACK:I2Ctransferacknowledge

Description

This notification is a user-provided callback routine to notify that a slave-matching address has been received.
The corresponding slave address (param:slaveaddress) and transfer direction (param:Direction) are
provided through this notification function. In this callback, you can call 12c_UpdateTxBuffer to prepare the
next transaction, and you must not call I12c_SetupEbor I2c_SlaveAwaitRequest in this notification.

Note: The application must return the response as 12C_ACK/I2C HOLDACK/I2C NACK to this notification
function, when returning 12C_ACK/I2C NACK, the 12C driver will send the corresponding
acknowledge to the bus. However, when returning 12C_HOLDACK, the I2C will enter clock stretching
status until 12c_SlaveStartTransfer s called, during this notification function or after you

return 12C_HOLDACK (means that before sent the acknowledge), clock stretch will be applied to the
bus.

User guide 84 002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

7.7.2 DET

If default error detection is enabled, the 12C driver uses the following callback function provided by DET. If you
do not use DET, you must implement this function within your application.

7.7.2.1 Det_ReportError

Syntax

Std ReturnType Det ReportError

(
uintl6é Moduleld,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module D of the calling module

e Instanceld - Instance ID of the calling module

e ApiId-ID ofthe APIservice that calls this function
e ErrorId-ID ofthe detected development error

Return value
Always returns E_OK.
Description

Service for reporting development errors.

User guide 85 002-31274 Rev. *L
2024-11-29

12C driver user guide

7 Appendix A

7.7.3 DEM

Infineon

If DEM notifications are enabled, the 12C driver uses the following callback function provided by DEM. If you do

not use DEM, you must implement this function within your application.

7.7.3.1 Dem_ReportErrorStatus

Syntax

void Dem ReportErrorStatus

(

Dem EventIdType EventId,

Dem EventStatusType EventStatus
)

Reentrancy
Reentrant
Parameters (in)

e EventId - ldentification of an event by the assigned event ID
e EventStatus - Monitor the test result of the given event

Return value
None
Description

Service for reporting diagnostic events.

User guide 86

002-31274 Rev. *L
2024-11-29

12C driver user guide in f| neon

7 Appendix A

7.7.4 Error callout functions

7.7.4.1 Error callout API

The 12C driver requires an error callout handler. Every error is reported to this handler; error checking cannot
be switched off. The name of the function to be called can be configured by the T2cErrorCalloutFunction
parameter.

Syntax

void Error Handler Name
(
uintl6 ModulelId,
uint8 Instanceld,
uint8 Apild,
uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module D of the calling module

e Instanceld - Instance ID of the calling module

e ApiId - ID of the API service that calls this function
e ErrorId-ID of the detected error

Return value
None
Description

Service for reporting errors

User guide 87 002-31274 Rev. *L
2024-11-29

6¢-TT-¥¢0C

aping Jasn

88

Ty A9 ¥LCTE-200

8 Appendix B - Access register table
8.1 SCB
Table 23 SCB access register table
Register Bit Access Value Description Timing Mask value Monitoring value
no. size
CTRL 31:0 | Word 0x00000000 Initialize the After calling 12c_1Init 0x8300400F 0x00000000
(32 bits) CTRL register
0x0300400F Deinitialize the After calling 0x8300400F 0x0300400F
CTRL register I2c_Delnit
0x80000000 Set up the CTRL During master write / 0x8300400F 0x80000000
register master read / slave
mode operation
12C_CTRL 31:0 | Word 0x00000000 Initialize the During calling 12c_1nit | OXCOOOFBFF 0x00000000
(32 bits) I2C_CTRL register
0x0000FB88 Deinitialize the After calling 0xCOOOFBFF 0x0000FB88
I2C_CTRL register | I2c_Delnit
0x80000000 | Set up the During master write 0xCOOOFBFF 0x800000**
OvsValue 12C_CTRL operation * = Depends on API
Depends on API register. and configuration
and configuration
0x80000200 | Set up the During master read 0xCOOOFBFF 0x80000***
lor0<<8 | 12C_CTRL operation * = Depends on API
OvsValue register. and Configu ration
Depends on API
and configuration
0x4000C800 | Set up the During slave mode 0xCOOOFBFF 0x4000*800
lor0<<12| I2C_CTRL register | operation * = Depends on API
lor0<<13 and configuration
Depends on API

and configuration

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

68

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
TX_CTRL 31:0 |Word (32 | 0x00010107 Initialize the After calling 12c_1Init 0x00010107 0x00010107
bits) TX_CTRL register
0x00000107 Deinitialize the After calling 0x00010107 0x00000107
TX_CTRLregister | I2c_Delnit
TX_FIFO_CTRL 31:0 | Word 0x00000000 Deinitialize the After calling 0x0001007F 0x00000000
(32 bits) TX_FIFO_CTRL I2c_Delnit
register
0x00000000 | Set up the During master write 0x0001007F 0x000*00**
Invalidate FIFO << | TX_FIFO_CTRL operation bit[16]: clear FIFO
16 | Trigger level register (end of job:1
other:0)
Depends on API bit[6:0]: trigger
and configuration level
(configured trigger
level or DMA
usage:1)
0x00000000 | Set up the During slave mode 0x0001007F 0x000*00**
Invalidate FIFO << | TX_FIFO_CTRL operation bit[16]: clear FIFO
16 | Trigger level register (end of job:1
other:0)
Depends on API bit[6:0]: trigger
and configuration level
(configured trigger
level or DMA usage:
1)
TX_FIFO_STATUS | 31:0 | Word - Read-only Always 0x00000000 0x00000000
(32 bits) register (Monitoring (Monitoring not
not needed.) needed.)
TX_FIFO_WR 31:0 | Word Transfer data Transfer data During transfer - Write-only register
(32 bits)

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

06

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
RX_CTRL 31:0 | Word 0x00000107 Initialize the After calling 12c_1Init 0x00000307 0x00000107
(32 bits) RX_CTRL register
0x00000107 Deinitialize the After calling 0x00000307 0x00000107
RX_CTRLregister | I2c_Delnit
0x00000107 Set up the During master read / 0x00000307 0x00000*07.
Depends on API RX_CTRL register | slave mode operation bit[9]: Depends on
and configuration the glitch filter
configuration
RX_FIFO_CTRL 31:0 | Word 0x00000000 Deinitialize the After calling 0x0001007F 0x00000000
(32 bits) RX_FIFO_CTRL I2c Delnit
register
0x00000000 | Set up the During master read / 0x0003007F 0x0000*0**
Freeze FIFO<<17 | RX_FIFO_CTRL slave mode operation bit[17]: freeze
| Invalidate FIFO register FIFO(full of external
<<16 | Trigger RX buffer when
level sending
Depends on API acknowledge by
and configuration HW:1, other:0)
bit[16]: clear FIFO
(end of job:1,
other:0)
bit[6:0]: trigger
level
(configured trigger
level or DMA
usage:1 or sending
acknowledge by
SW:1)
RX_FIFO_STATUS 31:0 | Word - Read-only Always 0x00000000 0x00000000
(32 bits) register (Depends on FIFO (Monitoringis | (Monitoring is not
situation.) not needed.) needed.)

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

16

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
RX_MATCH 31:0 | Word 0x00000000 Initialize After calling 12c_1Init Ox00FFOOFF 0x00000000
(32bits) | 9x00000000 Initialize After calling OXOOFFOOFF 0x00000000
I2c_Delnit
Slave address | Set up the During slave mode 0x00FFOOFF 0x00**00**
Slave address RX_MATCH operation bit[23:16]:slave
mask << 16 register address mask
Depends on API bit[7:0]:slave
and configuration address
RX_FIFO_RD 31:0 | Word - Read-only When reading the 0x00000000 0x00000000
(32 bits) register received data (Monitoringis | (Monitoring is not
not needed.) needed.)
INTR_CAUSE 31:0 | Word 0x00000000 Initialize After calling 12c Init 0x00000000 0x00000000
(32bits) | 9x00000000 Deinitialize After calling (Monitoringis | (Monitoringis not
I2c Delnit not needed.) needed.)
0x00000000 | RX Interrupt cause During transfer
interrupt<<3|TX | (Read-only)
interrupt<<2 |
Slave interrupt <<
1| Master
interrupt
Read only
INTR_M 31:0 | Word 0x00000000 Initialize After calling 12c_Init 0x00000000 0x00000000
(32bits) | 0x00000000 Deinitialize After calling (Monitoringis | (Monitoring is not
I2c Delnit not needed.) needed.)
0x00000000 | Master mode During transfer

12C_BusError<<8
| Stop <<4 | Ack
<<2|Nack<<1]
Arb_lost

interrupt cause
(read and clear
with write)

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

6

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
INTR_M_MASK 31:0 | Word 0x00000000 Initialize After calling 12c_1Init 0x00000113 0x00000000
(32bits) | 9x00000000 Deinitialize After calling 0x00000113 0x00000000
I2c_Delnit
0x00000000 | Enable ordisable | During transfer with 0x00000113 0x00000113
I2C_BusError<<8 | the master mode master operation
| Stop <<4 | Nack interrupt. (interrupt)
<<1|Arb_lost
INTR_M_MASKED 31:0 | Word - Read-only During transfer with 0x00000000 0x00000000
(32 bits) register master operation (Monitoringis | (Monitoring is not
(interrupt) not needed.) | needed.)
INTR_S 31:.0 | Word 0x00000000 Initialize After calling 12c_Init 0x00000000 0x00000000
(32bits) | 0x00000000 Deinitialize After calling (Monitoring | (Monitoring not
I2c Delnit not needed.) needed.)
0x00000000 | Slave mode During transfer
I2C_BusError<<8 | interrupt cause
| Stop<<4|Nack | (read and clear
<<1|Arb_lost| with write)
Addr_Match <<6
INTR_S_MASK 31:0 | Word 0x00000000 Initialize After calling 12c 1Init 0x000007FF 0x00000000
(32bits) | 9x00000000 Deinitialize After calling 0x000007FF | 0x00000000
I2c_Delnit
0x00000000 | Enable or disable | During transfer with 0x000007FF 0x000001*3
I12C_BusError<<8 | the slave mode slave operation * = Depends on
| Stop <<4 | Nack interrupt (interrupt) configuration
<<1|Arb_lost|
Addr_Match <<6
INTR_S_MASKED 31:0 | Word - Read-only During transfer with 0x00000000 0x00000000
(32 bItS) register slave operation (Monitoring (Monitoring not
(interrupt) not needed.) | needed.)
INTR_TX 31:0 0x00000000 Initialize Aftercalling12c Init 0x00000000 0x00000000

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

€6

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
Word 0x00000000 Deinitialize After calling (Monitoring (Monitoring not
(32 bits) I2c_Delnit not needed.) needed.)
0x00000000 | TX interrupt During Tx transaction
Overflow <<5 | cause (read and (interrupt)
Empty <<4| clear with write)
Trigger
INTR_TX_MASK 31:.0 | Word 0x00000000 Initialize After calling I2c_Init 0x0000007F 0x00000000
(32bits) | 9x00000000 Deinitialize After calling 0x0000007F | 0x00000000
I2c_Delnit
0x00000000 | Enable or disable | During Tx transaction 0x0000007F 0x000000**
Overflow <<5 | the TX interrupt Depends on the
Empty <<4| cause transfer status.
Trigger
INTR_TX_MASKED | 31:0 | Word - Read-only During Tx transaction 0x00000000 0x00000000
(32 bits) register (Monitoringis | (Monitoring not
not needed.) needed.)
INTR_RX 31:0 | Word 0x00000000 Initialize After calling 12c Init 0x00000000 0x00000000
(32bits) | 9x00000000 Deinitialize After calling (Monitoringis | (Monitoring not
I2c Delnit not needed.) needed.)
0x00000000 | Rx interrupt During RX transaction
Underflow <<6 | cause (read and (interrupt)
Overflow <<5 | clear with write)
Full<<3|Not
empty <<2 |
Trigger
INTR_RX_MASK 31:0 | Word 0x00000000 Initialize After calling 12c Init 0x0000007F 0x00000000
(32bits) | 9x00000000 Deinitialize After calling 0x0000007F | 0x00000000
I2c_Delnit
0x00000000 | Rxinterrupt During Rx transaction 0x0000007F 0x000000**
Underflow <<6 | cause (read and Depends on the
Overflow <<5 | clear with write) transfer status.

Full <<3|Not

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

¥6

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
empty <<2|
Trigger
INTR_RX_MASKED | 31:0 | Word - Read-only During Rx transaction 0x00000000 0x00000000
(32 bits) register (Monitoring (Monitoring not
not needed.) needed.)

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

S6

Ty A9 ¥LCTE-200

8.2 DMA (DW)
Table 24 DMA (DW) access register table
Register Bit Access Value Description Timing Mask value Monitoring value
no. size
CH_CTL 31:0 | Word 0x00000002 Initialize the channel After calling I2c_Init 0x80000BF4 0x00000000
(32 bits) control register
0x00000002 Deinitialize the After calling 0x80000BF4 0x00000000
channel control I2c_Delnit
register
0x00000000 | | Start or stop DMA During transfer with DMA | 0x80000BF4 0x00000000
DMA channel bit[31]:Set on transfer
enable<<31 (DMA) start/Cleared on
transfer (DMA) end
CH_STATUS 31:0 | Word - Read-only register Always 0x00000000 0x00000000
(32 bits) (Monitoring (Monitoring not
is not needed.)
needed.)
CH_IDX 31:0 | Word 0x00000000 Initialize the After calling 12c_Init Ox0000FFFF 0x00000000
(32 bits) channel’s current
indices
0x00000000 Deinitialize the After calling 0x0000FFFF 0x00000000
channel’s current I2c_Delnit
indices
0x00000000| | Calculate the buffer During transfer with DMA | 0X0000FFFF 0x00000000
Y loop index position bit[15:8] | bit[7:0]
.«8|X100p Changed during
index transfer

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

96

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. size
CH_CURR_PTR | 31:0 | Word 0x00000000 Initialize the After calling 12c_1Init 0x0000FFFF 0x00000000
(32 bits) channel’s current
indices
0x00000000 Deinitialize the After calling O0x0000FFFF 0x00000000
channel’s current I2c_Delnit
indices
0x00000000 | Descriptor position During transfer with DMA | OXFFFFFFFF 0x00000000
Address of bit[31:2]:Set to current
descriptor descriptor address on
start of transfer
INTR 31:.0 | Word 0x00000000 Initialize the After calling 12c_Init 0x00000000 0x00000000
(32 bits) channel’s current (Monitoring (Monitoring not
indices is not needed.)
0x00000000 Deinitialize the After calling needed.)
channel’s current I2c_Delnit
indices
0x00000001 Descriptor position During transfer with DMA
INTR_MASK 31:0 | Word 0x00000000 Initialize the After calling 12c_Init 0x00000001 0x00000000
(32 bits) channel’s current
indices
0x00000000 Deinitialize the After calling 0x00000001 0x00000000
channel’s current I2c_Delnit
indices
0x00000000 | | Descriptor position During transfer with DMA | 0x00000000 0x00000000
Enable bit[0]:Set on DMA
interrupt start/Cleared on DMA
end
INTR_MASKED | 31:0 | Word - Read-only register During transfer with DMA | 0x00000000 0x00000000
(32 bits) (Monitoring (Monitoring not
not needed.) needed.)

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

6¢-TT-¥¢0C

aping Jasn

16

Ty A9 ¥LCTE-200

Register Bit Access Value Description Timing Mask value Monitoring value
no. | size
SRAM_DATAO 31:0 | Word 0x00000000 Initialize the current After calling 12c_1Init OXFFFFFFFF 0x00000000
(32bit) data
SRAM_DATA1 31:0 | Word 0x00000000 Initialize the current After calling 12c_1Init OxFFFFFFFF 0x00000000
(32bit) data

a)qe} 493siSaa ssa3dy - g xipuaddy g

3pINnS 4asn JdALIP DT

uoauljul

e

12C driver user guide

(infineon

Revision history

Revision history

Version Date

Description

** 2020-09-24

Initial release.

*A 2021-01-18

4.2 12C Configuration

Changed “Note” in 12cChannelld

4.2.312C Channel OVS config

Deleted “Note” in 12cOvsld

5.1.2.3 Using DMA, 5.1.3.3 Using DMA, 5.1.4.1.3 Using DMA and 6.4 DMA
Added conditions for DMA transfer to operate

5.1.6 Cancel the Operation

Added “Note” about cancel in slave write mode operation.
5.6.2 Unrecoverable Failure

Added “Note” in slave write operation

7.7.112C Notification Functions

Added note about notifications

Migrated to Infineon template.

*B 2021-03-31

2.6.2 Memory allocation and constraints
Add the restriction for VRAM

*C 2021-06-15

Added a note in 5.8 Sleep mode

*D 2021-08-18

Added a note in 6.3 Interrupts

“E 2021-12-21

Updated to the latest branding guidelines.

*F 2022-07-05

Deleted "Unintended interrupt cause"
-Table 5 General configuration
-5.6.1 Recoverable failure

Deleted "I2C_E_HW_INVALID_INTERRUPT_ERROR" and the
description or value related to this error code.

-5.6.1 Recoverable failure

-Table 15 Error codes
-7.5.112c_MainFunction_Handling
-7.6.112c_Interrupt_SCB<n>_CatX

-7.6.2 12c_Interrupt_DMA_CH<m>_Isr_CatY

*G 2023-03-08

Added description for repeated start mode in the following sections
5.1.2.1 Usinginterrupt
5.1.2.2 Using polling

5.1.2.3 Using DMA

5.1.3.1 Usinginterrupt
5.1.3.2 Using polling

5.1.3.3 Using DMA

51.4.1.1 Using interrupt
5.14.1.2 Using polling
5.14.13 Using DMA
5.1.4.2.1 Using interrupt

User guide

98 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

Revision history

Version

Date

Description

5.14.2.2 Using polling

5.1.4.23 Using DMA

5.1.6 Cancel the operation

7.4.6 12c_MasterWrite (adding note)
7.4.7 12c_MasterRead (adding note)

Added Set repeated start mode APl in the following sections
5.1.7.3 Repeated Start mode

7.3.4 APlserviceIDs

7.4.14 12c_SetRepeatedStart

Added/Changed description due to repeated start in the following
sections

7.7.1 12C notification functions
7.7.1.1 12c_MasterTxNotification
7.7.1.2 12c_MasterRxNotification
7.7.1.3 12c_SlaveTxNotification
7.7.1.4 12c_SlaveRxNotification

Added callback function for repeated start mode in the following
sections

2.3 Adapting your application
7.7.1.9 12c_MasterComReqNotification
7.7.1.10 I2c_SlaveSrNotification

Added description for data length is shorter or longer case in the
following section

5.14 Slave mode operation

Added description for checking the actual transaction length in the
following section

5.1.5.3 Buffer status

Removed the data length error and tx underflow error in the following
sections

5.6.1 Recoverable failure

5.6.2 Unrecoverable failure

7.3.1 Error codes
7.6.112c_Interrupt_SCB<n>_CatX

7.6.2 12c_Interrupt_DMA_CH<m>_lIsr_CatY

Added Get repeated start APl in the following sections
7.3.4 APlservice IDs

User guide

929 002-31274 Rev. *L
2024-11-29

12C driver user guide

(infineon

Revision history

Version

Date

Description

7.4.15 12c_GetRepeatedStart

*H

2023-04-21

Modified and Added the description regarding to repeated start
callback and 12c_ConfirmTxTransaction.

5.1.2.1 Usinginterrupt

5.1.2.2 Using polling

5.1.2.3 Using DMA

5.1.3.1 Usinginterrupt

5.1.3.2 Using polling

5.1.3.3 Using DMA

5.1.5.4 Confirm Tx Transaction

Table 18 APl service IDs

7.4.16 12c_ConfirmTxTransaction
7.7.1.9 12c_MasterComReqNotification

Removed the Tx underflow error in the following sections
4.1 General configuration

*|

2023-10-06

Table 7 12C trigger level setting - Fixed typo

5.1.4 Slave mode operation:

Updated the note description regarding unexpected length of data
requested from master node.

8.2 DMA(DW):
Updated the description regarding register access.

*J

2023-12-08

No content updates.
Web release.

*K

2024-04-12

Added description about CONST generated during CODE section to
the following section

2.6.2 Memory allocation and constraints

Fixed typo

5.1.2.1 Using interrupt
5.1.2.2 Using polling
5.1.2.3 Using DMA

5.1.3.1 Using interrupt
5.1.3.2 Using polling
5.1.3.3 Using DMA

5.1.5.2 Latestjobresult
5.1.6 Cancel the operation
5.1.7.1 OVS settings
7.4.11 12c_ChangeOvs
Table 19 SCB access register table

User guide

100 002-31274 Rev. *L
2024-11-29

12C driver user guide

Infineon

Revision history

Version

Date

Description

*K (Contd.)

2024-04-12

Improved the descriptions in the following sections
5.1.4 Slave mode operation

5.1.4.1.1 Using interrupt

5.1.4.1.2 Using polling

5.1.4.1.3 Using DMA

5.1.4.2.1 Using interrupt

5.1.4.2.2 Using polling

5.1.4.2.3 Using DMA

5.1.5.3 Buffer status

6.3 Interrupts

7.4.10 12c_GetBufferStatus

7.7.1.9 12c_MasterComRegNotification

Modified and added the description regarding to 12c_TxUpdateBuffer
5.1.4.1.4 Update Buffer

Table 12 Execution-time dependencies

Table 18 API service IDs

7.4.17 12c_UpdateTxBuffer

Added notes descriptions on NACK receive in the following sections
5.6.1 Recoverable failure

Added descriptions about recommendations when detecting errors
7.7.1.5 12c_MasterTxErrorNotification
7.7.1.6 12c_MasterRxErrorNotification
7.7.1.7 12c_SlaveTxErrorNotification
7.7.1.8 12c_SlaveRxErrorNotification

*L

2024-11-29

Added description for two new configuration parameters in the
following sections

2.2.1 Configuration outline
4.2 12C configuration
5.1.5.3 Buffer status
7.4.17 12c_UpdateTxBuffer

Added description for two new notifications in the following sections
2.3 Adapting your application

7.2.8 12¢_TransferDirectionType

7.2.9 12c_AcknowledgeType

7.2.10 12c_Slave CompleteEventType

7.7.112C notification functions

User guide

101 002-31274 Rev. *L
2024-11-29

12C driver user guide < in fi neon

Revision history

Version Date Description
*L (Contd.) 2024-11-29 Modified and added the description regarding to slave mode
operation

5.1.4 Slave mode operation

7.3.4 APl service IDs

7.4.18 12¢_SlaveStartTransfer

7.7.1.11 12c_SlaveCompleteNotification
7.7.1.12 12¢_SlaveAddressMatchNotification
8.1SCB

Modified the description related to removing the channel state check
in 12c_Delnit.

5.1.8 Disabling the 12C driver

5.5.1 Vendor-specific development errors

7.4.2 12¢_Delnit

User guide 102 002-31274 Rev. *L
2024-11-29

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-11-29
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:
erratum@infineon.com
Document reference
002-31274 Rev. *L

Important notice

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction of I2C driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding

	2 Using the I2C driver
	2.1 Installation and prerequisites
	2.2 Configuring the I2C driver
	2.2.1 Configuration outline

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring the stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keywords
	2.6.2 Memory allocation and constraints

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 PORT driver
	3.4.2 MCU driver
	3.4.3 AUTOSAR OS
	3.4.4 BSW scheduler
	3.4.5 DET
	3.4.6 DEM
	3.4.7 Error callout handler
	3.4.8 DMA

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 I2C configuration
	4.2.1 I2C trigger level setting
	4.2.2 I2C use DMA channel info
	4.2.3 I2C channel OVS config

	4.3 Other modules
	4.3.1 PORT driver
	4.3.2 MCU driver
	4.3.3 DET
	4.3.4 DEM
	4.3.5 AUTOSAR OS
	4.3.6 BSW scheduler

	5 Functional description
	5.1 I2C driver functionality
	5.1.1 Initialize and prepare the buffer for the I2C driver
	5.1.1.1 Initialize the I2C driver
	5.1.1.2 Prepare the external buffer

	5.1.2 Master write operation
	5.1.2.1 Using interrupt
	5.1.2.2 Using polling
	5.1.2.3 Using DMA

	5.1.3 Master read operation
	5.1.3.1 Using interrupt
	5.1.3.2 Using polling
	5.1.3.3 Using DMA

	5.1.4 Slave mode operation
	5.1.4.1 Slave write operation
	5.1.4.1.1 Using interrupt
	5.1.4.1.2 Using polling
	5.1.4.1.3 Using DMA
	5.1.4.1.4 Update Buffer

	5.1.4.2 Slave read operation
	5.1.4.2.1 Using interrupt
	5.1.4.2.2 Using polling
	5.1.4.2.3 Using DMA

	5.1.4.3 Auto acknowledge configuration

	5.1.5 Confirm the I2C driver status
	5.1.5.1 Driver status
	5.1.5.2 Latest job result
	5.1.5.3 Buffer status
	5.1.5.4 Confirm Tx Transaction

	5.1.6 Cancel the operation
	5.1.7 Change I2C driver settings
	5.1.7.1 OVS settings
	5.1.7.2 Accept slave address / slave address mask
	5.1.7.3 Repeated Start mode

	5.1.8 Disabling the I2C driver

	5.2 What is included
	5.3 Initialization
	5.4 Runtime reconfiguration
	5.5 API parameter checking
	5.5.1 Vendor-specific development errors

	5.6 Production errors
	5.6.1 Recoverable failure
	5.6.2 Unrecoverable failure

	5.7 Reentrancy
	5.8 Sleep mode
	5.9 Debugging support
	5.10 Execution-time dependencies
	5.11 Deviation from AUTOSAR

	6 Hardware resources
	6.1 Ports and pins
	6.2 Timer
	6.3 Interrupts
	6.4 DMA

	7 Appendix A
	7.1 Include files
	7.2 Data types
	7.2.1 I2c_ChannelIdType
	7.2.2 I2c_BufferType
	7.2.3 I2c_BufferSizeType
	7.2.4 I2c_OvsIdType
	7.2.5 I2c_SlaveAddressType
	7.2.6 I2c_ChannelStatusType
	7.2.7 I2c_JobResultType
	7.2.8 I2c_TransferDirectionType
	7.2.9 I2c_AcknowledgeType
	7.2.10 I2c_SlaveCompleteEventType
	7.2.11 I2c_ConfigType

	7.3 Constants
	7.3.1 Error codes
	7.3.2 Version information
	7.3.3 Module information
	7.3.4 API service IDs

	7.4 Functions
	7.4.1 I2c_Init
	7.4.2 I2c_DeInit
	7.4.3 I2c_GetStatus
	7.4.4 I2c_GetJobResult
	7.4.5 I2c_Cancel
	7.4.6 I2c_MasterWrite
	7.4.7 I2c_MasterRead
	7.4.8 I2c_SlaveAwaitRequest
	7.4.9 I2c_SetupEb
	7.4.10 I2c_GetBufferStatus
	7.4.11 I2c_ChangeOvs
	7.4.12 I2c_ChangeSlaveAddress
	7.4.13 I2c_GetVersionInfo
	7.4.14 I2c_SetRepeatedStart
	7.4.15 I2c_GetRepeatedStart
	7.4.16 I2c_ConfirmTxTransaction
	7.4.17 I2c_UpdateTxBuffer
	7.4.18 I2c_SlaveStartTransfer

	7.5 Scheduled functions
	7.5.1 I2c_MainFunction_Handling

	7.6 Interrupt service routine
	7.6.1 I2c_Interrupt_SCB<n>_CatX
	7.6.2 I2c_Interrupt_DMA_CH<m>_Isr_CatY

	7.7 Required callback functions
	7.7.1 I2C notification functions
	7.7.1.1 I2c_MasterTxNotification
	7.7.1.2 I2c_MasterRxNotification
	7.7.1.3 I2c_SlaveTxNotification
	7.7.1.4 I2c_SlaveRxNotification
	7.7.1.5 I2c_MasterTxErrorNotification
	7.7.1.6 I2c_MasterRxErrorNotification
	7.7.1.7 I2c_SlaveTxErrorNotification
	7.7.1.8 I2c_SlaveRxErrorNotification
	7.7.1.9 I2c_MasterComReqNotification
	7.7.1.10 I2c_SlaveSrNotification
	7.7.1.11 I2c_SlaveCompleteNotification
	7.7.1.12 I2c_SlaveAddressMatchNotification

	7.7.2 DET
	7.7.2.1 Det_ReportError

	7.7.3 DEM
	7.7.3.1 Dem_ReportErrorStatus

	7.7.4 Error callout functions
	7.7.4.1 Error callout API

	8 Appendix B - Access register table
	8.1 SCB
	8.2 DMA (DW)

	Revision history
	Disclaimer

