

User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-30200 Rev. *J

www.infineon.com 2024-03-18

Watchdog 3.0 driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and usage of the watchdog (WDG) driver. This document

explains the functionality of the driver and provides a reference of the driver’s API.

The installation, build process, and general information on the use of EB tresos Studio are not within the scope

of this document. See the EB tresos Studio for ACG8 user’s guide [8] for detailed information about this topic.

Intended audience

This document is intended for anyone who uses the WDG driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the WDG driver, explains the embedding in the

AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the WDG driver provides detailed steps on how to use the WDG driver in an application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies of the WDG driver.

Chapter 4 EB tresos Studio configuration interface describes the driver’s configuration with the EB tresos

Studio.

Chapter 5 Functional description gives a functional description of all services offered by the WDG driver.

Chapter 6 Hardware resources gives a description of all hardware resources used by the driver.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table 1 Abbreviation

Abbreviation Description

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

BSW Basic Software. Standardized part of software which does not fulfill a

vehicle functional job.

DEM Diagnostic Event Manager

DET Default Error Tracer

EB tresos ECU AUTOSAR Suite A collection of AUTOSAR Basic Software modules and a Runtime

Environment integrated in a common configuration and build

environment.

EB tresos Studio Elektrobit Automotive configuration framework

http://www.infineon.com/

User guide 2 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

About this document

Abbreviation Description

ILO Internal Low-speed Oscillator

LF Source clock of MCWDT which is selectable from several clock sources.

MCAL Microcontroller Abstraction Layer

MCU Micro Controller Unit

ms Millisecond

OS Operating System

RAM Random Access Memory

ROM Read Only Memory

WDG Watchdog

WDT Basic Watchdog timer

MCWDT Multi-Counter Watchdog Timer

SRSS System Resources Sub-System

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Specification of watchdog driver, AUTOSAR release 4.2.2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of ECU configuration parameters, AUTOSAR release 4.2.2.

[5] Specification of default error tracer, AUTOSAR release 4.2.2.

[6] Specification of diagnostics event manager, AUTOSAR release 4.2.2.

[7] Specification of memory mapping, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[8] EB tresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[9] Layered software architecture, AUTOSAR release 4.2.2.

User guide 3 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 3

1 General overview ... 5

1.1 Introduction to the WDG driver ... 5

1.2 User profile .. 5

1.3 Embedding in the AUTOSAR environment ... 5

1.4 Supported hardware ... 6

1.5 Development environment ... 6

1.6 Character set and encoding .. 6

1.7 Multicore support .. 6

1.7.1 Multicore type .. 7

1.7.1.1 Single core only (multicore type I) ... 7

1.7.1.2 Core-dependent instances (multicore type II) ... 7

1.7.1.3 Core-independent instances (multicore type III) ... 8

1.7.2 Virtual core support ... 8

2 Using the WDG driver .. 9

2.1 Installation and prerequisites ... 9

2.2 Configuring the WDG driver .. 9

2.3 Adapting your application .. 9

2.4 Starting the build process ... 10

2.5 Measuring stack consumption .. 11

2.6 Memory mapping .. 11

2.6.1 Memory allocation keyword .. 11

2.6.2 Memory allocation and constraints ... 12

2.6.3 Assembler code .. 12

3 Structure and dependencies .. 13

3.1 Static files .. 13

3.2 Configuration files ... 13

3.3 Generated files .. 13

3.4 Dependencies .. 14

3.4.1 AUTOSAR OS ... 14

3.4.2 MCU driver .. 14

3.4.3 DET .. 14

3.4.4 Watchdog interface .. 14

3.4.5 DEM ... 14

3.4.6 BSW scheduler .. 14

3.4.7 Error callout handler .. 14

4 EB tresos Studio configuration interface .. 15

4.1 General configuration ... 15

4.2 WDG settings configuration .. 16

4.3 WDG timer configuration list ... 17

4.4 WDG settings fast configuration list ... 19

4.5 WDG settings slow configuration list .. 20

4.6 WDG settings off configuration list ... 21

4.7 WDG DemEventParameter reference ... 22

4.8 WdgMulticore .. 23

4.9 WdgCoreConfiguration ... 23

User guide 4 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

Table of contents

4.10 WDG external configuration .. 23

4.11 WdgPublishedInformation .. 23

5 Functional description .. 24

5.1 Inclusion .. 24

5.2 Initialization ... 24

5.3 Reconfiguration during runtime ... 24

5.4 API parameter checking .. 24

5.4.1 Wdg_66_IA_Init() .. 24

5.4.2 Wdg_66_IA_SetMode() ... 26

5.4.3 Wdg_66_IA_SetTriggerCondition() .. 26

5.4.4 Wdg_66_IA_GetVersionInfo() ... 27

5.5 Runtime checks ... 28

5.6 Reentrancy ... 28

5.7 Debugging support .. 28

5.8 Functions available without core dependency .. 28

6 Hardware resources ... 29

6.1 Interrupts ... 29

7 Appendix A – API reference .. 30

7.1 Data types .. 30

7.1.1 Wdg_66_IA_ConfigType ... 30

7.1.2 WdgIf_ModeType ... 30

7.2 Constants ... 30

7.2.1 Error codes ... 30

7.2.2 Version information ... 31

7.2.3 Module information ... 31

7.2.4 API service IDs .. 32

7.2.5 Invalid core ID value ... 32

7.3 Functions ... 32

7.3.1 Wdg_66_IA_Init .. 32

7.3.2 Wdg_66_IA_SetMode ... 33

7.3.3 Wdg_66_IA_SetTriggerCondition .. 34

7.3.4 Wdg_66_IA_GetVersionInfo ... 34

7.4 Required callback functions ... 35

7.4.1 DET .. 35

7.4.2 DEM ... 36

7.4.3 Callout functions .. 36

7.4.3.1 Error callout API .. 36

7.4.3.2 Get core ID API ... 37

8 Appendix B – Access register table ... 38

8.1 SRSS (MCWDT) ... 38

8.2 SRSS (WDT) .. 40

Revision history .. 42

Disclaimer .. 43

User guide 5 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

1 General overview

1 General overview

1.1 Introduction to the WDG driver

The WDG driver is a set of software routines for handling the WDG module. The driver provides services for

initializing, changing the operation mode, and setting the trigger condition (timeout). The driver is compliant

with the AUTOSAR standard and is implemented according to the Specification of watchdog driver [2].

The WDG driver is delivered with a plugin for the EB tresos Studio, which allows you to statically configure the

driver options. The driver provides an interface to define symbolic names and the functionality of all

configuration options. The WDG driver is designed and implemented for use with additional WDG drivers. All

API functions, DEM errors, DET errors, and data types are prefixed with vendor specific string “_66_IA_”. IA is the

short form for InternalA.

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

• Embedded systems

• C programming language

• AUTOSAR standard

• Target hardware architecture

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The WDG driver (Figure 2) is part of the MCAL, the

lowest layer of basic software in the AUTOSAR environment.

As an internal microcontroller driver, WDG driver provides a standardized and microcontroller-independent

interface to higher software layers for accessing WDG timer of the ECU hardware.

User guide 6 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

1 General overview

For an overview of the AUTOSAR layered software architecture, see the Layered software architecture [9].

Figure 2 WDG driver in MCAL layer

1.4 Supported hardware

This version of the WDG driver supports the TRAVEO™ T2G microcontroller. The supported derivatives are listed

in the release notes.

Additional derivatives which contain only a subset of the capabilities of one derivative mentioned above can be

supported by providing a resource file with its properties.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules BASE, DEM, MAKE, MCU,

and RESOURCE are needed for proper functionality of the WDG driver.

1.6 Character set and encoding

All source code files of the WDG driver are restricted to the ASCII character set. The files are encoded in UTF-8

format, with only the 7-bit subset (values 0x00 … 0x7F) being used.

1.7 Multicore support

The WDG driver supports the multicore type II. Wdg_66_IA_GetVersionInfo() also supports multicore type

III. For each multicore type, see the following sections.

Note: If multicore type III is required, the section including the data related to the read-only API or

atomic write API must be allocated to the memory, and can be read from any cores.

User guide 7 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

1 General overview

1.7.1 Multicore type

In the following section, type I, type II, and type III are defined as multicore characteristics.

1.7.1.1 Single core only (multicore type I)

For this multicore type, the driver is available only on a single core. This type is referred as “Multicore Type I”.

Multicore type I has the following characteristic:

• The peripheral channels are accessed by only one core.

Figure 3 Overview of the multicore type I

1.7.1.2 Core-dependent instances (multicore type II)

For this multicore type, the driver has core-dependent instances with individually allocable hardware. This type

is referred as “Multicore Type II”.

Multicore type II has the following characteristics:

• The driver code is shared among all cores

− A common binary is used for all cores

− A configuration is common for all cores

• Each core runs an instance of the driver

• Peripheral channels and their data can be individually allocated to cores, but cannot be shared among cores

• One core will be the master; the master core must be initialized first

− Cores other than the master core are called satellite cores.

Figure 4 Overview of the multicore type II

User guide 8 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

1 General overview

1.7.1.3 Core-independent instances (multicore type III)

For this multicore type, the driver has core-independent instances with globally available hardware. This type

is referred as “Multicore Type III”.

Multicore type III has the following characteristics:

• The code of the driver is shared among all cores

− A common binary is used for all cores

− A configuration is common for all cores

• Each core runs an instance of the driver

• Peripheral channels are globally available for all cores

Figure 5 Overview of the multicore type III

1.7.2 Virtual core support

The WDG driver supports a number of cores. The configured cores need not be equal to the physical cores.

The WDG driver calls a configurable callout function (WdgGetCoreIdFunction) to identify the core that is

currently executing the code. This function can be implemented in the integration scope. The function can be

written such that it does not return the physical core, but instead returns the SW partition ID, OS application ID,

or any attribute/parameter. By interpreting these as the core, the WDG driver can support multiple SW

partitions on a single physical core.

User guide 9 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

2 Using the WDG driver

2 Using the WDG driver

This chapter describes all necessary steps to incorporate the WDG driver into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user’s guide [8]. You can find

the required basic information about the installation procedure of EB tresos ECU AUTOSAR

components and the usage of the EB tresos Studio and the EB tresos ECU AUTOSAR build

environment. You will also find information on how to setup and integrate your own application

within the EB tresos ECU AUTOSAR build environment.

The installation of the WDG driver complies with the general installation procedure for EB tresos ECU AUTOSAR

components given in the EB tresos Studio for ACG8 user’s guide [8] . If the driver has been successfully installed,

the driver will appear in the module list of the EB tresos Studio (see EB tresos Studio for ACG8 user’s guide [8]).

This guide assumes that the project is properly set up and is using the application template as described in the

EB tresos Studio for ACG8 user’s guide [8]. This template provides the necessary folder structure, project, and

makefiles needed to configure and compile an application within the build environment. You must be familiar

with the usage of the command line shell.

2.2 Configuring the WDG driver

This section provides an overview of the configuration structure, defined by AUTOSAR, on how to use the WDG

driver.

The following basic containers are used to specify the behavior of WDG driver:

• WdgGeneral: This container is mainly used to restrict or extend the API of the WDG module and enable or

disable DET.

• WdgDemEventParameterRefs: This container holds references to the DemEventParameter elements,

which will be invoked using the Dem_ReportErrorStatus API in case the corresponding error occurs.

• WdgSettingsConfig: This container holds the watchdog settings for each mode, all post-build parameters

are handled via this container.

• WdgMulticore: This container contains the multicore configuration of the WDG driver.

The configuration data stored by containers WdgExternalConfiguration and WdgPublishedInformation

are not processed.

For detailed information and description, see 4 EB tresos Studio configuration interface.

2.3 Adapting your application

To use the WDG driver in your application, include the MCU and WDG driver header files by adding the following

lines of code in your source file:

#include “Mcu.h” /* MCU Driver */

#include “Wdg_66_IA.h” /* WDG Driver */

This publishes all needed functions, prototypes, and symbolic names of the configuration to the application.

Also, you need to implement the error callout function for ASIL safety extension.

User guide 10 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

2 Using the WDG driver

Declare the error callout function in file specified by the WdgIncludeFile parameter and implement the error

callout function in your application (see 7.4 Required callback functions, Error callout API).

The error callout function name can be configured by the WdgErrorCalloutFunction parameter.

In the next step, the MCU and WDG need to be initialized and configured. The steps to configure the WDG driver

in the EB tresos Studio are explained 4 EB tresos Studio configuration interface. The WDG module will be

automatically enabled if an appropriate parameter configuration of the WDG module is available in the

application.

The MCU and WDG initialization should be done for both master core and satellite cores:

Mcu_Init(&Mcu_Config[0]);

Wdg_66_IA_Init(&Wdg_66_IA_Config[1]);

The master core must be initialized prior to the satellite core. All cores must be initialized with the same

configuration.

To trigger watchdog timer (WDT/MCWDT) with the timeout parameter or trigger an immediate watchdog reset

(WDR), the Wdg_66_IA_SetTriggerCondition() function must be called. In case of RAM mode, the trigger

routine should be called by the application directly instead of the Wdg_66_IA_SetTriggerCondition()

function after flash area is erased.

Wdg_66_IA_SetTriggerCondition(1000);

Your application must provide the notification functions and its declarations that you configured. The file

containing the declarations must be included using the WdgGeneral/WdgIncludeFile parameter. The

notification functions take no parameters and have void return type:

void MyNotificationFunction(void)

{

/* Insert your code here */

}

Note: Notification function is controlled by WdgEnableWarningIrq which uses a warning interrupt to

notify the application before WDR happens. If this interrupt is enabled, an interruption is triggered

when the watchdog counter reaches the warning limit value. Notification function does not work

correctly if this interrupt is disabled. Set up the interrupt levels appropriately according to system

environment.

2.4 Starting the build process

Do the following to build your application.

Note: For a clean build, use the build command with target clean_all before. (make clean_all)

1. On the command shell, type the following command to generate the necessary configuration dependent

files. See 3.3 Generated files.

> make generate

2. Type the following command to resolve the required file dependencies:

> make depend

3. Type the following command to compile and link the application:

User guide 11 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

2 Using the WDG driver

> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file, which can be downloaded to the

target hardware.

2.5 Measuring stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The

executable file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement:

-DSTACK_ANALYSIS_ENABLE

2. Type the following command to clean library files:

> make clean_lib

3. Follow the build process described in 2.4 Starting the build process.

4. Measure the stack consumption by following the instructions given in the release notes.

2.6 Memory mapping

The Wdg_66_IA_MemMap.h file in the $(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0I0R0/include directory is

a sample. This file is replaced by the file generated by MEMMAP module. Input to MEMMAP module is generated

as Wdg_Bswmd.arxml in the $(PROJECT_ROOT)/ output/generated/swcd directory of your project folder.

2.6.1 Memory allocation keyword

• WDG_66_IA_START_SEC_CODE_ASIL_B / WDG_66_IA_STOP_SEC_CODE_ASIL_B

The memory section type is CODE. All executable code is allocated in this section.

• WDG_66_IA_START_SEC_CONST_ASIL_B_UNSPECIFIED /
WDG_66_IA_STOP_SEC_CONST_ASIL_B_UNSPECIFIED

The memory section type is CONST. The following constants are allocated in this section:

− All configuration data except reset

− Hardware register base address data

− Pointer to the current driver status

− Pointer to the current driver mode

− Pointer to the current timeout value

• WDG_66_IA_START_SEC_CONST_ASIL_B_32 / WDG_66_IA_STOP_CONST_INIT_ASIL_B_32

The memory section type is CONST. The following constant is allocated in this section:

− Trigger function size

• WDG_CORE[MasterCoreId]_66_IA_START_SEC_VAR_INIT_ASIL_B_GLOBAL_8 /
WDG_CORE[MasterCoreId]_66_IA_STOP_SEC_VAR_INIT_ASIL_B_GLOBAL_8

MasterCoreId means the WdgCoreConfigurationId command specified in the

WdgMasterCoreReference reference command.

User guide 12 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

2 Using the WDG driver

The memory section type is VAR. The following variables are allocated in this section:

− SRSS version. See Hardware documentation for details.

• WDG_CORE[CoreId]_66_IA_START_SEC_VAR_INIT_ASIL_B_GLOBAL_UNSPECIFIE/WDG_CORE[CoreId

]_66_IA_STOP_SEC_VAR_INIT_ASIL_B_GLOBAL_UNSPECIFIED

The memory section type is VAR. The following variables are allocated in this section:

− Current driver status

− Pointer to the configuration data

• WDG_CORE[CoreId]_66_IA_START_SEC_VAR_INIT_ASIL_B_LOCAL_UNSPECIFIED/WDG_CORE[CoreId

]_66_IA_STOP_SEC_VAR_INIT_ASIL_B_LOCAL_UNSPECIFIED

The memory section type is VAR. The following variables are allocated in this section:

− Current mode

− Current timeout value

2.6.2 Memory allocation and constraints

All memory sections that store init or uninit status must be zero-initialized before any driver function is

executed on any core. If core consistency checks are disabled, inconsistent parameters are detected and

reported by PPU and SMPU.

• WDG_CORE[WdgCoreConfigurationId]_START_VAR_[INIT_POLICY]_ASIL_B_LOCAL_[ALIGNMENT]

/ WDG_CORE[WdgCoreConfigurationId]_STOP_VAR_[INIT_POLICY]_ASIL_B_LOCAL_[ALIGNMENT]

This section is read/write accessed only from the core represented by WdgCoreConfigurationId.

Therefore, this section can be allocated to any RAM region. It is recommended to allocate the section to

cache-able SRAM, not TCRAM.

• WDG_ CORE[WdgCoreConfigurationId]_START_VAR_[INIT_POLICY]_ASIL_B_GLOBAL_[ALIGNMENT]
/

WDG_ CORE[WdgCoreConfigurationId]_STOP_VAR_[INIT_POLICY]_ASIL_B_GLOBAL_[ALIGNMENT]

This section is read/write accessed from the core represented by WdgCoreConfigurationId and read

accessed from the other cores. Therefore, this section must not be allocated to TCRAM. For the core

represented by WdgCoreConfigurationId, this section must be allocated to either non-cache-able or

write-through cache-able SRAM area. For performance, it is recommended to allocate the section to write-

through cache-able SRAM. For other cores, this section must be allocated to non-cache-able SRAM area.

• STACK section

TCRAM has dedicated memory for each core at the same address, and because of its performance it is

recommended to allocate STACK to TCRAM.

For the details of INIT_POLICY and ALIGNMENT, see the Specification of memory mapping [7].

2.6.3 Assembler code

Assembler code for the WDG driver uses the fixed memory section names in Table 2.

Table 2 Fixed section names

Section name Allocate area

WDG_66_IA_TRIGGER ROM area

User guide 13 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

3 Structure and dependencies

3 Structure and dependencies

The WDG driver consists of static, configuration, and generated files.

3.1 Static files

• $(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/WDG_TS_* is the path to the WDG module plugin.

• $(PLUGIN_PATH)/lib_src contains all static source files of the WDG driver. These files represent the

functionality of the driver. These files are independent of any configuration sets. The files are packed

together into a static library.

• $(PLUGIN_PATH)/src contains configuration dependent source files or device specific files. Each file will be

rebuilt when the configuration set is changed.

All necessary source files will be automatically compiled and linked during the build process and all include

paths will be set if the WDG driver is enabled.

• $(PLUGIN_PATH)/include is the basic public include directory needed by the user to include Wdg_66_IA.h.

• $(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,

architecture, and device specific adaptations to create a correct matching parameter configuration for the

WDG module.

3.2 Configuration files

The configuration of the WDG driver is done with the EB tresos Studio. When saving a project, the configuration

description is written to the Wdg.xdm file, which is in $(PROJECT_ROOT)/config of your project folder. This file

serves as input for the generation of the configuration dependent source and header files during the build

process.

3.3 Generated files

During the build process the following files are generated based on the current configuration description.

These files are in the folder output/generated of your project folder.

include/Wdg_66_IA_Cfg.h, include/Wdg_66_IA_IncludeFiles.h, include/Wdg_66_IA_Cfg_Arch.h and

include/Wdg_66_IA_PBcfg.h define all symbolic names, macros, and configuration settings needed by the

module.

• src/Wdg_66_IA_PBcfg.c contains the constant structure for the WDG configuration.

• src/Wdg_66_IA_Irq.c contains the interrupt service routine for the warning interrupt.

• src/Wdg_66_IA_Trigger_Asm_GHS.s defines the trigger routine.

• src/ Wdg_66_IA_CalloutWrapper.c defines the internal function to get the core ID.

Note: Generated source files need not to be added to your application make file. These files will be

compiled and linked automatically during the build process.

• swcd/Wdg_Bswmd.arxml contains Bsw module description.

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,

follow the menu path Project > Build Project and click generate_swcd.

User guide 14 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

3 Structure and dependencies

3.4 Dependencies

3.4.1 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the WDG driver. See 6.1 Interrupts for more

information.

GetCoreID can optionally be set to the configuration parameter WdgGetCoreIdFunction.

3.4.2 MCU driver

Mcu_GetCoreID can optionally be set to the configuration parameter WdgGetCoreIdFunction. See the MCU

driver’s user guide for details.

3.4.3 DET

If the default error detection is enabled in the WDG module configuration, the DET needs to be installed,

configured and integrated into the application as well.

3.4.4 Watchdog interface

The WDG driver uses types of the WDG interface. Therefore, the WDG interface (respectively the WdgIf_Types.h)

needs to be available to build the WDG driver.

3.4.5 DEM

The DEM needs to be always installed, configured, and integrated with the application as well.

You should use this driver via the Wdg_66_IA.h interface and be responsible to assign the standard

WDG_E_DISABLE_REJECTED, WDG_E_MODE_FAILED, WDG_E_HW_TIMEOUT, and WDG_E_WDG_STOPPED via

macros.

3.4.6 BSW scheduler

The WDG driver uses the following services of the BSW scheduler to enter and leave critical sections.

• SchM_Enter_Wdg_66_IA_WDG_EXCLUSIVE_AREA_0(void)

• SchM_Exit_Wdg_66_IA_WDG_EXCLUSIVE_AREA_0(void)

You must ensure that the BSW scheduler is properly configured and initialized before using the WDG driver.

Note: These services are valid if only WDT is configured as watchdog timer for the core.

In other words, if MCWDT is configured, these services would not be effective.

3.4.7 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection

is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It

is configured via configuration WdgErrorCalloutFunction parameter.

User guide 15 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see the EB tresos Studio for ACG8 user’s guide [8].

4.1 General configuration

The module comes with the following preconfigured with default settings, which must be adapted when

necessary:

• WdgDevErrorDetect enables or disables the development error notification for the WDG module.

− Setting this parameter to FALSE will disable the notification of development errors via DET. However, in

contrast to

− AUTOSAR specification, detection of development errors is still enabled as safety mechanisms (fault

detection).

• WdgDisableAllowed enables or disables the option to disable the WDG driver during runtime.

• WdgIndex represents the WDG driver’s ID that can be referenced by the WDG interface. This value will be

assigned to the following symbolic name:

− The symbolic name derived of the WdgGeneral container short name prefixed with “WdgConf_”

(WdgConf_WdgGeneral_WdgGeneral).

• WdgInitialTimeout represents the trigger condition to be initialized during Init function. This condition

should not be higher than WdgMaxTimeout. The range is 0-65.535 seconds.

Note: More than one mode is supported as default mode (fast or slow), so WdgInitialTimeout is not

used any more. Instead, WdgFastTimeoutValue / WdgSlowTimeoutValue are used for initial

timeout value of each mode.

• WdgMaxTimeout represents maximum timeout to which the WDG trigger condition can be initialized. The

input parameter of Wdg_66_IA_SetTriggerCondition() should not be higher than WdgMaxTimeout.

The range is 0-65.535 seconds. The parameter of Wdg_66_IA_SetTriggerCondition() is a millisecond

unit value; therefore, the WDG module converts WdgMaxTimeout to a millisecond value and stores this

value as an inside parameter.

Note: When MCWDT is configured, the maximum timeout would be limited to a value lower than 65.535

according to WdgTimerClockRef (see 4.3 WDG timer configuration list).

This is because the watchdog timer counter of MCWDT is 16 bits, although WDT has 32-bit watchdog timer

counter.

For example, when the WdgTimerClockRef is 32768Hz, duration of 1 count of the timer counter is 1 / 32768

seconds.

The maximum value of 16-bit counter is 0xFFFF (65535).

Then the maximum timeout of MCWDT is 1.999 (65535 / 32768) seconds.

• WdgRunArea indicates whether the WDG trigger execution area is either from ROM (Flash) or RAM.

• WdgTriggerLocation is the location (memory address) of the WDG trigger routine.

Note: WdgTriggerLocation shows the trigger function name. The function name is specific (i.e.

Wdg_66_IA_ActivateTrigger) and cannot be edited.

User guide 16 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

• WdgTriggerAddress is location (memory address) of the WDG trigger routine (Actual address). The range is

between the base address to the end address of SRAM (SRAM0, SRAM1 or SRAM2, it depends on hardware

specification) area.

Note: WdgTriggerAddress should be multiples of four and within an allowed range; otherwise errors

would occur in configuration phase. This value is editable only when WdgRunArea is set to RAM.

Bit0 of the address should be set to ON (1) when calling the WDG trigger function by jumping

directly from Arm® instructions, because the code is assembled by thumb instructions.

For example, if the address in RAM is configured to 0x8000000, then the calling of WDG trigger function

should use (0x8000000 | 0x0000001).

• WdgVersionInfoApi enables or disables the version information API.

• WdgDemEventModeFailed enables or disables the DEM ModeFailed Event checks and report.

• WdgDemEventDisableRejected enables or disables the DEM DisableRejected Event checks and

report.

• WdgDemEventHwTimeout enables or disables the DEM HardwareTimeout Event checks and report.

• WdgDemEventWdgStopped enables or disables the DEM WdgStopped Event checks and report.

• WdgErrorCalloutFunction is used to specify the error callout function name. The function is called on

every error. The ASIL level of this function limits the ASIL level of the WDG driver.

Note: WdgErrorCalloutFunction must be valid a C function name, otherwise an error would occur

in configuration phase.

• WdgIncludeFile is a list of the filenames that should be included within the driver. Any application-

specific symbol that is used by the WDG configuration (e.g. error callout function) should be included by

configuring this parameter.

Note: WdgIncludeFile must be a unique filename with extension .h; otherwise some errors would

occur in configuration phase.

4.2 WDG settings configuration

• WdgDefaultMode is the default mode for WDG driver initialization.

− WDGIF_FAST_MODE

− WDGIF_SLOW_MODE

− WDGIF_OFF_MODE

Note: WDGIF_OFF_MODE is only supported when WdgDisableAllowed is TRUE.

User guide 17 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

4.3 WDG timer configuration list

• WdgTimerConfigList is the array of the watchdog timer configuration which is used by WDG driver:

Note: WDG driver can configure one or two watchdog timers for one core.

Supported combinations of the watchdog timers for one core follow these three patterns:

- Only MCWDT

- Only WDT

- MCWDT and WDT

In case MCWDT and WDT are configured for one core, MCWDT must be set before WDT.

If MCWDT and WDT are configured and an MCWDT reset occurs, the WDT keeps running and causes

an undesired reset according to the WDT settings when the WDT counter expires.

The WDT reset cannot be avoided.

• WdgCoreAssignment specifies the reference to WdgCoreConfiguration for the core assignment.

Note: WdgCoreAssignment must have the target's WdgCoreConfiguration setting.

The same resource cannot be allocated to multiple cores.

• WdgCPUSelect is the core number where the MCWDT assigns the DeepSleep action. The range is 0-3.

Note: The core number is defined by the hardware specification.

• WdgTimerSelection is the watchdog timer which is configured to be used:

− WDG_TIMER_WDT: Basic watchdog timer

− WDG_TIMER_MCWDT[n]: Multi-Counter watchdog timer.

[n]: the number of specific MCWDT channel, the maximum number of [n] is defined by the hardware

specification.

• WdgStopWDT specifies whether WDG driver stops WDT during initialization to avoid WDT would be running

by default setting and cause WDR.

Note: This parameter is enabled if only MCWDT is configured for the same core.

Make sure that the core for which this parameter is TRUE is initialized first, and the core to which

WDT is assigned is initialized next. If you reverse the order, WDT will be stopped unexpectedly.

• WdgEnableWarningIrq enables or disables a warning notification for the specific watchdog timer. This

function is used for notifying the application before the watchdog timer expires. The notification function’s

name can be configured with WdgWarningNotification. If WdgEnableWarningIrq is enabled, then the

notification function must be provided by the application. Also, the warning interrupt must be configured

properly; see 6.1 Interrupts.

Note: If this interrupt is enabled, the following sequence takes place when the watchdog counter

reaches to warn limit value:

1. Watchdog counter reaches to warn limit value.

2. Warning interrupt is triggered

3. Trigger the action which is configured by WDG driver when watchdog counter reaches trigger

timeout value

Step 2 will not occur, if the warning interrupt is disabled.

User guide 18 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

• WdgWarningNotification specifies a function name to be called in case of a warning interrupt. This

parameter is ignored if WdgEnableWarningIrq is disabled.

Note: WdgWarningNotification should be a C function name. Notifications must be declared and

defined outside WDG module. The file containing the declarations must be included using the

parameter WdgGeneral/WdgIncludeFile.

• WdgDebugModeConfig is used to freeze or run the watchdog during the debugging mode:

− WDG_DEBUGMODE_FREEZE: The watchdog is configured to freeze during debugging mode.

− WDG_DEBUGMODE_RUN: The watchdog is configured to run during debugging mode.

Note: This parameter must be same for all configured timers.

• WdgDeepsleepConfig is used to freeze or run the watchdog mode services in Deep Sleep mode:

− WDG_DEEPSLEEP_FREEZE: The watchdog is configured to freeze during Deep Sleep mode.

− WDG_DEEPSLEEP_RUN: The watchdog is configured to run during Deep Sleep mode.

Note: This parameter would be invalid for WDT if MCWDT and WDT are configured for the core.

• WdgHibernateConfig is used to freeze or run the watchdog mode services in Hibernate mode:

− WDG_HIBERNATE_FREEZE: The watchdog is configured to freeze during Hibernate mode.

− WDG_HIBERNATE_RUN: The watchdog is configured to run during Hibernate mode.

Note: This parameter is invalid for MCWDT.

• WdgLowerActionConfig is the action when the watchdog timer is serviced before lower limit is reached:

− WDG_ACTION_RESET: The lower action is configured to cause a reset. This can be set only for WDT.

− WDG_ACTION_FAULT: The lower action is configured to generate a fault. This can be set only for MCWDT.

− WDG_ACTION_FAULT_RESET: The lower action is configured to generate a fault and then cause a reset.

This can be set only for MCWDT.

• WdgUpperActionConfig is the action when the watchdog timer is reached upper limit:

− WDG_ACTION_RESET: The upper action is configured to cause a reset. This can be set only for WDT.

− WDG_ACTION_FAULT: The upper action is configured to generate a fault. This can be set only for MCWDT.

− WDG_ACTION_FAULT_RESET: The upper action is configured to generate a fault and then cause a reset.

This can be set only for MCWDT.

• WdgTimerClockRef is the reference to the MCU clock configuration.

This parameter is used to calculate maximum timeout that can be set to the hardware.

Note: MCU clock reference will only support McuClock that includes MCU_CLOCK_LF* and

MCU_CLOCK_ ILO0* in McuClockReferencePoint.

− McuClock: Clock reference point.

− McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

User guide 19 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

If watchdog timer is configured as MCWDT and there is no McuClock that includes MCU_CLOCK_LF* in

McuClockReferencePoint, an error will occur in configuration phase.

If watchdog timer is configured as WDT and there is no McuClock that includes MCU_CLOCK_ ILO0* in

McuClockReferencePoint, an error will occur in configuration phase.

See the MCU user guide for more information.

4.4 WDG settings fast configuration list

WdgSettingsFastList is the array of the following hardware depending settings of WDG driver’s “fast” mode:

Note: Number of configured timers should be consistent with the number of used cores.

• WdgFastTimerConfigRef is the reference to the timer configuration for the watchdog driver's “fast”

mode.

Note: Only one timer could be selected for one core. If both WDT and MCWDT are configured for the core,

only MCWDT can be selected.

• WdgFastTimeoutValue represents trigger timeout value in “fast” mode. The range is 1-65535 ms.

Note: This value must be less than or equal to WdgMaxTimeout. Otherwise, an error would occur in

configuration phase.

In case MCWDT is configured, WdgMaxTimeout is usually limited to a value lower than 65535 (see 4.1 General

configuration).

• WdgFastWarnLimitPercent specifies the percentage of warning limit compared to trigger timeout value

in “fast” mode. The range is 1-99%.

• WdgFastLowerLimitPercent specifies the percentage of the lower limit compared to trigger timeout

value in “fast” mode. The range is 0-98%.

• WdgFastMaxWaitTime represents the waiting watchdog timer status change in “fast” mode.

In case WDT is configured, watchdog timer must be disabled before setting of hardware register. It takes up

to three cycles of ILO (about 91.5 µs). After setting of hardware register, watchdog timer must be enabled. It

also takes up to three cycles of ILO.

In case MCWDT is configured, watchdog timer must be disabled before setting of hardware register in

initialization phase. It takes up to two cycles of LF (the duration is decided by the source clock of LF). After

setting of hardware register, watchdog timer must be enabled. It also takes up to two cycles of LF.

WDG driver must wait those durations. This parameter is used for error detection when hardware changing

does not become possible or does not take effect within designated time. So, it is recommended to set a

higher value for this parameter, around 250 µs. Range is 1-65535 µs.

• WdgFastMcuClockRef is the reference to the MCU clock configuration, which is used to calculate the loop

count of 1 µs.

Note: MCU clock reference will only support McuClock that includes MCU_CLOCK_ROOT* in

McuClockReferencePoint.

User guide 20 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

− McuClock: Clock reference point.

− McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock that includes MCU_CLOCK_ROOT* in McuClockReferencePoint, an error will occur

in configuration phase.

See the MCU user guide for more information.

4.5 WDG settings slow configuration list

WdgSettingsSlowList is the array of the following hardware depending settings of WDG driver’s “slow”

mode:

Note: Number of configured timers should be consistent with the number of used cores.

• WdgSlowTimerConfigRef is reference to the timer configuration for the watchdog driver's “slow” mode.

Note: Only one timer could be selected for one core. If both WDT and MCWDT are configured for the core,

only MCWDT can be selected.

• WdgSlowTimeoutValue represents trigger timeout value in “slow” mode. The range is 1-65535 ms.

Note: This value must be less than or equal to WdgMaxTimeout. Otherwise, an error would occur in

configuration phase.

In case MCWDT is configured, WdgMaxTimeout is usually limited to a value lower than 65535 (see

4.1 General configuration).

• WdgSlowWarnLimitPercent is used to specify the percentage of warning limit compared to trigger

timeout value in “slow” mode. The range is 1-99%.

• WdgSlowLowerLimitPercent is used to specify the percentage of lower limit compared to the trigger

timeout value in “slow” mode. The range is 0-98%.

• WdgSlowMaxWaitTime represents the waiting watchdog timer status change in “slow” mode.

In case WDT is configured, watchdog timer must be disabled before setting of hardware register. It takes up

to three cycles of ILO (about 91.5 µs). After setting of hardware register, watchdog timer must be enabled. It

also takes up to three cycles of ILO.

In case MCWDT is configured, watchdog timer must be disabled before setting of hardware register in

initialization phase. It takes up to two cycles of LF (the duration is decided by the source clock of LF). After

setting of hardware register, watchdog timer must be enabled. It also takes up to two cycles of LF.

WDG driver must wait those durations. This parameter is used for error detection when hardware changing

does not become possible or does not take effect within designated time. So, it is recommended to set a

higher value for this parameter, around 250 µs. Range is 1-65535 µs.

• WdgSlowMcuClockRef is reference to the MCU clock configuration, which is used to calculate loop count

of 1 µs.

Note: MCU clock reference will only support McuClock that includes MCU_CLOCK_ROOT* in

McuClockReferencePoint.

User guide 21 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

− McuClock: Clock reference point.

− McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock that includes MCU_CLOCK_ROOT* in McuClockReferencePoint, an error will occur

in configuration phase.

See the MCU user guide for further information.

4.6 WDG settings off configuration list

WdgSettingsOffList is the array of the following hardware depending settings of WDG driver’s “off” mode:

Note: Number of configured timers should be consistent with the number of used cores.

• WdgOffTimerConfigRef is reference to the timer configuration for the watchdog driver’s “off” mode.

Note: Only one timer could be selected for one core. If both WDT and MCWDT are configured for the core,

only MCWDT can be selected.

• WdgOffTimeoutValue is not used.

• WdgOffWarnLimitPercent is not used.

• WdgOffLowerLimitPercent is not used.

• WdgOffMaxWaitTime represents the waiting watchdog timer status change in OFF mode. Watchdog timer

is disabled.

In case WDT is configured, it takes up to three cycles of ILO (about 91.5 µs).

In case MCWDT is configured, it takes up to two cycles of LF (the duration is decided by the source clock of

LF).

So, it is recommended to set a higher value for this parameter, around 125 µs. Range is 1-65535 µs.

• WdgOffMcuClockRef is reference to the MCU clock configuration, which is used to calculate loop count of 1

µs.

Note: MCU clock reference will only support McuClock that includes MCU_CLOCK_ROOT* in

McuClockReferencePoint.

− McuClock: Clock reference point.

− McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock that includes MCU_CLOCK_ROOT* in McuClockReferencePoint, an error will

occur in configuration phase.

See the MCU user guide for further information.

User guide 22 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

4.7 WDG DemEventParameter reference

• WDG_E_DISABLE_REJECTED refers to the configured DEM event that reports “Initialization or mode switch

failed because it would disable the WDG while disabling is not allowed”.

Note: This parameter is effective when WdgDemEventDisableRejected is TRUE.

WDG_E_DISABLE_REJECTED should have valid reference; otherwise an error would occur in

configuration phase.

• WDG_E_MODE_FAILED refers to the configured DEM event that reports “Setting a WDG mode failed (during

initialization or mode switch)”.

Note: This parameter is effective when WdgDemEventModeFailed is TRUE.

WDG_E_MODE_FAILED should have valid reference; otherwise an error would occur in

configuration phase.

• WDG_E_HW_TIMEOUT refers to the configured DEM event that reports “Hardware timeout (during

initialization or mode switch or setting trigger condition)”.

− “Hardware timeout” means that the hardware status was not changed in the period specified by

WdgFastMaxWaitTime, WdgSlowMaxWaitTime, or WdgOffMaxWaitTime.

Note: This parameter is effective only when WdgDemEventHwTimeout is TRUE.

WDG_E_HW_TIMEOUT should have valid reference; otherwise an error would occur in

configuration phase.

• WDG_E_WDG_STOPPED refers to the configured DEM event that reports “WDG stopped (during setting trigger

condition in off mode)”.

Note: This parameter is effective when WdgDemEventWdgStopped is TRUE.

WDG_E_WDG_STOPPED should have valid reference; otherwise an error would occur in

configuration phase.

User guide 23 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

4 EB tresos Studio configuration interface

4.8 WdgMulticore

• WdgCoreConsistencyCheckEnable enables core consistency check during runtime. If enabled, WDG ISR

handler checks if the watchdog timer related to the interrupt reason is allowed on the current core.

Note: Development error detect will be enabled in the WDG driver to enable this parameter.

• WdgGetCoreIdFunction specifies the API to be called to get the core ID.

Note: WdgGetCoreIdFunction must be a valid C function name. Mcu_GetCoreID and GetCoreID

can optionally be set to the configuration parameter WdgGetCoreIdFunction.

• WdgMasterCoreReference references to the master core configuration.

Note: WdgMasterCoreReference must have the target's WdgCoreConfiguration setting.

• WdgCoreConfigurationId is the core assignment. Range is 0 to 254.

Note: This value is assigned to a symbolic name. Use only the symbolic core ID names defined in

Wdg_66_IA_Cfg.h.

4.9 WdgCoreConfiguration

• WdgCoreConfigurationId is a zero-based, consecutive integer value. This is used as a logical core ID.

Note: WdgCoreConfigurationId must be unique across WdgCoreConfiguration.

• WdgCoreId is WDG core ID. This ID is assigned to WDG timers. This ID is returned from the configured

WdgGetCoreIdFunction execution to identify the executing core.

Note: WdgCoreId must be unique across WdgCoreConfiguration.

4.10 WDG external configuration

This container is intended for using external watchdog timer. But this property is not used.

4.11 WdgPublishedInformation

WdgTriggerMode represents watchdog trigger mode (WDG_TOGGLE, WDG_WINDOW, or WDG_BOTH). The value is

fixed to WDG_BOTH.

User guide 24 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

5 Functional description

5 Functional description

5.1 Inclusion

The Wdg_66_IA.h file includes all necessary external identifiers. Therefore, the application only needs to include

Wdg_66_IA.h to make all API functions and data types available.

5.2 Initialization

Wdg_66_IA_Init function initializes the WDG driver and sets the default WDG mode. Since it is possible to set

more than one configuration, this function can be called with different configuration sets.

Wdg_66_IA_Init(&Wdg_66_IA_Config[1]);

Note: Make sure that initialization has been performed before any other WDG API function is called on

each core.

Wdg_66_IA_Init() must be called on the master core before any cores are initialized. If

Wdg_66_IA_Init() is called on the satellite core, the master core must be already initialized.

The same configuration set must be specified on all cores during initialization.

A repeated call of the Wdg_66_IA_SetTriggerCondition(1000) API function is required to prevent the WDG

from triggering a reset.

Note: The value of timeout (milliseconds) should not be higher than the value of WdgMaxTimeout.

5.3 Reconfiguration during runtime

Reconfiguration of the WDG driver is not possible at runtime. You can reinitialize with a different configuration

set, but you should ensure all timers are stopped before you switch the configuration set.

5.4 API parameter checking

The driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via WdgErrorCalloutFunction) is called and the

error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all development errors are also reported to the DET, a central error hook

function within the AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The following development error checks are performed by the services of the WDG driver:

5.4.1 Wdg_66_IA_Init()

• Wdg_66_IA_Init() checks if the configuration is within valid range on master core; otherwise calls DET

with WDG_66_IA_E_INIT_FAILED.

• Wdg_66_IA_Init() checks if the ConfigPtr parameter is different from the configuration pointer which is

already initialized by master core when called on satellite cores; otherwise calls DET with

WDG_66_IA_E_DIFFERENT_CONFIG.

• Wdg_66_IA_Init() checks if the default mode is within valid range; otherwise calls DET with

WDG_66_IA_E_PARAM_CONFIG.

User guide 25 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

5 Functional description

• Wdg_66_IA_Init() verifies that the supported modes are WDG_SLOW_MODE, WDG_OFF_MODE, and

WDG_FAST_MODE. If the mode is not allowed, the DEM message WDG_E_MODE_FAILED will be reported.

If the default mode is WDGIF_OFF_MODE and disabling is not allowed, the DEM message

WDG_E_DISABLE_REJECTED will be reported.

Note: WDG disables and enables watchdog timer to initialize registers according to configuration

parameters:

• Disabling wait time and applied modes: Before change register settings, it is necessary to write ENABLE bit

of CTL register to disable watchdog timer and check the status until ENABLED bit of CTL register is disabled.

Applied to off, slow, and fast modes.

• Enabling wait time and applied modes: It is also necessary to write ENABLE bit of CTL register to enable

watchdog timer and check the status until ENABLED bit of CTL register is enabled.

Applied to slow and fast modes

• Time to take effect

Each of the above wait time is different between WDT and MCWDT.

− WDT

Takes up to three cycles of ILO (about 91.5 µs).

When the default mode is off, total wait time will be up to about 91.5 µs.

When the default mode is slow or fast, total wait time will be up to about 183.0 µs.

− MCWDT

Takes up to two cycles of LF (source clock of LF is configurable).

When the default mode is off, total wait time will be up to two cycles of LF.

When the default mode is slow or fast, total wait time will be up to four cycles of LF.

Note: When WDT is configured and watchdog timer is disabled, watchdog timer continues counting until

ENABLED bit of CTL register to be disabled.

When MCWDT is configured and watchdog timer is serviced, watchdog timer continues counting

until CTR0_SERVICE bit of SERVICE register to be effective.

For example, even though an application calls Wdg_66_IA_SetTriggerCondition() before

the watchdog timer expires, watchdog reset might occur because of the time lag of watchdog

hardware.

− WDT

The time lag is three cycles of ILO, which is the source clock of the watchdog timer. Duration of exclusive

area: The registers are set within the exclusive area which is possibly up to about 183.0 µs. Exclusive area

is valid when only WDT is configured.

Calculation of timeout value: The timeout value is exchanged to a watchdog count (round down to the

nearest decimal). For example, when timeout value is 1 ms (0.001 s), the count will be 32 which means

0.9766 ms).

− MCWDT

The time lag is three cycles of LF, which is the source clock of the watchdog timer. Exclusive area is not

used.

Calculation of timeout value: The timeout value is exchanged to a watchdog count (round down to the

User guide 26 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

5 Functional description

nearest decimal). For example, when timeout value is 1 ms (0.001 s), the count will be 32 which means

0.9766 ms).

5.4.2 Wdg_66_IA_SetMode()

If the new mode is WDGIF_OFF_MODE and disabling is not allowed, the DET error WDG_66_IA_E_PARAM_MODE

will be reported and the DEM messages WDG_E_DISABLE_REJECTED and WDG_E_MODE_FAILED will be

reported.

If the new mode is not within the valid range, the DET error WDG_66_IA_E_PARAM_MODE will be reported.

If the new mode is not listed in the supported modes defined in the WDG driver, the DET error

WDG_66_IA_E_PARAM_MODE will be reported and the DEM message WDG_E_MODE_FAILED will be reported.

Note: WDG_66_IA_FAST_MODE, WDG_66_IA_SLOW_MODE, and WDG_66_IA_OFF_MODE are in the list.

If the new mode is same as current mode, Wdg_66_IA_SetMode() returns E_OK without any operations.

Note: If the parameter “mode” is not changed from the current value, this API returns quickly without

any operations.

The behavior when the parameter “mode” is changed is different between WDT and MCWDT.

• WDT

WDG must disable watchdog timer to set registers and enable it to restart according to the parameter.

• MCWDT

WDG writes the SERVICE register and sets other registers without disabling and enabling MCWDT.

When the SRSS version is two and the lower limit after the change is smaller than the current watchdog timer

counter, the WDG must wait for SERVICE register’s status before changing other registers to avoid a reset.

After that, the watchdog timer counter will restart from zero.

It takes up to three cycles of LF (the duration is decided by the source clock of LF). For details of the SRSS

version, see Hardware documentation.

Same timing restrictions are applied as described for Wdg_66_IA_Init(). See 5.4.1 Wdg_66_IA_Init().

5.4.3 Wdg_66_IA_SetTriggerCondition()

The Wdg_66_IA_SetTriggerCondition() function checks whether the timeout that passed is equal to or

less than the maximum allowed timeout; if not, the function calls DET with WDG_66_IA_E_PARAM_TIMEOUT.

Note: If the parameter “timeout” is not changed from the current value, this API will retrigger the

watchdog timer through the SERVICE register.

The SERVICE register of the WDT takes up to three cycles of the ILO (about 91.5 μs) to take effect.

(For example, if this API is called and the SERVICE bit of the SERVICE register is written when the remaining

count before expiry is less than three ILO cycles at that time, the watchdog timer will continue to count three

more cycles of the ILO; this will cause a reset in this case).

User guide 27 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

5 Functional description

When the SERVICE register is written again before it takes effect, writing will be ignored.

For example, when the mode is WDG_66_IA_FAST_MODE and WdgFastLowerLimitPercent is configured, or

when the mode is WDG_66_IA_SLOW_MODE and WdgSlowLowerLimitPercent is configured, if this API is

called consecutively and the SERVICE bit of the SERVICE register is written, the second and later writings will be

ignored. After the SERVICE register takes effect, if this API is called again before the lower limit is reached, the

lower limit violation will be triggered.

About the SERVICE register of the WDT, an HW erratum is reported.

If this API writes the SERVICE bit of the SERVICE register and the system goes to DeepSleep or Hibernate mode

within four cycles of the ILO, the next writing of the SERVICE bit of the SERVICE register after waking up within

two cycles of ILO may be ignored. As a result of this behavior, the WDT will continue to count and cause an

undesired interrupt or reset.

This erratum has effect only on CYT2Bx series. To determine if your device is affected, see Hardware

documentation.

SERVICE register of MCWDT takes up to three cycles of LF (the duration is decided by the source clock of LF) to

take effect.

(For example, if this API is called and write CTR0_SERVICE bit of SERVICE register when the remaining count

before expiry is less than three at that time, watchdog timer will continue to count three cycles of LF more, so

that it will cause a reset in this case).

When the SERVICE register is written again before it takes effect, writing will be ignored.

For example, when the mode is WDG_66_IA_FAST_MODE and WdgFastLowerLimitPercent is configured, or

when the mode is WDG_66_IA_SLOW_MODE and WdgSlowLowerLimitPercent is configured, if this API is

called consecutively and the CTR0_SERVICE bit of the SERVICE register is written, the second and later writings

will be ignored. After the SERVICE register takes effect, if this API is called again before the lower limit is

reached, the lower limit violation will be triggered.

If the “timeout” parameter is changed, the behavior is different between WDT and MCWDT.

• WDT

WDG must disable the watchdog timer to set the registers and enable it to restart according to the

parameter.

• MCWDT

WDG writes to the SERVICE register and sets other registers without disabling and enabling MCWDT.

Restrictions as same as that of the SERVICE register are applied as described in Wdg_66_IA_SetMode(). See

5.4.2 Wdg_66_IA_SetMode().

Same timing restrictions are applied as described for Wdg_66_IA_Init(). See 5.4.1 Wdg_66_IA_Init().

5.4.4 Wdg_66_IA_GetVersionInfo()

Wdg_66_IA_GetVersionInfo() reports the DET WDG_66_IA_E_PARAM_POINTER, if the parameter

versioninfo parameter is a NULL pointer.

User guide 28 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

5 Functional description

5.5 Runtime checks

If Wdg_66_IA_Init() is called on the master core, the API checks whether the satellite cores are already

initialized. If the satellite cores are initialized, Wdg_66_IA_Init() will report the

WDG_66_IA_E_ALREADY_INITIALIZED error.

If Wdg_66_IA_Init() called on the satellite cores, the API checks that whether the master core is already

initialized. If the master core is not initialized, Wdg_66_IA_Init() will report the r

WDG_66_IA_E_INIT_FAILED error.

Wdg_66_IA_Init(), Wdg_66_IA_SetMode(), and Wdg_66_IA_SetTriggerCondition() APIs check

whether the running core ID is valid, otherwise will report the WDG_66_IA_INVALID_CORE error.

The Wdg_66_IA_SetMode() and Wdg_66_IA_SetTriggerCondition() APIs check whether the WDG’s state

is WDG_IDLE and whether the driver is already initialized properly. Otherwise the error callout handler and DET

will be called with the WDG_66_IA_E_DRIVER_STATE parameter.

Wdg_66_IA_SetTriggerCondition() checks if current mode is WDG_OFF_MODE, then the DEM message

WDG_E_WDG_STOPPED will be reported.

In case WdgCoreConsistencyCheckEnable is enabled, ISR handler checks if the watchdog timer related to

the interrupt reason is allowed on the current core. If not allowed, error WDG_66_IA_E_INVALID_CORE will be

reported.

5.6 Reentrancy

All functions except Wdg_66_IA_GetVersionInfo are not reentrant.

5.7 Debugging support

The WDG driver does not support debugging.

5.8 Functions available without core dependency

The following function is available on any core without any restriction:

• Wdg_66_IA_GetVersionInfo()

User guide 29 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

6 Hardware resources

6 Hardware resources

6.1 Interrupts

If the warning interrupt is enabled (see parameter WdgEnableWarningIrq), one of the following interrupt

handlers must be configured in OS to be called on the corresponding interrupt. The ISR should be allocated to

the same core as the allocated resource. The ISR must be declared in the AUTOSAR OS as Category 1 Interrupt

or Category 2 Interrupt.

ISR(Wdg_66_IA_WarnIntWDT_Cat2)

ISR_NATIVE(Wdg_66_IA_WarnIntWDT_Cat1)

ISR(Wdg_66_IA_WarnIntMCWDT[n]_Cat2)

ISR_NATIVE(Wdg_66_IA_WarnIntMCWDT[n]_Cat1)

Note: The interrupt service routines’ name suffixes must match the configured ISR category.

[n]: the number of specific MCWDT channel.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing

conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following

errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:

“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at

the end of the interrupt function to avoid the priority inversion.

TRAVEO™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.

Thus, if necessary, the DSB instruction should be added just before the end of the handler by the

integrator.

User guide 30 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

7 Appendix A – API reference

7.1 Data types

7.1.1 Wdg_66_IA_ConfigType

Type

typedef struct

{

 const Wdg_66_IA_SettingCommonType * SettingCommonPtr;

 const Wdg_66_IA_SettingType * SettingWdgPtr;

 const uint8 CoreCount;

} Wdg_66_IA_ConfigType;

Description

Wdg_66_IA_ConfigType defines a structure which holds the WDG driver’s configuration set.

7.1.2 WdgIf_ModeType

Type

typedef enum

Description

This type is derived from the WDG interface. It represents the mode types used for switching the WDG’s mode.

7.2 Constants

7.2.1 Error codes

The service might return the f error codes, listed in Table 3, if default error detection is enabled:

Table 3 Error codes

Name Value Description

WDG_66_IA_E_DRIVER_STATE 0x10 WDG is already busy when triggering or mode

switching will be performed.

WDG_66_IA_E_PARAM_MODE 0x11 Mode is not a valid parameter.

WDG_66_IA_E_PARAM_CONFIG 0x12 Configuration set is not OK.

WDG_66_IA_E_PARAM_TIMEOUT 0x13 Function SetTriggerCondition is called with

an invalid timeout (bigger than maximum

allowed).

WDG_66_IA_E_PARAM_POINTER 0x14 Function GetVersionInfo is called with NULL

pointer.

WDG_66_IA_E_INIT_FAILED 0x15 ConfigPtr is not a valid pointer to configuration

set when WDG initializing.

WDG_66_IA_E_EXTENDED_MODE_FAILED 0x20 Mode switching failed due to some reasons (e.g.

hardware limitation). This error id is used to call

error callout handler.

User guide 31 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

Name Value Description

WDG_66_IA_E_EXTENDED_DISABLE_REJECTED 0x21 The WDG is trying to disable the watchdog

although it is not allowed. This error id is used to

call error callout handler.

WDG_66_IA_E_EXTENDED_HW_TIMEOUT 0x22 The WDG hardware status change wait timeout.

This error id is used to call error callout handler.

WDG_66_IA_E_EXTENDED_WDG_STOPPED 0x23 The WDG is trying to set trigger condition during

the watchdog is stopped. This error id is used to

call error callout handler.

WDG_66_IA_E_INVALID_CORE 0x24 API is called from the invalid core or ISR occurs on

the invalid core.

WDG_66_IA_E_DIFFERENT_CONFIG 0x25 Intended config initialization of this core does not

match with the initialized config of other cores.

WDG_66_IA_E_ALREADY_INITIALIZED 0x26 Wdg_Init is called by the master core while other

cores are already initialized.

The following DEM messages can be enabled individually:

WDG_E_MODE_FAILED defined by DEM Mode switching failed due to lack of hardware

support for this mode (DEM error).

WDG_E_DISABLE_REJECTED defined by DEM WDG is not allowed to be disabled (DEM error).

WDG_E_HW_TIMEOUT defined by DEM Timeout period expired while changing hardware

status (DEM error).

WDG_E_WDG_STOPPED defined by DEM Trigger condition is not allowed to be set during the

watchdog is stopped (DEM error).

7.2.2 Version information

The version information, listed in Table 4, is published in the driver’s header file.

Table 4 Version information

Name Value Description

WDG_SW_MAJOR_VERSION See release notes Major version number

WDG_SW_MINOR_VERSION See release notes Minor version number

WDG_SW_PATCH_VERSION See release notes Patch version number

7.2.3 Module information

Table 5 Module information

Name Value Description

WDG_MODULE_ID 102 Module ID

WDG_VENDOR_ID 66 Vendor ID

User guide 32 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

7.2.4 API service IDs

The API service IDs, listed in Table 6, are published in the driver’s header file:

Table 6 API service IDs

Name Value Description

WDG_66_IA_API_INIT 0x00 Service ID of Wdg_66_IA_Init

WDG_66_IA_API_SETMODE 0x01 Service ID of Wdg_66_IA_SetMode

WDG_66_IA_API_SET_TRIGGER_CONDITION 0x03 Service ID of
Wdg_66_IA_SetTriggerCondition

WDG_66_IA_API_GET_VERSION_INFO 0x04 Service ID of Wdg_66_IA_GetVersionInfo

WDG_66_IA_API_WARNINT 0xFF Service ID of
Wdg_66_IA_WarningInterrupt_Arch

7.2.5 Invalid core ID value

Table 7 Invalid core ID

Name Value Description

WDG_66_IA_INVALID_CORE 0xFF Invalid core ID

7.3 Functions

7.3.1 Wdg_66_IA_Init

Syntax

void Wdg_66_IA_Init(

 const Wdg_66_IA_ConfigType* ConfigPtr

)

Service ID

0x00

Parameters (in)

• ConfigPtr - Pointer to WDG driver configuration set.

Parameters (out)

None

Return value

None

DET errors

• WDG_66_IA_E_INVALID_CORE - API is called from the invalid core.

• WDG_66_IA_E_INIT_FAILED - The pointer to the configuration set for initialization is invalid.

• WDG_66_IA_E_PARAM_CONFIG - The default mode is invalid or the WDG failed to initialize.

• WDG_66_IA_E_ALREADY_INITIALIZED - API is called by the master core while other cores are already

initialized.

User guide 33 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

• WDG_66_IA_E_DIFFERENT_CONFIG - Intended config initialization of this core does not match with the

initialized config of other cores.

DEM errors

• WDG_E_DISABLE_REJECTED - WDG cannot be turned OFF when DisableAllowed is FALSE.

• WDG_E_MODE_FAILED - The DefaultMode is not supported by hardware.

• WDG_E_HW_TIMEOUT - WDG initialization failed due to timeout of changing hardware status.

Description

This function initializes the WDG driver.

7.3.2 Wdg_66_IA_SetMode

Syntax

Std_ReturnType Wdg_66_IA_SetMode(

 WdgIf_ModeType Mode

)

Service ID

0x01

Parameters (in)

• Mode - Mode the WDG should be switched to.

Parameters (out)

None

Return value

E_OK or E_NOT_OK

DET errors

• WDG_66_IA_E_INVALID_CORE - API is called from the invalid core.

• WDG_66_IA_E_DRIVER_STATE - WDG is not initialized yet or currently not in idle state.

• WDG_66_IA_E_PARAM_MODE - The parameter mode is not supported.

DEM errors

• WDG_E_MODE_FAILED - Switching of mode failed due to lack of hardware support for this mode.

• WDG_E_DISABLE_REJECTED - Switching to off mode is not allowed or WDG is currently not in idle state.

• WDG_E_HW_TIMEOUT - Switching of mode failed due to timeout of changing hardware status.

Description

This function switches the mode of the WDG between the following three modes:

• WDGIF_OFF_MODE

• WDGIF_SLOW_MODE

• WDGIF_FAST_MODE

User guide 34 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

7.3.3 Wdg_66_IA_SetTriggerCondition

Syntax

void Wdg_66_IA_SetTriggerCondition(

 uint16 timeout

)

Service ID

0x03

Parameters (in)

• timeout - The new trigger condition validity period in milliseconds.

Parameters (out)

None

Return value

None

DET errors

• WDG_66_IA_E_INVALID_CORE - API is called from the invalid core.

• WDG_66_IA_E_DRIVER_STATE - WDG is not initialized yet or currently not in idle state.

• WDG_66_IA_E_PARAM_TIMEOUT - Input timeout is greater than the maximum allowed timeout.

DEM errors

• WDG_E_HW_TIMEOUT - Switching of mode failed due to timeout of changing hardware status.

• WDG_E_WDG_STOPPED - Setting of trigger condition during the watchdog is stopped.

Description

This function triggers watchdog timer with parameter timeout. If the value is 0, it triggers a watchdog reset,

immediately.

7.3.4 Wdg_66_IA_GetVersionInfo

Syntax

void Wdg_66_IA_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID

0x04

Parameters (in)

None

Parameters (out)

• versioninfo - Version information of the WDG driver is stored at the previously given address.

User guide 35 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

Return value

None

DET errors

• WDG_66_IA_E_PARAM_POINTER - Input version information pointer is NULL.

DEM errors

None

Description

Returns the version information of the module.

7.4 Required callback functions

7.4.1 DET

If default error detection is enabled, the WDG driver uses the following callback function provided by DET. If you

do not use DET, you must implement this function within your application.

Det_ReportError

Syntax

Std_ReturnType Det_ReportError

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId - Module ID of calling module.

• InstanceId - WdgCoreConfigurationId of the core that calls this function or

WDG_66_IA_INVALID_CORE.

• ApiId - ID of the API service that calls this function.

• ErrorId - ID of the detected development error.

Return value

Returns always E_OK (is required for services).

Description

Service for reporting development errors.

User guide 36 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

7.4.2 DEM

If DEM notifications are enabled, the WDG driver uses the following callback function that is provided by DEM. If

you do not use DEM, you must implement this function within your application.

Dem_ReportErrorStatus

Syntax

void Dem_ReportErrorStatus

(

 Dem_EventIdType EventId,

 Dem_EventStatusType EventStatus

)

Reentrancy

Reentrant

Parameters (in)

• EventId - Identification of an event by assigned event ID.

• EventStatus - Monitor test result of given event.

Return value

None

Description

Service for reporting diagnostic events.

7.4.3 Callout functions

7.4.3.1 Error callout API

The AUTOSAR WDG module requires an error callout handler. Each error is reported to this handler; error

checking cannot be switched OFF. The name of the function to be called can be configured by parameter

WdgErrorCalloutFunction.

Syntax

void Error_Handler_Name

(

 uint16 ModuleId,

 uint8 InstanceId,

 uint8 ApiId,

 uint8 ErrorId

)

Reentrancy

Reentrant

Parameters (in)

• ModuleId - Module ID of calling module.

• InstanceId - WdgCoreConfigurationId of the core that calls this function or

WDG_66_IA_INVALID_CORE.

User guide 37 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

7 Appendix A – API reference

• ApiId - ID of the API service that calls this function.

• ErrorId - ID of the detected error.

Return value

None

Description

Service for reporting errors.

7.4.3.2 Get core ID API

The AUTOSAR WDG module requires a function to get the valid core ID. This function is being used to determine

the core from which the code is being executed. The name of the function to be called can be configured by the

WdgGetCoreIdFunction parameter.

Syntax

uint8 GetCoreID_Function_Name (void)

Reentrancy

Reentrant

Parameters (in)

None

Return value

• CoreId - ID of the current core.

Description

Service for getting the valid core ID.

Note: This function returns the core ID configured in

WdgMulticore/WdgCoreConfiguration/WdgCoreId.

For example: Two cores are configured in the WdgCoreConfiguration.

Executing core WdgCoreConfigurationId WdgCoreId

CM7_0 0 15

CM7_1 1 16

When the function is called from the CM7_0 core, it returns 15, and when called from the CM7_1 core, it returns

16.

W
a

tch
d

o
g

 3
.0

 d
riv

e
r u

se
r g

u
id

e

 8 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
38

002-30200
 R

ev. *J

20
24

-03
-18

8 Appendix B – Access register table

8.1 SRSS (MCWDT)

Table 8 SRSS access register table of MCWDT

Register Bit

No.

Access

size

Value Description Timing Monitoring

mask

Monitoring value

CTL 31:0 Word

(32 bits)

Depends on

configuration

value or API

MCWDT control

register of

subcounter 0

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x80000001 0x80000001

(After MCWDT is set to

slow/fast mode by calling

Wdg_66_IA_Init /

Wdg_66_IA_SetMode)

0x00000000

(After MCWDT is set to off

mode by calling

Wdg_66_IA_Init /

Wdg_66_IA_SetMode)

LOWER_LIMIT 15:0 Word

(32 bits)

Depends on

configuration

value or API

MCWDT lower

limit register of

subcounter 0

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

UPPER_LIMIT 15:0 Word

(32 bits)

Depends on

configuration

value or API

MCWDT upper

limit register of

subcounter 0

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

WARN_LIMIT 15:0 Word

(32 bits)

Depends on

configuration

value or API.

MCWDT Warn

limit register of

subcounter 0

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

CONFIG 31:0 Word

(32 bits)

Depends on

configuration

value or API.

MCWDT

configuration

register of

subcounter 0

Wdg_66_IA_Init 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

W
a

tch
d

o
g

 3
.0

 d
riv

e
r u

se
r g

u
id

e

 8 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
39

002-30200
 R

ev. *J

20
24

-03
-18

Register Bit

No.

Access

size

Value Description Timing Monitoring

mask

Monitoring value

CNT 15:0 Word

(32 bits)

- MCWDT count

register of

subcounter 0

Do not use. 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

CPU_SELECT 31:0 Word

(32 bits)

Depends on

configuration

value or API.

MCWDT CPU

selection register

Wdg_66_IA_Init 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

LOCK 31:0 Word

(32 bits)

0x00000003 MCWDT lock

register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

SERVICE 31:0 Word

(32 bits)

0x00000000

0x00000001

MCWDT service

register

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR 31:0 Word

(32 bits)

0x00000000

0x00000001

MCWDT interrupt

register

Wdg_66_IA_WarnIntMCWDT[n]

_Cat1

Wdg_66_IA_WarnIntMCWDT[n]

_Cat2

([n]: the number of specific

MCWDT channel)

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR_SET 31:0 Word

(32 bits)

- MCWDT interrupt

set register

Do not use. 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR_MASK 31:0 Word

(32 bits)

Depends on

configuration

value or API.

MCWDT interrupt

mask register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR_MASKED 31:0 Word

(32 bits)

- MCWDT interrupt

masked register

Do not use. 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

W
a

tch
d

o
g

 3
.0

 d
riv

e
r u

se
r g

u
id

e

 8 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
40

002-30200
 R

ev. *J

20
24

-03
-18

8.2 SRSS (WDT)

Table 9 SRSS access register table of WDT

Register Bit

No.

Access

size

Value Description Timing Monitoring

mask

Monitoring value

CTL 31:0 Word

(32 bits)

Depends on

configuration

value or API

WDT control

register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x80000001 0x80000001

(After WDT is set to

slow/fast mode by calling

Wdg_66_IA_Init /

Wdg_66_IA_SetMode or

after
Wdg_66_IA_SetTrigge

rCondition is called in

slow/fast mode)

0x00000000

(After WDT is set to off

mode by calling

Wdg_66_IA_Init /

Wdg_66_IA_SetMode)

LOWER_LIMIT 31:0 Word

(32 bits)

Depends on

configuration

value or API

WDT lower limit

register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

UPPER_LIMIT 31:0 Word

(32 bits)

Depends on

configuration

value or API

WDT upper limit

register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

WARN_LIMIT 31:0 Word

(32 bits)

Depends on

configuration

value or API.

WDT Warn limit

register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

CONFIG 31:0 Word

(32 bits)

Depends on

configuration

value or API.

WDT

configuration

register

Wdg_66_IA_Init 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

W
a

tch
d

o
g

 3
.0

 d
riv

e
r u

se
r g

u
id

e

 8 A
p

p
e

n
d

ix
 B

 – A
cce

ss re
g

iste
r ta

b
le

 U
ser g

u
id

e
41

002-30200
 R

ev. *J

20
24

-03
-18

Register Bit

No.

Access

size

Value Description Timing Monitoring

mask

Monitoring value

CNT 31:0 Word

(32 bits)

- WDT count

register

Do not use. 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

LOCK 31:0 Word

(32 bits)

0x00000003 WDT lock

register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

SERVICE 31:0 Word

(32 bits)

0x00000000

0x00000001

WDT service

register

Wdg_66_IA_SetTriggerCondi

tion
0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR 31:0 Word

(32 bits)

0x00000000

0x00000001

WDT interrupt

register

Wdg_66_IA_WarnIntWDT_Cat1

Wdg_66_IA_WarnIntWDT_Cat2
0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR_SET 31:0 Word

(32 bits)

- WDT interrupt

set register

Do not use. 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR_MASK 31:0 Word

(32 bits)

Depends on

configuration

value or API.

WDT interrupt

mask register

Wdg_66_IA_Init

Wdg_66_IA_SetMode

Wdg_66_IA_SetTriggerCondi

tion

0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

INTR_MASKED 31:0 Word

(32 bits)

- WDT interrupt

masked register

Do not use. 0x00000000

(monitoring is

not needed.)

0x00000000

(monitoring is not

needed.)

User guide 42 002-30200 Rev. *J

 2024-03-18

Watchdog 3.0 driver user guide

Revision history

Revision history

Document

revision

Date Description of changes

** 2020-08-11 Initial release

*A 2020-11-19 Deleted unused memory section from section “Memory Allocation

Keyword”.

Changed description in section “Memory Allocation Keyword”.

MOVED TO INFINEON TEMPLATE.

*B 2021-05-18 Modified description regarding WDG_66_IA_E_PARAM_MODE in

chapter 5.4.2.

*C 2021-08-19 Added a note in 6.1 Interrupts

*D 2021-12-21 Updated to the latest branding guidelines.

*E 2022-07-12 Added caution regarding WDT in chapter 5.4.3.

*F 2023-03-23 Added caution regarding SERVICE register in chapter 5.4.3.

Added chapter 2.6.3.

Updated the description in chapter 4.1.

*G 2023-06-06 Updated the description in chapter 2.6.1.

*H 2023-10-06 Corrected core identification keyword in section 2.6.

*I 2023-12-08 Web release. No content updates.

*J 2024-03-18 Corrected ASIL keyword in section 2.6.

 Warnings

Edition 2024-03-18

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email:

erratum@infineon.com

Document reference

002-30200 Rev. *J

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Disclaimer

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the WDG driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding
	1.7 Multicore support
	1.7.1 Multicore type
	1.7.1.1 Single core only (multicore type I)
	1.7.1.2 Core-dependent instances (multicore type II)
	1.7.1.3 Core-independent instances (multicore type III)

	1.7.2 Virtual core support

	2 Using the WDG driver
	2.1 Installation and prerequisites
	2.2 Configuring the WDG driver
	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Memory allocation and constraints
	2.6.3 Assembler code

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 AUTOSAR OS
	3.4.2 MCU driver
	3.4.3 DET
	3.4.4 Watchdog interface
	3.4.5 DEM
	3.4.6 BSW scheduler
	3.4.7 Error callout handler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 WDG settings configuration
	4.3 WDG timer configuration list
	4.4 WDG settings fast configuration list
	4.5 WDG settings slow configuration list
	4.6 WDG settings off configuration list
	4.7 WDG DemEventParameter reference
	4.8 WdgMulticore
	4.9 WdgCoreConfiguration
	4.10 WDG external configuration
	4.11 WdgPublishedInformation

	5 Functional description
	5.1 Inclusion
	5.2 Initialization
	5.3 Reconfiguration during runtime
	5.4 API parameter checking
	5.4.1 Wdg_66_IA_Init()
	5.4.2 Wdg_66_IA_SetMode()
	5.4.3 Wdg_66_IA_SetTriggerCondition()
	5.4.4 Wdg_66_IA_GetVersionInfo()

	5.5 Runtime checks
	5.6 Reentrancy
	5.7 Debugging support
	5.8 Functions available without core dependency

	6 Hardware resources
	6.1 Interrupts

	7 Appendix A – API reference
	7.1 Data types
	7.1.1 Wdg_66_IA_ConfigType
	7.1.2 WdgIf_ModeType

	7.2 Constants
	7.2.1 Error codes
	7.2.2 Version information
	7.2.3 Module information
	7.2.4 API service IDs
	7.2.5 Invalid core ID value

	7.3 Functions
	7.3.1 Wdg_66_IA_Init
	7.3.2 Wdg_66_IA_SetMode
	7.3.3 Wdg_66_IA_SetTriggerCondition
	7.3.4 Wdg_66_IA_GetVersionInfo

	7.4 Required callback functions
	7.4.1 DET
	7.4.2 DEM
	7.4.3 Callout functions
	7.4.3.1 Error callout API
	7.4.3.2 Get core ID API

	8 Appendix B – Access register table
	8.1 SRSS (MCWDT)
	8.2 SRSS (WDT)

	Revision history
	Disclaimer

