(infineon

Watchdog 3.0 driver user guide

TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and usage of the watchdog (WDG) driver. This document
explains the functionality of the driver and provides a reference of the driver’s API.

The installation, build process, and general information on the use of EB tresos Studio are not within the scope
of this document. See the EB tresos Studio for ACG8 user’s guide [8] for detailed information about this topic.

Intended audience

This document is intended for anyone who uses the WDG driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the WDG driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the WDG driver provides detailed steps on how to use the WDG driver in an application.
Chapter 3 Structure and dependencies describes the file structure and the dependencies of the WDG driver.

Chapter 4 EB tresos Studio configuration interface describes the driver’s configuration with the EB tresos
Studio.

Chapter 5 Functional description gives a functional description of all services offered by the WDG driver.
Chapter 6 Hardware resources gives a description of all hardware resources used by the driver.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table1 Abbreviation
Abbreviation Description
API Application Programming Interface
ASIL Automotive Safety Integrity Level
AUTOSAR Automotive Open System Architecture
BSW Basic Software. Standardized part of software which does not fulfill a
vehicle functional job.
DEM Diagnostic Event Manager
DET Default Error Tracer
EB tresos ECU AUTOSAR Suite A collection of AUTOSAR Basic Software modules and a Runtime
Environment integrated in a common configuration and build
environment.
EB tresos Studio Elektrobit Automotive configuration framework
User guide Please read the sections “Important notice” and “Warnings” at the end of this document 002-30200 Rev. *J

www.infineon.com 2024-03-18

http://www.infineon.com/

o _.
Watchdog 3.0 driver user guide < In f| neon

About this document

Abbreviation

Description

ILO Internal Low-speed Oscillator

LF Source clock of MCWDT which is selectable from several clock sources.
MCAL Microcontroller Abstraction Layer
MCU Micro Controller Unit

ms Millisecond

0s Operating System

RAM Random Access Memory

ROM Read Only Memory

WDG Watchdog

WDT Basic Watchdog timer

MCWDT Multi-Counter Watchdog Timer
SRSS System Resources Sub-System

Related documents

AUTOSAR requirements and specifications

Bibliography

[1] General specification of basic software modules, AUTOSAR release 4.2.2.

[2] Specification of watchdog driver, AUTOSAR release 4.2.2.

[3] Specification of standard types, AUTOSAR release 4.2.2.

[4] Specification of ECU configuration parameters, AUTOSAR release 4.2.2.

[5] Specification of default error tracer, AUTOSAR release 4.2.2.

[6] Specification of diagnostics event manager, AUTOSAR release 4.2.2.

[7] Specification of memory mapping, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[8] EBtresos Studio for ACG8 user’s guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[9] Layered software architecture, AUTOSAR release 4.2.2.

User guide

2 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

Table of contents

Table of contents

About this dOCUMENTccuiiiiiiiriiiiiiiiiiiiiiiieiiriitaiiseiireiirasisestsescsessassnssns 1
Table Of CONTENTS ..ccuiieiiieiiiiiiiiiiiiiiiiireiiiientienineiireiirasisestsestsesssssrasssssssssssssssssssssssssssssssssassssssssssssnssns 3
1 GENEral OVEIVIEW .ceuuirrnniirrnninrennisraniisrancnssnicnsasssssssssrssssssssssssssssrsssnsses 5
1.1 INtroduction t0 the WDG AVloouieiiiirieieiteteieett ettt ettt ettt et b e st sbe et e sbe st enee 5
1.2 LU LY g o o3 £ 1 TSRS 5
1.3 Embedding in the AUTOSAR E€NVIFONMENT ...ccciiviiriiriieieiereeterieet ettt esie st e see st e stesse st estesaaesessessnenes 5
1.4 SUPPOITEA NATAWAIE ..cueeieiiiieiieereertecte ettt e e ssae s be e s e e s e e srtesse s bessbasssaesssesssesssesssesssassseesssenns 6
1.5 DeVElOPMENT ENVIFONMENT.......iciiiieieeerieeeest et eteste et et e steetesse st e tessesssessasseessesseessessesssessessesssensenseenes 6
1.6 Character set and ENCOAINGcc.ciiiiririiiirieeeetee ettt ettt et et e st et e sbe et e sbe st et esbe st esbesaaeatens 6
1.7 MULLICOTE SUPPOIT ...vtittieieiieiterrte et se e st e ste st e ste s bt e beestaessnesssessbessbaesbaessaesssesssesssesssesssesnsaesssesssesssesssees 6
1.7.1 YT L Lol e] S 4] Y USSR 7
1.7.1.1 Single core only (MUILICOrE tYPE 1) coueiuiriiririirierieieieteteeeese ettt ettt saes 7
1.7.1.2 Core-dependent instances (MUIICOre tyPe 1) c..eovereriecereeieee et 7
1.7.1.3 Core-independent instances (MUlLiCOre type 1) .o ieceeceecieeeecieceeeeceee e 8
1.7.2 VIrTUQL COTE SUPPOIT uviiiiiiiiiiieitetesteseesresressteeste s s e e sbaessaesstesssesssasssasssesssaesssesssesssesssessseesseesseesssenns 8
2 USINZ the WDG dFIVer .cuuiiuiieiinireirriirinesiesincsesssscasssssesssssssssssssssssssssssssssssssssssasssrsssssssssssssssasssnss 9
2.1 INStAllation aNd Prer@QUISIEES...ccviciirieeerieeeetere ettt et e et e et e et e s e s se e e e sesse et esseessensesseenes 9
2.2 CoNfigUrNG the WDG AFIVET «.cueieieieieieieeieriesiestesteie ettt st sttt sttt s b s b e sbe st et et e e e e ssessessanes 9
2.3 Adapting YOUr @PPLICALtION .e..eiiiiiiieieetee ettt ettt s et sb et b e st s bt et e b s nee 9
2.4 SEarting the DUILA PrOCESS.....coviviiriiieieeetee ettt sttt srenes 10
2.5 Measuring StaCk CONSUMPLION ..c..ciiiriiiiierteert ettt sttt et et e e st s e et sae et e be e e enaesaeeneas 11
2.6 MEMOIY MAPPINE cuvvirurerterireiieereestestesiressteesseessaessesssesssesssesssessssesssesssesssesssessssesssesssesssesssasssessssesssesss 11
26.1 MemOory alloCation KEYWOIdceeieiriiriinieieicieteeeee ettt ettt et saenes 11
2.6.2 Memory allocation and CONSEIAINTS......ccviierieiieriieeee e sre e s steesreesraesrressse s ressrasssaennns 12
2.6.3 ASSEMDLET COUR ...ttt sttt sttt et e s e st e st e s b e e e b e sae e eesneennes 12
3 Structure and dePeNUENCIeS.....ccuciiuiieiieiiniiaiietretioncancsssssscsssssssscsscssssssssscsssssscsscsssssssssssssssssnne 13
31 STALIC FILES ettt ettt et st et e s bt et e b et et s a et e s b e st e besae et e beeaeenee 13
3.2 CONFIGUIAtION FIlES .ttt sttt ettt s b e sttt et et esesbessesaes 13
3.3 GENETALEA fILES ettt ettt s b st et e st st et e st e s e sae et e s s e ent et e ean et e beeneenes 13
34 [D1=Y oY<T o [T g Vol [F TP 14
34.1 AUTOSAR OS...neieieteeeteteitstestest e st ettt st s bt s b e sbeste st et et e st s st sbesbe b e b ente st e st entssessesbensensenseneentesessessens 14
3.4.2 MCU AFIVET ceneieieieeteteetet ettt et te st st e te st et e s st et e b e saeessessesssansesssansesseensessesnsansesssensensesssensenseensen 14
3.4.3 D] = I SO PP PP SPPRRPPPPRN 14
3.4.4 L =) el g o [=T =T o = Yol BTSSR 14
3.4.5 DEM ettt ettt ettt et e ettt e e e e s e ettt e e e e s e e ettt e e e e e e e r et t e e e e e e e rrettaeeeeeeennnnet 14
3.4.6 BSW SCREAULET ...ttt et ettt e sb e st s st s s meeaeen 14
3.4.7 Error CalloUt NANAIENcoiieieieeeeee ettt sttt e sr e sttt b e s e e s e sanenees 14
4 EB tresos Studio configuration interfaceccccceieeiiiniirniinninninniniiinninninenireiirssisesisescsesssenses 15
4.1 GENEral CONFIGUIALION ..ottt ettt st et s et s et et e s b e st etesae et ebessaenes 15
4.2 WDG Settings CONFIGUIAtION ..cueiuiiiiiieiirieeieeestestee ettt sttt ettt sse b ee 16
4.3 WDG timer CONFIGUrAtION liST....cciiciereeieeiieeeieeeetere ettt ettt st e te s e e e e ssesseessesneessessnennans 17
4.4 WDG settings fast configuration liStceevererierieiieineeee et 19
4.5 WDG settings SIow cONfigUuration list.........ceeeererierienieinirenereseeteteeeee ettt 20
4.6 WDG settings off coNfiguration LStccoeieriirieiininieeceteee ettt s 21
4.7 WDG DeMEVENtPArameter refEreNCEcovviviirierieieieeeeererese ettt sttt 22
4.8 WAGMUILICOTE <.ttt sttt et et e st e st e s e e s b e s st et esse e st e sesssansasseensansesnsensesnsessessesnsans 23
4.9 WAZCOreCONFIGUIALION .euviiiieieieieteeeeee ettt ettt ettt s b st ettt et et sbe b ee 23
User guide 3 002-30200 Rev. *J

2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

Table of contents

4.10 WDG eXternal CONfIGUIAtION ..c.etiiiieirerterertesee ettt ettt sttt sttt s b b ee 23
411 WAgPUbBLliShedINformMation........coei ettt st ettt 23
5 FUNCHIONAl deSCriPtioN . .cuiuiieiieiiniieiietinniencecenstascencsssssscascssssssssscsssssssascssssssssscassssssassssssssssscas 24
5.1 INCLUSTON 1eetteeteeeieeeee ettt te e e e s e e et eete e be e be e bee s b e esbeerbe e baesaessaeessessseesbaanseassessseesseensasssaesseesssenssenns 24
5.2 LN ETALIZATION ettt ettt e ee e e e be e e taeeebe e e teaeetbe e e baeeesbee e breeeabae e baeennreeeraeenns 24
53 Reconfiguration dUring FUNTIME ..ottt ettt r e s e e sre e s e ae s e esesnneneas 24
5.4 APL Parameter ChECKINGccuiviiiirieieeeteese ettt et s bttt e s et e be st e sesaeestesesnsensessesnsans 24
54.1 WAE 66 _TA_INTE() eoveereererierierietetetete sttt ettt sttt et et ettt et e s bt s b sbe st et esbenaeneeneesessessens 24
5.4.2 WAE_66_IA_SEIMOAE() ..urerrereriiieieienieiesieetete et etes e se e teste et essesseessesseessessesssessessesssessesseessessenneans 26
5.4.3 Wdg_66_IA_SetTriggerCondition().....cccceverererierierieieeneresesiestetet et s st st sae st sae e esessesaesaens 26
5.4.4 Wdg_66_IA_GEtVErSionNINTO()...coveeeeeererienierienierietetetsi sttt et ettt st bttt e e e e e e e e ssesaens 27
5.5 RUNEIME CNECKS ettt ettt ettt et eceta e e e te e eeaeeeesbeeeteeeesseeesseessseeenseeensseesseeenns 28
5.6 REENTIANCY ettt ettt e e s s e se et e e e e s s e s asetbeeeeeese s nnseeeaeeesssennnnnes 28
5.7 DEDUGEING SUPPOI..cieiiieeieetecteetetesteterteete e e e s steste et e sesse et esseessessesseessesseessassesssessassesssensesseessenseenses 28
5.8 Functions available without core dependencCy ... sae e ens 28
6 HardWare FESOUICES ...cuieiiiieieiierecacactececesserecsssssscssnses 29
6.1 F LT A U] o) £ PRSPPI 29
7 APPENIX A — API ref@rE@NCe..ccieiuiiieiieiiniiieciettattcestestecscestossecasesssssesssssssssssssssssssssssssssssssassasss 30
7.1 D] 0= I R 0L PP 30
7.1.1 WG _66_IA_CONTIGTYPE cutetieieieeteieite ettt ettt ettt ettt et et e s et e sbe st e besseessessesssessesssensassesnsans 30
7.1.2 WAGIT_MOAETYPE ..ottt sttt ettt st ettt ettt sse st sbe b et et eaeneeneesessesaens 30
7.2 (000] 1151 2= 1 | £ T OO OO OO TP PTPPPPPRRRRPPP 30
7.2.1 EFTOT COURS ittt ettt ee e e ee e et eeetaeesabee e baeeetbeeessseeesasesaseeesseeessaeensssenssaeesseensseennseenn 30
7.2.2 Version INFOrMALION ...cccvieciieiieieceeee et et er e te e e e b e e beeb e e beesbaestaeesbeesseenbaenseenseennns 31
7.2.3 MOAULE INFOIMATION ..viiiiiiiieecee ettt et ete e eeree e s beeeebaeeessee e beseesseeenseeesseesareeen 31
7.2.4 APLSEIVICE IDS .eevrieieitiee ettt ettt ee e eectte e e e te e e e e tbaeeessbaeeeessaaaeaessaseaessaseaassaaeeanssaaesennseaesennsenes 32
7.2.5 INVALIA COT@ ID VAlUE ..ottt ettt et e e et e e tte e s te e s bae e s abae s sae e nsaeeasaeennseennsennn 32
7.3 V] oot (0] o 3OO 32
7.3.1 WG B6_TA_INIT oottt ettt ettt et et et et s et esbe et et e sat et e bt et ense e st ensesseentans 32
7.3.2 WG _66_IA_SEEMOAE ..ottt ettt ettt e e st e st etesaesssesbesseessassesnsessesssessessesnsans 33
7.3.3 Wdg_66_IA_SetTriggerCoNditioNcocieverieriererteieeeeteste ettt sttt e st st e b e sae st esaesseeneans 34
7.3.4 Wdg_66_IA_GELVErSIONINTO ...cveeiieieieeeeeeeree ettt ettt e e e e s e se e s e ae s e essesseeneans 34
7.4 Required callback FUNCLIONSooiiiieieieieeeeeceee ettt ettt sae st e be s e s ssnenees 35
7.4.1)] RPNt 35
7.4.2 D= NN 36
743 CallOUt FUNCLIONS ottt et ettt e te e e ta e e e ebe e e aseeeabeesebseeessaeesesessseeensseennseesseeenns 36
7431 g o gt r=] 1 Lo YU Y o I USRIt 36
7.4.3.2 LCT=) oo T (= 1 D N o TR 37
8 Appendix B - Access register tablecccccireireiinniinniirainianiininniiiniiiasisesisesisessrsstsssssessssssansss 38
8.1 SRSS (MCOWDT) coreeereeeeeeeseeeeeseeeee e e s seeeees e seeese e eseeseeseeseaseeseeeessseesasssesesssesseeeseseseneeseeseassesseseassaesaees 38
8.2 SRSS (WDT) c.uteeiteeerierteeeeeeteeiteesteerreesteesseestbeesseese e seesssesssessssesseessesssensassssessseesseesessseesssessseessesseessessens 40
REVISION NISTONY ..cuuieiiieiieiieiieiennieriectetteniencescssscascsssssssascsssssssassasssssssssassssssnssasssssssssassssssnsssssssssnssane 42
DISCLAIMEL ..cvuiiriiiiniiiniiineiieininiineiissecieesieestassesssssessssscssscssessasssssssssssssessasssasssssssssesssessasssssssssessanssnnss 43
User guide 4 002-30200 Rev. *J

2024-03-18

o~ _.
Watchdog 3.0 driver user guide In f| neon

1 General overview

1 General overview

1.1 Introduction to the WDG driver

The WDG driver is a set of software routines for handling the WDG module. The driver provides services for
initializing, changing the operation mode, and setting the trigger condition (timeout). The driver is compliant
with the AUTOSAR standard and is implemented according to the Specification of watchdog driver [2].

The WDG driver is delivered with a plugin for the EB tresos Studio, which allows you to statically configure the
driver options. The driver provides an interface to define symbolic names and the functionality of all
configuration options. The WDG driver is designed and implemented for use with additional WDG drivers. All
API functions, DEM errors, DET errors, and data types are prefixed with vendor specific string “_66_IA_". IAis the
short form for InternalA.

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

¢ Embedded systems

e Cprogramming language

e AUTOSAR standard

e Target hardware architecture

1.3 Embedding in the AUTOSAR environment

Application 1 Application 2 Application 3 Application n Application

Application
Runtime Environment Abstraction
Layer

System Memory Communication Service
Services Services Services Layer

Onboard Memory Communication ECU

Device Hardware Hardware e Hardvyare Abstraction
Abstraction

Abstraction Abstraction Abstraction Layer

Operation System

Microcontroller

WC Driver Memory Driver COM Driver 1/O Driver Abstraction
Layer

Microcontroller Type

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The WDG driver (Figure 2) is part of the MCAL, the
lowest layer of basic software in the AUTOSAR environment.

As an internal microcontroller driver, WDG driver provides a standardized and microcontroller-independent

interface to higher software layers for accessing WDG timer of the ECU hardware.

User guide 5 002-30200 Rev. *J
2024-03-18

o~ _.
Watchdog 3.0 driver user guide II‘I f| neon

1 General overview

For an overview of the AUTOSAR layered software architecture, see the Layered software architecture [9].

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers

MCU Driver
Core Test
Flash Test
RAM Test
LIN Driver
CAN Driver

FlexRay Driver
OCU Driver
ICU Driver
PWM Driver
ADC Driver
DIO Driver
PORT Driver

=

@
=

p—
o
—
o
()

Internal Flash Driver
SPI1 Handler Driver
Ethernet Driver

Watchdog Driver
Internal EEPROM Driver

Microcontroller

ol =
73

This version of the WDG driver supports the TRAVEO™ T2G microcontroller. The supported derivatives are listed
in the release notes.

Power &
Clock Unit

Figure 2 WDG driver in MCAL layer

14 Supported hardware

Additional derivatives which contain only a subset of the capabilities of one derivative mentioned above can be
supported by providing a resource file with its properties.
1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules BASE, DEM, MAKE, MCU,
and RESOURCE are needed for proper functionality of the WDG driver.

1.6 Character set and encoding
All source code files of the WDG driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

1.7 Multicore support

The WDG driver supports the multicore type ll. wdg 66 IA GetVersionInfo () alsosupports multicore type
[1l. For each multicore type, see the following sections.

Note: If multicore type Ill is required, the section including the data related to the read-only APl or
atomic write APl must be allocated to the memory, and can be read from any cores.

002-30200 Rev. *J

User guide 6
2024-03-18

Watchdog 3.0 driver user guide

1 General overview

1.7.1 Multicore type

In the following section, type |, type Il, and type Il are defined as multicore characteristics.

1.7.1.1 Single core only (multicore type I)

infineon

For this multicore type, the driver is available only on a single core. This type is referred as “Multicore Type I”.

Multicore type I has the following characteristic:

e The peripheral channels are accessed by only one core.

Core 1
MCAL
Service API

Module-Kernel

Peripheral channels

Figure 3 Overview of the multicore type |

1.7.1.2 Core-dependent instances (multicore type Il)

For this multicore type, the driver has core-dependent instances with individually allocable hardware. This type

is referred as “Multicore Type II”.
Multicore type Il has the following characteristics:

e Thedriver code is shared among all cores
- Acommon binary is used for all cores
- A configuration is common for all cores
e Each core runs an instance of the driver

e Peripheral channels and their data can be individually allocated to cores, but cannot be shared among cores

¢ One core will be the master; the master core must be initialized first
— Cores other than the master core are called satellite cores.

Corel Core2
MCAL c MCAL
ommon code,

Service API distinct data Service API
and status

Module-Kernel

Same IPs, but
different channels

Peripheral channels Peripheral channels

Figure 4 Overview of the multicore type Il

User guide 7

002-30200 Rev. *J
2024-03-18

Watchdog 3.0 driver user guide

infineon

1 General overview

1.7.1.3 Core-independent instances (multicore type lll)

For this multicore type, the driver has core-independent instances with globally available hardware. This type

is referred as “Multicore Type ll1”.
Multicore type Il has the following characteristics:

e The code of the driver is shared among all cores
- Acommon binary is used for all cores
- A configuration is common for all cores
e Each core runs an instance of the driver
e Peripheral channels are globally available for all cores

Corel
MCAL
Service API

Common code

Module-Kernel

Peripheral channels

f

Same IPs, and
same channels

Core2
MCAL
Service API

Figure 5 Overview of the multicore type Il

1.7.2 Virtual core support

The WDG driver supports a number of cores. The configured cores need not be equal to the physical cores.

The WDG driver calls a configurable callout function (WdgGetCoreTIdFunction) to identify the core that is
currently executing the code. This function can be implemented in the integration scope. The function can be
written such that it does not return the physical core, but instead returns the SW partition ID, OS application ID,
or any attribute/parameter. By interpreting these as the core, the WDG driver can support multiple SW

partitions on a single physical core.

User guide 8

002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

2 Using the WDG driver

2 Using the WDG driver

This chapter describes all necessary steps to incorporate the WDG driver into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user’s guide [8]. You can find

the required basic information about the installation procedure of EB tresos ECU AUTOSAR
components and the usage of the EB tresos Studio and the EB tresos ECU AUTOSAR build
environment. You will also find information on how to setup and integrate your own application
within the EB tresos ECU AUTOSAR build environment.

The installation of the WDG driver complies with the general installation procedure for EB tresos ECU AUTOSAR
components given in the EB tresos Studio for ACG8 user’s guide [8] . If the driver has been successfully installed,
the driver will appear in the module list of the EB tresos Studio (see EB tresos Studio for ACG8 user’s guide [8]).

This guide assumes that the project is properly set up and is using the application template as described in the
EB tresos Studio for ACG8 user’s guide [8]. This template provides the necessary folder structure, project, and
makefiles needed to configure and compile an application within the build environment. You must be familiar
with the usage of the command line shell.

2.2 Configuring the WDG driver

This section provides an overview of the configuration structure, defined by AUTOSAR, on how to use the WDG
driver.

The following basic containers are used to specify the behavior of WDG driver:
e TUdgGeneral: This container is mainly used to restrict or extend the API of the WDG module and enable or

disable DET.

¢ lWdgDemEventParameterRefs: This container holds references to the DemEventParameter elements,
which will be invoked using the Dem_ReportErrorStatus APl in case the corresponding error occurs.

e WdgSettingsConfig: This container holds the watchdog settings for each mode, all post-build parameters
are handled via this container.

e TdgMulticore: This container contains the multicore configuration of the WDG driver.

The configuration data stored by containers WdgExternalConfiguration and WdgPublishedInformation
are not processed.

For detailed information and description, see 4 EB tresos Studio configuration interface.

2.3 Adapting your application

To use the WDG driver in your application, include the MCU and WDG driver header files by adding the following
lines of code in your source file:

#include “Mcu.h” /* MCU Driver */
#include “Wdg 66 IA.h” /* WDG Driver */

This publishes all needed functions, prototypes, and symbolic names of the configuration to the application.
Also, you need to implement the error callout function for ASIL safety extension.

User guide 9 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

2 Using the WDG driver

Declare the error callout function in file specified by the WdgIncludeFile parameter and implement the error
callout function in your application (see 7.4 Required callback functions, Error callout API).

The error callout function name can be configured by the WdgErrorCalloutFunction parameter.

In the next step, the MCU and WDG need to be initialized and configured. The steps to configure the WDG driver
in the EB tresos Studio are explained 4 EB tresos Studio configuration interface. The WDG module will be
automatically enabled if an appropriate parameter configuration of the WDG module is available in the
application.

The MCU and WDG initialization should be done for both master core and satellite cores:

Mcu_ Init (&Mcu Configl[0]);
Wdg 66 IA Init (&Wdg 66 IA Config[l]);

The master core must be initialized prior to the satellite core. All cores must be initialized with the same
configuration.

To trigger watchdog timer (WDT/MCWDT) with the timeout parameter or trigger an immediate watchdog reset
(WDR), thewdg 66 IA SetTriggerCondition () function must be called. In case of RAM mode, the trigger
routine should be called by the application directly instead of thewdg 66 IA SetTriggerCondition ()
function after flash area is erased.

Wdg 66 IA SetTriggerCondition (1000);

Your application must provide the notification functions and its declarations that you configured. The file
containing the declarations must be included using the wdgGeneral /WdgIncludeFile parameter. The
notification functions take no parameters and have void return type:

void MyNotificationFunction (void)

{

/* Insert your code here */

}

Note: Notification function is controlled by wdgEnableWarningIrgwhich uses a warning interrupt to
notify the application before WDR happens. If this interrupt is enabled, an interruption is triggered
when the watchdog counter reaches the warning limit value. Notification function does not work
correctly if this interrupt is disabled. Set up the interrupt levels appropriately according to system
environment.

2.4 Starting the build process

Do the following to build your application.
Note: For a clean build, use the build command with target ciean a1l before. (make clean all)

1. Onthe command shell, type the following command to generate the necessary configuration dependent
files. See 3.3 Generated files.

> make generate

2. Type the following command to resolve the required file dependencies:

> make depend

3. Type the following command to compile and link the application:

User guide 10 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

2 Using the WDG driver

> make (optional target: all)
The application is now built. All files are compiled and linked to a binary file, which can be downloaded to the
target hardware.

2.5 Measuring stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The
executable file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement:

-DSTACK_ANALYSIS ENABLE
2. Type the following command to clean library files:
> make clean lib

3. Follow the build process described in 2.4 Starting the build process.
4. Measure the stack consumption by following the instructions given in the release notes.

2.6 Memory mapping

The Wdg_66_IA_MemMap.h file in the S(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0I0R0/include directory is
a sample. This file is replaced by the file generated by MEMMAP module. Input to MEMMAP module is generated
as Wdg_Bswmd.arxmlin the S(PROJECT_ROOT)/ output/generated/swcd directory of your project folder.

2.6.1 Memory allocation keyword
e WDG 66 IA START SEC CODE ASIL B/ WDG 66 IA STOP SEC CODE ASIL B
The memory section type is CODE. All executable code is allocated in this section.

e WDG 66 IA START SEC_CONST ASIL B UNSPECIFIED/
WDG 66 IA STOP SEC CONST ASIL B UNSPECIFIED

The memory section type is CONST. The following constants are allocated in this section:

- All configuration data except reset
- Hardware register base address data
- Pointer to the current driver status
- Pointer to the current driver mode
- Pointer to the current timeout value
e WDG 66 IA START SEC CONST ASIL B 32/ WDG 66 IA STOP CONST INIT ASIL B 32

The memory section type is CONST. The following constant is allocated in this section:

- Trigger function size

e WDG CORE[MasterCoreId] 66 IA START SEC VAR INIT ASIL B GLOBAL 8/
WDG_CORE [MasterCoreId] 66 IA STOP SEC VAR INIT ASIL B GLOBAL 8

MasterCoreId meansthelidgCoreConfigurationId command specifiedin the
WdgMasterCoreReference reference command.

User guide 11 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

2 Using the WDG driver

The memory section type is VAR. The following variables are allocated in this section:

- SRSSversion. See Hardware documentation for details.
e WDG CORE[CoreId] 66 IA START SEC VAR INIT ASIL B GLOBAL UNSPECIFIE/WDG CORE[CoreId
] 66 IA STOP SEC VAR INIT ASIL B GLOBAL UNSPECIFIED
The memory section type is VAR. The following variables are allocated in this section:

- Current driver status
- Pointer to the configuration data
e WDG CORE[CoreId] 66 IA START SEC VAR INIT ASIL B LOCAL UNSPECIFIED/WDG_CORE[CoreId
] 66 IA STOP SEC VAR INIT ASIL B LOCAL UNSPECIFIED
The memory section type is VAR. The following variables are allocated in this section:

- Current mode
- Current timeout value

2.6.2 Memory allocation and constraints

All memory sections that store init or uninit status must be zero-initialized before any driver function is
executed on any core. If core consistency checks are disabled, inconsistent parameters are detected and
reported by PPU and SMPU.

e WDG_CORE[WdgCoreConfigurationId] START VAR [INIT POLICY] ASIL B LOCAL [ALIGNMENT]

/ WDG_CORE [WdgCoreConfigurationId] STOP VAR [INIT POLICY] ASIL B LOCAL [ALIGNMENT]

This section is read/write accessed only from the core represented by WdgCoreConfigurationId.
Therefore, this section can be allocated to any RAM region. It is recommended to allocate the section to
cache-able SRAM, not TCRAM.

e WDG_CORE[WdgCoreConfigurationId] START VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT]
/
WDG_ CORE [WdgCoreConfigurationId] STOP VAR [INIT POLICY] ASIL B GLOBAL [ALIGNMENT]

This section is read/write accessed from the core represented by lidgCoreConfigurationIdand read
accessed from the other cores. Therefore, this section must not be allocated to TCRAM. For the core
represented by wdgCoreConfigurationId, this section must be allocated to either non-cache-able or
write-through cache-able SRAM area. For performance, it is recommended to allocate the section to write-
through cache-able SRAM. For other cores, this section must be allocated to non-cache-able SRAM area.

e STACK section

TCRAM has dedicated memory for each core at the same address, and because of its performance it is
recommended to allocate STACK to TCRAM.

For the details of INIT_POLICY and ALIGNMENT, see the Specification of memory mapping [7].

2.6.3 Assembler code

Assembler code for the WDG driver uses the fixed memory section names in Table 2.

Table 2 Fixed section names

Section name Allocate area
WDG 66 IA TRIGGER ROM area
User guide 12 002-30200 Rev. *J

2024-03-18

o _.
Watchdog 3.0 driver user guide < In f| neon

3 Structure and dependencies

3 Structure and dependencies

The WDG driver consists of static, configuration, and generated files.

3.1 Static files

e S(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/WDG_TS_* is the path to the WDG module plugin.

o S(PLUGIN_PATH)/lib_src contains all static source files of the WDG driver. These files represent the
functionality of the driver. These files are independent of any configuration sets. The files are packed
together into a static library.

e $(PLUGIN_PATH)/src contains configuration dependent source files or device specific files. Each file will be
rebuilt when the configuration set is changed.

All necessary source files will be automatically compiled and linked during the build process and all include
paths will be set if the WDG driver is enabled.

e S(PLUGIN_PATH)/include is the basic public include directory needed by the user to include Wdg_66_IA.h.

o $(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,
architecture, and device specific adaptations to create a correct matching parameter configuration for the
WDG module.

3.2 Configuration files

The configuration of the WDG driver is done with the EB tresos Studio. When saving a project, the configuration
description is written to the Wdg.xdm file, which is in S(PROJECT_ROOT)/config of your project folder. This file
serves as input for the generation of the configuration dependent source and header files during the build
process.

3.3 Generated files

During the build process the following files are generated based on the current configuration description.
These files are in the folder output/generated of your project folder.

include/Wdg_66_IA_Cfg.h, include/Wdg_66_IlA_IncludeFiles.h, include/Wdg_66_IA_Cfg_Arch.h and
include/Wdg_66_IA_PBcfg.h define all symbolic names, macros, and configuration settings needed by the
module.

e src/Wdg_66_IA_PBcfg.c contains the constant structure for the WDG configuration.

e src/Wdg_66_IA_Irg.c contains the interrupt service routine for the warning interrupt.
e src/Wdg_66_IA_Trigger_Asm_GHS.s defines the trigger routine.

e src/Wdg_66_IA_CalloutWrapper.c defines the internal function to get the core ID.

Note: Generated source files need not to be added to your application make file. These files will be
compiled and linked automatically during the build process.

e swcd/Wdg_Bswmd.arxml contains Bsw module description.
Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,

follow the menu path Project > Build Project and click generate_swcd.

User guide 13 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide < In f| neon

3 Structure and dependencies

3.4 Dependencies

3.4.1 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the WDG driver. See 6.1 Interrupts for more
information.

GetCoreID can optionally be setto the configuration parameter WdgGetCoreIdFunction.

3.4.2 MCU driver

Mcu_ GetCoreID can optionally be set to the configuration parameter wdgGetCoreIdFunction. See the MCU
driver’s user guide for details.

3.4.3 DET

If the default error detection is enabled in the WDG module configuration, the DET needs to be installed,
configured and integrated into the application as well.

3.4.4 Watchdog interface

The WDG driver uses types of the WDG interface. Therefore, the WDG interface (respectively the Wdglf_Types.h)
needs to be available to build the WDG driver.

3.4.5 DEM

The DEM needs to be always installed, configured, and integrated with the application as well.

You should use this driver via the Wdg_66_IA.h interface and be responsible to assign the standard
WDG_E DISABLE REJECTED,WDG E MODE FAILED,WDG E HW TIMEOUT,and WDG E WDG STOPPED via
macros.

3.4.6 BSW scheduler

The WDG driver uses the following services of the BSW scheduler to enter and leave critical sections.

e SchM Enter Wdg 66 IA WDG_EXCLUSIVE AREA 0 (void)
e SchM Exit Wdg 66 IA WDG_EXCLUSIVE AREA 0 (void)

You must ensure that the BSW scheduler is properly configured and initialized before using the WDG driver.

Note: These services are valid if only WDT is configured as watchdog timer for the core.
In other words, if MCWDT is configured, these services would not be effective.

3.4.7 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It
is configured via configuration WdgErrorCalloutFunction parameter.

User guide 14 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see the EB tresos Studio for ACG8 user’s guide [8].

4.1 General configuration

The module comes with the following preconfigured with default settings, which must be adapted when
necessary:

e WdgDevErrorDetect enables or disables the development error notification for the WDG module.

- Setting this parameter to FALSE will disable the notification of development errors via DET. However, in
contrast to

- AUTOSAR specification, detection of development errors is still enabled as safety mechanisms (fault
detection).

e WdgDisableAllowed enables ordisablesthe option to disable the WDG driver during runtime.

e lidgIndex representsthe WDG driver’s ID that can be referenced by the WDG interface. This value will be
assigned to the following symbolic name:

- The symbolic name derived of the WdgGeneral container short name prefixed with “wdgConf ”
(WdgConf WdgGeneral WdgGeneral).

e ldgInitialTimeout represents the trigger condition to be initialized during Init function. This condition
should not be higher than wdgMaxTimeout. The range is 0-65.535 seconds.

Note: More than one mode is supported as default mode (fast or slow), so WwdgInitialTimeout isnot
used any more. Instead, WdgFastTimeoutValue / WdgSlowTimeoutValue are used forinitial
timeout value of each mode.

e WdgMaxTimeout represents maximum timeout to which the WDG trigger condition can be initialized. The
input parameter of wdg 66 IA SetTriggerCondition () should notbe higherthan wdgMaxTimeout.
The range is 0-65.535 seconds. The parameter of idg 66 IA SetTriggerCondition () isa millisecond
unit value; therefore, the WDG module converts WdgMaxTimeout to a millisecond value and stores this
value as an inside parameter.

Note: When MCWDT is configured, the maximum timeout would be limited to a value lower than 65.535
according to WdgTimerClockRef (see 4.3 WDG timer configuration list).

This is because the watchdog timer counter of MCWDT is 16 bits, although WDT has 32-bit watchdog timer
counter.

For example, when the wdgTimerClockRef is 32768Hz, duration of 1 count of the timer counteris 1 /32768
seconds.

The maximum value of 16-bit counter is OxFFFF (65535).
Then the maximum timeout of MCWDT is 1.999 (65535 / 32768) seconds.

e TdgRunArea indicates whether the WDG trigger execution area is either from ROM (Flash) or RAM.
e ldgTriggerLocation isthe location (memory address) of the WDG trigger routine.

Note: wdgTriggerLocation shows the trigger function name. The function name is specific (i.e.
wdg 66 IA ActivateTrigger)and cannotbe edited.

User guide 15 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

e ldgTriggerAddress is location (memory address) of the WDG trigger routine (Actual address). The range is
between the base address to the end address of SRAM (SRAMO, SRAM1 or SRAM2, it depends on hardware
specification) area.

Note: WdgTriggerAddress should be multiples of four and within an allowed range; otherwise errors
would occur in configuration phase. This value is editable only when wdgRunArea is set to RAM.
Bit0 of the address should be set to ON (1) when calling the WDG trigger function by jumping
directly from Arm’ instructions, because the code is assembled by thumb instructions.

For example, if the address in RAM is configured to 0x8000000, then the calling of WDG trigger function
should use (0x8000000 | 0x0000001).

e WdgVersionInfoApi enables or disables the version information API.
e WdgDemEventModeFailed enables or disablesthe DEM ModeFailed Event checks and report.

e WdgDemEventDisableRejected enables ordisablesthe DEM DisableRejected Eventchecksand
report.

e TldgDhemEventHwTimeout enables or disables the DEM HardwareTimeout Event checks and report.
e ldgDhemEventWdgStopped enables ordisablesthe DEM WdgStopped Event checks and report.

e WdgErrorCalloutFunction isused to specify the error callout function name. The function is called on
every error. The ASIL level of this function limits the ASIL level of the WDG driver.

Note: WdgErrorCalloutFunction mustbe valid a C function name, otherwise an error would occur
in configuration phase.

e WdgIncludeFileis a list of the filenames that should be included within the driver. Any application-
specific symbol that is used by the WDG configuration (e.g. error callout function) should be included by
configuring this parameter.

Note: WdgIncludeFile mustbe a unique filename with extension .h; otherwise some errors would
occur in configuration phase.

4,2 WDG settings configuration

e WdgbefaultMode isthe default mode for WDG driver initialization.
- WDGIF FAST MODE
- WDGIF SLOW MODE
- WDGIF OFF MODE

Note: WDGIF_OFF_MODE is only supported when WdgDisableAllowed is TRUE.

User guide 16 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

4.3 WDG timer configuration list

e WdgTimerConfigList isthe array of the watchdog timer configuration which is used by WDG driver:

Note: WDG driver can configure one or two watchdog timers for one core.
Supported combinations of the watchdog timers for one core follow these three patterns:
- Only MCWDT
- Only WDT
-MCWDT and WDT
In case MCWDT and WDT are configured for one core, MCWDT must be set before WDT.
If MCWDT and WDT are configured and an MCWDT reset occurs, the WDT keeps running and causes
an undesired reset according to the WDT settings when the WDT counter expires.
The WDT reset cannot be avoided.

e WdgCoreAssignment specifiesthe reference to wdgCoreConfiguration for the core assignment.
Note: WdgCoreAssignment musthave the target's WdgCoreConfiguration setting.

The same resource cannot be allocated to multiple cores.

e WdgCPUSelect isthe core number where the MCWDT assigns the DeepSleep action. The range is 0-3.
Note: The core number is defined by the hardware specification.

e WdgTimerSelection isthe watchdogtimer which is configured to be used:
- WDG_TIMER WDT:Basic watchdog timer

- WDG_TIMER MCWDT [n] : Multi-Counter watchdog timer.
[n]: the number of specific MCWDT channel, the maximum number of [n] is defined by the hardware
specification.

e WdgStopWDT specifies whether WDG driver stops WDT during initialization to avoid WDT would be running
by default setting and cause WDR.

Note: This parameter is enabled if only MCWDT is configured for the same core.
Make sure that the core for which this parameter is TRUE is initialized first, and the core to which
WDT is assigned is initialized next. If you reverse the order, WDT will be stopped unexpectedly.

e WdgEnableWarningIrgenables ordisables a warning notification for the specific watchdog timer. This
function is used for notifying the application before the watchdog timer expires. The notification function’s
name can be configured with wdgWarningNotification. If WdgEnableWarningIrqgis enabled, then the
notification function must be provided by the application. Also, the warning interrupt must be configured
properly; see 6.1 Interrupts.

Note: If this interrupt is enabled, the following sequence takes place when the watchdog counter
reaches to warn limit value:
1. Watchdog counter reaches to warn limit value.
2. Warning interrupt is triggered
3. Trigger the action which is configured by WDG driver when watchdog counter reaches trigger
timeout value
Step 2 will not occur, if the warning interrupt is disabled.

User guide 17 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

e lidgWarningNotification specifiesafunction name to be called in case of a warning interrupt. This
parameter isignored if WdgEnableWarningIrqgis disabled.

Note: WdgWarningNotificationshould be a C function name. Notifications must be declared and
defined outside WDG module. The file containing the declarations must be included using the
parameter WdgGeneral/WdgIncludeFile.

e lidgDebugModeConfig isused to freeze or run the watchdog during the debugging mode:
- WDG DEBUGMODE FREEZE: The watchdog is configured to freeze during debugging mode.
- WDG DEBUGMODE RUN: The watchdog is configured to run during debugging mode.

Note: This parameter must be same for all configured timers.

e WdgDeepsleepConfig isused to freeze or run the watchdog mode services in Deep Sleep mode:
- WDG_DEEPSLEEP FREEZE: The watchdog is configured to freeze during Deep Sleep mode.
- WDG_DEEPSLEEP RUN: The watchdog is configured to run during Deep Sleep mode.

Note: This parameter would be invalid for WDT if MCWDT and WDT are configured for the core.

e ldgHibernateConfigisused to freeze or run the watchdog mode services in Hibernate mode:
- WDG HIBERNATE FREEZE: The watchdogis configured to freeze during Hibernate mode.
- WDG_HIBERNATE RUN: The watchdog is configured to run during Hibernate mode.

Note: This parameter is invalid for MCWDT.

e WdgLowerActionConfig isthe action when the watchdog timer is serviced before lower limit is reached:
- WDG_ACTION RESET: The lower action is configured to cause a reset. This can be set only for WDT.
- WDG_ACTION FAULT: The lower action is configured to generate a fault. This can be set only for MCWDT.

- WDG_ACTION FAULT RESET: The lower action is configured to generate a fault and then cause a reset.
This can be set only for MCWDT.

e TUdgUpperActionConfig isthe action when the watchdog timer is reached upper limit:
- WDG_ACTION RESET: The upper action is configured to cause a reset. This can be set only for WDT.
- WDG_ACTION FAULT: The upper action is configured to generate a fault. This can be set only for MCWDT.

- WDG_ACTION FAULT RESET: The upper action is configured to generate a fault and then cause a reset.
This can be set only for MCWDT.

e WdgTimerClockRef isthe reference tothe MCU clock configuration.

This parameter is used to calculate maximum timeout that can be set to the hardware.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK LF*and
MCU_CLOCK ILOO0*inMcuClockReferencePoint.

- McuClock: Clock reference point.
- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

User guide 18 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

If watchdog timer is configured as MCWDT and there is no McuClock thatincludes MCU CLOCK LE*in
McuClockReferencePoint, an error will occur in configuration phase.

If watchdog timer is configured as WDT and there is no McuClock thatincludes MCU CLOCK ILOO* in
McuClockReferencePoint, an error will occur in configuration phase.

See the MCU user guide for more information.

4.4 WDG settings fast configuration list

WdgSettingsFastList isthe array of the following hardware depending settings of WDG driver’s “fast” mode:
Note: Number of configured timers should be consistent with the number of used cores.

e lidgFastTimerConfigRef isthe reference to the timer configuration for the watchdog driver's “fast”
mode.

Note: Only one timer could be selected for one core. If both WDT and MCWDT are configured for the core,
only MCWDT can be selected.

e lidgFastTimeoutValue represents trigger timeout value in “fast” mode. The range is 1-65535 ms.

Note: This value must be less than or equal to WdgMaxTimeout . Otherwise, an error would occur in
configuration phase.

In case MCWDT is configured, wdgMaxTimeout is usually limited to a value lower than 65535 (see 4.1 General
configuration).

e WdgFastWarnLimitPercent specifiesthe percentage of warning limit compared to trigger timeout value
in “fast” mode. The range is 1-99%.

e WdgFastLowerLimitPercent specifiesthe percentage of the lower limit compared to trigger timeout
value in “fast” mode. The range is 0-98%.

e ldgFastMaxWaitTime representsthe waiting watchdog timer status change in “fast” mode.

In case WDT is configured, watchdog timer must be disabled before setting of hardware register. It takes up
to three cycles of ILO (about 91.5 us). After setting of hardware register, watchdog timer must be enabled. It
also takes up to three cycles of ILO.

In case MCWDT is configured, watchdog timer must be disabled before setting of hardware register in
initialization phase. It takes up to two cycles of LF (the duration is decided by the source clock of LF). After
setting of hardware register, watchdog timer must be enabled. It also takes up to two cycles of LF.

WDG driver must wait those durations. This parameter is used for error detection when hardware changing
does not become possible or does not take effect within designated time. So, it is recommended to set a
higher value for this parameter, around 250 ps. Range is 1-65535 ps.

e TlidgFastMcuClockRef isthe reference to the MCU clock configuration, which is used to calculate the loop

count of 1 ps.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK ROOT* in
McuClockReferencePoint.

User guide 19 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

- McuClock: Clock reference point.
- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock thatincludes MCU CLOCK_ROOT* in McuClockReferencePoint, an error will occur
in configuration phase.

See the MCU user guide for more information.

4.5 WDG settings slow configuration list

WdgSettingsSlowList is the array of the following hardware depending settings of WDG driver’s “slow”
mode:

Note: Number of configured timers should be consistent with the number of used cores.
e TdgSlowTimerConfigRef isreference to the timer configuration for the watchdog driver's “slow” mode.

Note: Only one timer could be selected for one core. If both WDT and MCWDT are configured for the core,
only MCWDT can be selected.

e WdgSlowTimeoutValue represents trigger timeout value in “slow” mode. The range is 1-65535 ms.

Note: This value must be less than or equal to WdgMaxTimeout . Otherwise, an error would occur in
configuration phase.
In case MCWDT is configured, wdgMaxTimeout is usually limited to a value lower than 65535 (see
4.1 General configuration).

e ldgSlowWarnLimitPercent isused to specify the percentage of warning limit compared to trigger
timeout value in “slow” mode. The range is 1-99%.

e WdgSlowLowerLimitPercent isused to specify the percentage of lower limit compared to the trigger
timeout value in “slow” mode. The range is 0-98%.

e WdgSlowMaxWaitTime represents the waiting watchdog timer status change in “slow” mode.

In case WDT is configured, watchdog timer must be disabled before setting of hardware register. It takes up
to three cycles of ILO (about 91.5 pus). After setting of hardware register, watchdog timer must be enabled. It
also takes up to three cycles of ILO.

In case MCWDT is configured, watchdog timer must be disabled before setting of hardware register in
initialization phase. It takes up to two cycles of LF (the duration is decided by the source clock of LF). After
setting of hardware register, watchdog timer must be enabled. It also takes up to two cycles of LF.

WDG driver must wait those durations. This parameter is used for error detection when hardware changing
does not become possible or does not take effect within designated time. So, it is recommended to set a
higher value for this parameter, around 250 ps. Range is 1-65535 ps.

e TdgSlowMcuClockRef isreference tothe MCU clock configuration, which is used to calculate loop count

of 1 us.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK ROOT* in
McuClockReferencePoint.

User guide 20 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

- McuClock: Clock reference point.

- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there is no McuClock thatincludes MCU CLOCK_ROOT* in McuClockReferencePoint, an error will occur
in configuration phase.

See the MCU user guide for further information.

4.6 WDG settings off configuration list

WdgSettingsOffList isthe array of the following hardware depending settings of WDG driver’s “off” mode:
Note: Number of configured timers should be consistent with the number of used cores.
e WdgOffTimerConfigRef isreference to the timer configuration for the watchdog driver’s “off” mode.

Note: Only one timer could be selected for one core. If both WDT and MCWDT are configured for the core,
only MCWDT can be selected.

e WdgOffTimeoutValue is not used.
e WdgOffWarnLimitPercent is notused.
e WdgOffLowerLimitPercent is not used.

e WdgOffMaxWaitTime represents the waiting watchdog timer status change in OFF mode. Watchdog timer
is disabled.

In case WDT is configured, it takes up to three cycles of ILO (about 91.5 us).

In case MCWDT is configured, it takes up to two cycles of LF (the duration is decided by the source clock of
LF).

So, itis recommended to set a higher value for this parameter, around 125 ps. Range is 1-65535 ps.
e WdgOffMcuClockRef is reference to the MCU clock configuration, which is used to calculate loop count of 1

us.

Note: MCU clock reference will only support McuClock thatincludes MCU CLOCK ROOT*in
McuClockReferencePoint.

- McuClock: Clock reference point.

- McuClockReferencePointFrequency: The frequency for the specific McuClockReferencePoint.

If there isno McuClock thatincludesMCU CLOCK ROOT* inMcuClockReferencePoint, an error will
occur in configuration phase.

See the MCU user guide for further information.

User guide 21 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

4.7 WDG DemEventParameter reference

e WDG_E DISABLE REJECTED refers to the configured DEM event that reports “Initialization or mode switch
failed because it would disable the WDG while disabling is not allowed”.

Note: This parameter is effective when wdgbemEventDisableRejectedis TRUE.
WDG E_DISABLE REJECTED should have valid reference; otherwise an error would occur in
configuration phase.

e WDG_E MODE FAILED refers to the configured DEM event that reports “Setting a WDG mode failed (during
initialization or mode switch)”.

Note: This parameter is effective when wdgbDemEventModeFailed is TRUE.
WDG _E_MODE FAILED should have valid reference; otherwise an error would occur in
configuration phase.

e WDG_E HW TIMEOUT refers to the configured DEM event that reports “Hardware timeout (during
initialization or mode switch or setting trigger condition)”.

- “Hardware timeout” means that the hardware status was not changed in the period specified by
WdgFastMaxWaitTime, WdgSlowMaxWaitTime, OF WdgOffMaxWaitTime.

Note: This parameter is effective only when wWwdgbemEventHwTimeout is TRUE.
wDG _E_Hw _TIMEOUT should have valid reference; otherwise an error would occur in
configuration phase.

e WDG E WDG STOPPED refersto the configured DEM event that reports “WDG stopped (during setting trigger
condition in off mode)”.

Note: This parameter is effective when wdgDemEventwdgStopped is TRUE.
wDG_E_WwDG_STOPPED should have valid reference; otherwise an error would occur in
configuration phase.

User guide 22 002-30200 Rev. *J

2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

4 EB tresos Studio configuration interface

4.8 WdgMulticore

e WdgCoreConsistencyCheckEnable enables core consistency check during runtime. If enabled, WDG ISR
handler checks if the watchdog timer related to the interrupt reason is allowed on the current core.

Note: Development error detect will be enabled in the WDG driver to enable this parameter.
e WdgGetCoreIdFunction specifiesthe APIto be called to get the core ID.

Note: wdgGetCoreIdFunctionmustbe avalid C function name. Mcu GetCoreIDand GetCoreID
can optionally be set to the configuration parameter wdgGetCoreIdFunction.

e lidgMasterCoreReference referencesto the master core configuration.
Note: WdgMasterCoreReference must have the target's WdgCoreConfiguration setting.
e WdgCoreConfigurationId isthe core assignment. Range is 0 to 254.

Note: This value is assigned to a symbolic name. Use only the symbolic core ID names defined in
Wdg_66_IA_Cfg.h.

4.9 WdgCoreConfiguration

e TWdgCoreConfigurationIdisazero-based, consecutive integer value. Thisis used as a logical core ID.
Note: WdgCoreConfigurationIdmustbe unique across wdgCoreConfiguration.

e WdgCorelId is WDG coreID. ThisID is assigned to WDG timers. This ID is returned from the configured
WdgGetCoreIdFunction execution to identify the executing core.

Note: WdgCoreIdmust be unique across WdgCoreConfiguration.

4.10 WDG external configuration

This container is intended for using external watchdog timer. But this property is not used.

4.11 WdgPublishedinformation

WdgTriggerMode represents watchdog trigger mode (WDG TOGGLE, WDG_WINDOW, or WDG_BOTH). The value is
fixed towpG_BOTH.

User guide 23 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

5 Functional description

5 Functional description

5.1 Inclusion

The Wdg_66_IA.h file includes all necessary external identifiers. Therefore, the application only needs to include
Wdg_66_IA.h to make all API functions and data types available.

5.2 Initialization

Wdg 66 IA Init function initializes the WDG driver and sets the default WDG mode. Since it is possible to set
more than one configuration, this function can be called with different configuration sets.

Wdg_66_IA_Init(&Wdg_66_IA_Config[1]);

Note: Make sure that initialization has been performed before any other WDG API function is called on
each core.
wdg 66 IA Init () mustbe calledon the mastercore before any cores are initialized. If
wdg 66 IA Init () iscalledon the satellite core, the master core must be already initialized.
The same configuration set must be specified on all cores during initialization.

Arepeated call of thewdg 66 IA SetTriggerCondition (1000) APIfunctionisrequired to preventthe WDG
from triggering a reset.

Note: The value of timeout (milliseconds) should not be higher than the value of wdgMaxTimeout.

5.3 Reconfiguration during runtime

Reconfiguration of the WDG driver is not possible at runtime. You can reinitialize with a different configuration
set, but you should ensure all timers are stopped before you switch the configuration set.

5.4 APl parameter checking
The driver’s services perform regular error checks.

When an error occurs, the error hook routine (configured via wdgErrorCalloutFunction)is called and the
error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all development errors are also reported to the DET, a central error hook
function within the AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The following development error checks are performed by the services of the WDG driver:

54.1 Wdg_66_IA_Init()

e Wdg 66 IA Init() checksifthe configuration iswithinvalid range on master core; otherwise calls DET
withWDG 66 IA E INIT FAILED.

e Wdg 66 IA Init () checks ifthe ConfigPtr parameter is different from the configuration pointer which is
already initialized by master core when called on satellite cores; otherwise calls DET with
WDG_66 IA E DIFFERENT CONFIG.

e Wdg 66 IA Init() checksifthe default mode iswithin valid range; otherwise calls DET with
WDG_ 66 IA E PARAM CONFIG.

User guide 24 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

5 Functional description

e Wdg 66 IA Init () verifiesthatthe supported modesare wpG SLOW MODE,WDG OFF MODE, and
WDG_FAST MODE. If the mode is not allowed, the DEM message wpG_E MODE FAILED will be reported.

If the default mode is whGIF OFF MODE and disabling is not allowed, the DEM message
WDG E DISABLE REJECTED will be reported.

Note:

WDG disables and enables watchdog timer to initialize registers according to configuration
parameters:

e Disabling wait time and applied modes: Before change register settings, it is necessary to write ENABLE bit
of CTL register to disable watchdog timer and check the status until ENABLED bit of CTL register is disabled.

Applied to off, slow, and fast modes.

e Enabling wait time and applied modes: It is also necessary to write ENABLE bit of CTL register to enable
watchdog timer and check the status until ENABLED bit of CTL register is enabled.

Applied to slow and fast modes

e Time to take effect

Each of the above wait time is different between WDT and MCWDT.

Note:

WDT

Takes up to three cycles of ILO (about 91.5 ps).

When the default mode is off, total wait time will be up to about 91.5 ps.

When the default mode is slow or fast, total wait time will be up to about 183.0 ps.

MCWDT

Takes up to two cycles of LF (source clock of LF is configurable).

When the default mode is off, total wait time will be up to two cycles of LF.

When the default mode is slow or fast, total wait time will be up to four cycles of LF.

When WDT is configured and watchdog timer is disabled, watchdog timer continues counting until
ENABLED bit of CTL register to be disabled.

When MCWDT is configured and watchdog timer is serviced, watchdog timer continues counting
until CTRO_SERVICE bit of SERVICE register to be effective.

For example, even though an application calls wdg 66 IA SetTriggerCondition () before
the watchdog timer expires, watchdog reset might occur because of the time lag of watchdog
hardware.

WDT

The time lag is three cycles of ILO, which is the source clock of the watchdog timer. Duration of exclusive
area: The registers are set within the exclusive area which is possibly up to about 183.0 ps. Exclusive area
is valid when only WDT is configured.

Calculation of timeout value: The timeout value is exchanged to a watchdog count (round down to the
nearest decimal). For example, when timeout value is 1 ms (0.001 s), the count will be 32 which means
0.9766 ms).

MCWDT

The time lag is three cycles of LF, which is the source clock of the watchdog timer. Exclusive area is not
used.

Calculation of timeout value: The timeout value is exchanged to a watchdog count (round down to the

User guide 25 002-30200 Rev. *J

2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

5 Functional description

nearest decimal). For example, when timeout value is 1 ms (0.001 s), the count will be 32 which means
0.9766 ms).

5.4.2 Wdg_66_IA_SetMode()

If the new mode iswDGIF OFF MODE and disablingis not allowed, the DET error WDG_66 IA E PARAM MODE
will be reported and the DEM messages WDG_E DISABLE REJECTED and WDG E MODE FAILED will be
reported.

If the new mode is not within the valid range, the DET error wDG_66 IA E PARAM MODE will be reported.

If the new mode is not listed in the supported modes defined in the WDG driver, the DET error

WDG_66 IA E PARAM MODE will be reported and the DEM message wbG E MODE FAILED will be reported.
Note: WDG 66 IA FAST MODE, WDG 66 IA SLOW MODE,and WDG 66 IA OFF MODEarein the list.

If the new mode is same as current mode, Wdg 66 IA SetMode () returnsE_OK without any operations.

Note: If the parameter “mode” is not changed from the current value, this API returns quickly without
any operations.
The behavior when the parameter “mode” is changed is different between WDT and MCWDT.
o WDT
WDG must disable watchdog timer to set registers and enable it to restart according to the parameter.
o MCWDT
WDG writes the SERVICE register and sets other registers without disabling and enabling MCWDT.

When the SRSS version is two and the lower limit after the change is smaller than the current watchdog timer
counter, the WDG must wait for SERVICE register’s status before changing other registers to avoid a reset.
After that, the watchdog timer counter will restart from zero.

It takes up to three cycles of LF (the duration is decided by the source clock of LF). For details of the SRSS
version, see Hardware documentation.

Same timing restrictions are applied as described for wdg 66 IA Init().See5.4.1Wdg_66_IA_Init().

5.4.3 Wdg_66_IA_SetTriggerCondition()

Thewdg 66 IA SetTriggerCondition () function checks whether the timeout that passed is equal to or
less than the maximum allowed timeout; if not, the function calls DET withwbG_66 IA E PARAM TIMEOUT.

Note: If the parameter “timeout” is not changed from the current value, this APl will retrigger the
watchdog timer through the SERVICE register.

The SERVICE register of the WDT takes up to three cycles of the ILO (about 91.5 ps) to take effect.

(For example, if this APl is called and the SERVICE bit of the SERVICE register is written when the remaining
count before expiry is less than three ILO cycles at that time, the watchdog timer will continue to count three
more cycles of the ILO; this will cause a reset in this case).

User guide 26 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

5 Functional description

When the SERVICE register is written again before it takes effect, writing will be ignored.

For example, when the mode is WDG_66_IA_FAST_MODE and WdgFastLowerLimitPercent is configured, or
when the mode is WDG_66_IA_SLOW_MODE and WwdgSlowLowerLimitPercent is configured, if this APl is
called consecutively and the SERVICE bit of the SERVICE register is written, the second and later writings will be
ignored. After the SERVICE register takes effect, if this APl is called again before the lower limit is reached, the
lower limit violation will be triggered.

About the SERVICE register of the WDT, an HW erratum is reported.

If this API writes the SERVICE bit of the SERVICE register and the system goes to DeepSleep or Hibernate mode
within four cycles of the ILO, the next writing of the SERVICE bit of the SERVICE register after waking up within
two cycles of ILO may be ignored. As a result of this behavior, the WDT will continue to count and cause an
undesired interrupt or reset.

This erratum has effect only on CYT2Bx series. To determine if your device is affected, see Hardware
documentation.

SERVICE register of MCWDT takes up to three cycles of LF (the duration is decided by the source clock of LF) to
take effect.

(For example, if this APl is called and write CTRO_SERVICE bit of SERVICE register when the remaining count
before expiry is less than three at that time, watchdog timer will continue to count three cycles of LF more, so
that it will cause a reset in this case).

When the SERVICE register is written again before it takes effect, writing will be ignored.

For example, when the mode is WDG_66_IA_FAST_MODE and WdgFastLowerLimitPercent is configured, or
when the mode is WDG_66_IA_SLOW_MODE and WwdgSlowLowerLimitPercent is configured, if this APl is
called consecutively and the CTRO_SERVICE bit of the SERVICE register is written, the second and later writings
will be ignored. After the SERVICE register takes effect, if this APl is called again before the lower limit is
reached, the lower limit violation will be triggered.

If the “timeout” parameter is changed, the behavior is different between WDT and MCWDT.
o WDT

WDG must disable the watchdog timer to set the registers and enable it to restart according to the
parameter.

o MCWDT
WDG writes to the SERVICE register and sets other registers without disabling and enabling MCWDT.

Restrictions as same as that of the SERVICE register are applied as described inwdg 66 IA SetMode (). See
5.4.2 Wdg_66_IA_SetMode().

Same timing restrictions are applied as described forwdg 66 IA Init ().See5.4.1 Wdg 66_IA_Init().

5.4.4 Wdg_66_IA_GetVersioninfo()

Wdg 66 IA GetVersionInfo () reportsthe DETWDG 66 IA E PARAM POINTER, if the parameter
versioninfo parameterisa NULL pointer.

User guide 27 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

5 Functional description

5.5 Runtime checks

Ifwdg 66 IA Init () iscalled onthe master core, the APl checks whether the satellite cores are already
initialized. If the satellite cores are initialized, wdg 66 IA Init () will reportthe
WDG 66 IA E ALREADY INITIALIZED error.

Ifwdg 66 IA Init () called on the satellite cores, the API checks that whether the master core is already
initialized. If the master core is not initialized, wdg 66 IA Init () will reportther
WDG 66 IA E INIT FAILED error.

Wdg 66 IA Init(), Wdg 66 IA SetMode (), andWdg 66 IA SetTriggerCondition () APIscheck
whether the running core ID is valid, otherwise will report the WDG_66 IA INVALID CORE error.

Thewdg 66 IA SetMode () andwWdg 66 IA SetTriggerCondition () APIscheck whetherthe WDG’s state
iswDG_IDLE and whether the driver is already initialized properly. Otherwise the error callout handler and DET
will be called with the wDG_66 IA E DRIVER STATE parameter.

Wdg 66 IA SetTriggerCondition () checks if current modeiswDG OFF MODE, thenthe DEM message
WDG_E WDG STOPPED will be reported.

In case WdgCoreConsistencyCheckEnable is enabled, ISR handler checks if the watchdog timer related to
the interrupt reason is allowed on the current core. If not allowed, error wbG 66 IA E INVALID CORE will be
reported.

5.6 Reentrancy

All functions exceptwdg 66 IA GetVersionInfo are notreentrant.

5.7 Debugging support

The WDG driver does not support debugging.

5.8 Functions available without core dependency
The following function is available on any core without any restriction:

e Wdg 66 IA GetVersionInfo()

User guide 28 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

6 Hardware resources

6 Hardware resources

6.1 Interrupts

If the warning interrupt is enabled (see parameter WdgEnableWarningIrg), one of the following interrupt
handlers must be configured in OS to be called on the corresponding interrupt. The ISR should be allocated to
the same core as the allocated resource. The ISR must be declared in the AUTOSAR OS as Category 1 Interrupt
or Category 2 Interrupt.

ISR(Wdg 66 IA WarnIntWDT Cat2)
ISR NATIVE (Wdg 66 IA WarnIntWDT Catl)

ISR(Wdg 66 IA WarnIntMCWDT[n] Cat2)
ISR NATIVE (Wdg 66 IA WarnIntMCWDT[n] Catl)

Note: The interrupt service routines’ name suffixes must match the configured ISR category.
[n]: the number of specific MCWDT channel.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing
conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following
errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:
“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at
the end of the interrupt function to avoid the priority inversion.

TRAVEQ™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.
Thus, if necessary, the DSB instruction should be added just before the end of the handler by the
integrator.

User guide 29 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

7 Appendix A - APl reference
7.1 Data types

7.1.1 Wdg_66_IA_ConfigType

Type

typedef struct
{

const Wdg 66 IA SettingCommonType * SettingCommonPtr;
const Wdg 66 IA SettingType * SettingWdgPtr;
const uint8 CoreCount;

} Wdg_66_TIA ConfigType;

Description

Wdg 66 IA ConfigType definesa structure which holds the WDG driver’s configuration set.

7.1.2 Wdglf_ModeType

Type
typedef enum

Description

This type is derived from the WDG interface. It represents the mode types used for switching the WDG’s mode.
7.2 Constants

7.2.1 Error codes

The service might return the f error codes, listed in Table 3, if default error detection is enabled:

Table 3 Error codes

Name Value | Description

WDG_66_IA E_DRIVER STATE 0x10 | WDG is already busy when triggering or mode
switching will be performed.

WDG_66_IA E_PARAM MODE 0x11 | Modeis not avalid parameter.

WDG_66_IA_E_PARAM CONFIG 0x12 | Configuration set is not OK.

WDG_66_TIA E_PARAM_TIMEOUT 0x13 | Function SetTriggerCondition is called with
an invalid timeout (bigger than maximum
allowed).

WDG_66_IA E_PARAM POINTER 0x14 | Function GetVersionInfo is called with NULL
pointer.

WDG_66_IA E INIT FAILED 0x15 | CconfigPtr isnota valid pointer to configuration
set when WDG initializing.

WDG_66_IA E_EXTENDED MODE_FAILED 0x20 | Mode switching failed due to some reasons (e.g.
hardware limitation). This error id is used to call
error callout handler.

User guide 30 002-30200 Rev. *J

2024-03-18

Watchdog 3.0 driver user guide

Infineon

7 Appendix A - APl reference

Name Value | Description

WDG_66_IA E EXTENDED DISABLE REJECTED | (0x21 | The WDG is trying to disable the watchdog
although it is not allowed. This error id is used to
call error callout handler.

WDG_66_IA E_EXTENDED_HW_TIMEOUT 0x22 | The WDG hardware status change wait timeout.
This errorid is used to call error callout handler.

WDG_66_IA E_EXTENDED_WDG_STOPPED 0x23 | The WDG is trying to set trigger condition during
the watchdog is stopped. This error id is used to
call error callout handler.

WDG_66_IA E_INVALID_ CORE 0x24 | APl is called from the invalid core or ISR occurs on
the invalid core.

WDG_66_IA E_DIFFERENT_CONFIG 0x25 | Intended config initialization of this core does not
match with the initialized config of other cores.

WDG_66_IA E_ALREADY INITIALIZED 0x26 |wWdg Init iscalled by the master core while other
cores are already initialized.

The following DEM messages can be enabled individ

ually:

WDG_E_MODE_FAILED defined by DEM

Mode switching failed due to lack of hardware
support for this mode (DEM error).

WDG_E_DISABLE REJECTED defined by DEM

WDG is not allowed to be disabled (DEM error).

WDG_E HW TIMEOUT defined by DEM

Timeout period expired while changing hardware
status (DEM error).

WDG_E WDG_ STOPPED defined by DEM

Trigger condition is not allowed to be set during the
watchdog is stopped (DEM error).

7.2.2 Version information

The version information, listed in Table 4, is published in the driver’s header file.

Table 4 Version information

Name Value

Description

WDG_SW_MAJOR_VERSION

See release notes

Major version number

WDG_SW_MINOR_VERSION

See release notes

Minor version number

WDG_SW_PATCH VERSION

See release notes

Patch version number

7.2.3 Module information

Table5 Module information
Name Value Description
WDG_MODULE_ID 102 Module ID
WDG_VENDOR_ID 66 Vendor ID

User guide

31

002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

7.2.4 API service IDs

The API service IDs, listed in Table 6, are published in the driver’s header file:

Table 6 API service IDs
Name Value Description
WDG_66_IA API INIT 0x00 Service IDof wdg 66 TA TInit
WDG_66_IA API_ SETMODE 0x01 Service ID of wdg 66 IA SetMode
WDG 66 IA API SET TRIGGER CONDITION |(Qx03 Service ID of
Wdg 66 IA SetTriggerCondition
WDG_66_TIA API_GET_VERSION_INFO 0x04 Service ID of idg 66 IA GetVersionInfo
WDG 66 IA API WARNINT OXFE Service ID of
Wdg 66 IA WarningInterrupt Arch
7.2.5 Invalid core ID value
Table 7 Invalid core ID
Name Value Description
WDG_6 6_IA_INVALID_CORE OxFF |nval|d core |D
7.3 Functions
7.3.1 Wdg_66_IA_lInit
Syntax

void Wdg 66 IA Init(
const Wdg 66 IA ConfigType* ConfigPtr
)
Service ID
0x00
Parameters (in)
e ConfigPtr -Pointerto WDG driver configuration set.
Parameters (out)
None
Return value
None

DET errors

e WDG 66 IA E INVALID CORE -APlis called from theinvalid core.
e WDG 66 IA E INIT FAILED - The pointer to the configuration set forinitialization is invalid.
e WDG 66 IA E PARAM CONFIG - The default modeisinvalid or the WDG failed to initialize.

e WDG 66 IA E ALREADY INITIALIZED -APIiscalled bythe master core while other cores are already
initialized.
User guide 32 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

e WDG 66 IA E DIFFERENT CONFIG -Intended configinitialization of this core does not match with the
initialized config of other cores.

DEM errors

e WDG E DISABLE REJECTED-WDG cannot be turned OFF when DisableAllowed is FALSE.
e WDG E MODE FAILED - The DefaultMode is not supported by hardware.
e WDG E HW TIMEOUT - WDG initialization failed due to timeout of changing hardware status.

Description

This function initializes the WDG driver.

7.3.2 Wdg_66_IA_SetMode

Syntax

Std ReturnType Wdg 66 IA SetMode (
WdgIf ModeType Mode
)

Service ID

0x01

Parameters (in)

e Mode - Mode the WDG should be switched to.
Parameters (out)

None

Return value

E_OKOrE_NOT OK

DET errors

e WDG 66 IA E INVALID CORE -APlis called from theinvalid core.
e WDG 66 IA E DRIVER STATE-WDG is notinitialized yet or currently notin idle state.
e WDG 66 IA E PARAM MODE - The parameter mode is not supported.

DEM errors

e WDG E MODE FAILED - Switching of mode failed due to lack of hardware support for this mode.
e WDG E DISABLE REJECTED - Switching to off mode is not allowed or WDG is currently not in idle state.
e WDG E HW TIMEOUT - Switching of mode failed due to timeout of changing hardware status.

Description
This function switches the mode of the WDG between the following three modes:

e WDGIF OFF MODE
e WDGIF SLOW MODE
e WDGIF FAST MODE

User guide 33 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

7.3.3 Wdg_66_IA_SetTriggerCondition

Syntax

void Wdg 66 IA SetTriggerCondition(
uintl6 timeout

)

Service ID

0x03

Parameters (in)

e timeout -The new trigger condition validity period in milliseconds.
Parameters (out)

None

Return value

None

DET errors

e WDG 66 IA E INVALID CORE -APIlis called from theinvalid core.
e WDG 66 IA E DRIVER STATE-WDG is notinitialized yet or currently not in idle state.
e WDG 66 IA E PARAM TIMEOUT -Inputtimeoutis greater than the maximum allowed timeout.

DEM errors

e WDG_E HW TIMEOUT - Switchingof mode failed due to timeout of changing hardware status.
e WDG E WDG STOPPED - Setting of trigger condition during the watchdog is stopped.

Description

This function triggers watchdog timer with parameter timeout. If the value is 0, it triggers a watchdog reset,
immediately.

7.3.4 Wdg_66_IA_GetVersioninfo

Syntax

void Wdg 66 IA GetVersionInfo(
Std VersionInfoType* versioninfo

)

Service ID

0x04

Parameters (in)
None
Parameters (out)

e versioninfo - Version information of the WDG driver is stored at the previously given address.

User guide 34 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

Return value

None

DET errors

e WDG 66 IA E PARAM POINTER - Inputversioninformation pointeris NULL.
DEM errors

None

Description

Returns the version information of the module.
7.4 Required callback functions

7.4.1 DET

If default error detection is enabled, the WDG driver uses the following callback function provided by DET. If you
do not use DET, you must implement this function within your application.

Det_ReportError

Syntax

Std ReturnType Det ReportError
(

uintl6 ModuleId,

uint8 Instanceld,

uint8 ApiId,

uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module ID of calling module.

e Instanceld-WdgCoreConfigurationId ofthe core that callsthisfunction or
WDG_66_IA_INVALID_CORE.

e ApiId-ID ofthe APl service that calls this function.
e ErrorId-ID ofthe detected development error.

Return value
Returns always E_OK (is required for services).
Description

Service for reporting development errors.

User guide 35 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

7.4.2 DEM

If DEM notifications are enabled, the WDG driver uses the following callback function that is provided by DEM. If
you do not use DEM, you must implement this function within your application.

Dem_ReportErrorStatus

Syntax

void Dem ReportErrorStatus

(
Dem EventIdType EventId,
Dem EventStatusType EventStatus

)

Reentrancy
Reentrant
Parameters (in)

e EventId-ldentification of an event by assigned event ID.
e EventStatus - Monitor test result of given event.

Return value
None
Description

Service for reporting diagnostic events.
7.4.3 Callout functions

7.4.3.1 Error callout API

The AUTOSAR WDG module requires an error callout handler. Each error is reported to this handler; error
checking cannot be switched OFF. The name of the function to be called can be configured by parameter
WdgErrorCalloutFunction.

Syntax

void Error Handler Name
(
uintl6 ModulelId,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module ID of calling module.

e Instanceld-WdgCoreConfigurationId ofthe corethat callsthisfunction or
WDG_66_IA_INVALID_CORE.

User guide 36 002-30200 Rev. *J
2024-03-18

o _.
Watchdog 3.0 driver user guide In f| neon

7 Appendix A - APl reference

e ApiId-ID of the APl service that calls this function.
e ErrorId-ID ofthe detected error.

Return value
None
Description

Service for reporting errors.

7.4.3.2 Get core ID API

The AUTOSAR WDG module requires a function to get the valid core ID. This function is being used to determine
the core from which the code is being executed. The name of the function to be called can be configured by the
WdgGetCoreIdFunction parameter.

Syntax

uint8 GetCoreID Function Name (void)

Reentrancy

Reentrant

Parameters (in)

None

Return value

e Coreld-ID of the current core.

Description

Service for getting the valid core ID.

Note: This function returns the core ID configured in

wdgMulticore/WdgCoreConfiguration/WdgCoreId.
For example: Two cores are configured in the lidgCoreConfiguration.

Executing core WdgCoreConfigurationId WdgCoreId
CM7_0 0 15
CM7_1 1 16

When the function is called from the CM7_0 core, it returns 15, and when called from the CM7_1 core, it returns
16.

User guide 37 002-30200 Rev. *J
2024-03-18

8T-£0-¥¢0¢

8¢

I« "Ny 0020€-200

apind Jasn

8 Appendix B - Access register table
8.1 SRSS (MCWDT)
Table 8 SRSS access register table of MCWDT
Register Bit |Access |Value Description Timing Monitoring Monitoring value
No. |size mask
CTL 31:0 | Word Dependson | MCWDT control |Wdg_66_IA Init 0x80000001 0x80000001
(32 bits) | configuration | register of Wdg_66_IA_ SetMode , (After MCWDT is set to
Wdg 66 IA SetTriggerCondi .
value or API subcounter 0 tion slow/fast mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode)
0x00000000
(After MCWDT is set to off
mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode)
LOWER_LIMIT |15:0 | Word Dependson | MCWDT lower Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | limit register of gig—gg—ii—gigi(je crCondi (monitoringis | (monitoring is not
value or API subcounter 0 tigg - - 99 not needed.) needed.)
UPPER_LIMIT 15:0 | Word Depends on MCWDT upper Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | limit register of gig—gg—i—gi?ﬁife crconqi | (monitoringis | (monitoring is not
value or API subcounter 0 tigﬁ - - 99 not needed.) needed.)
WARN_LIMIT 15:0 | Word Dependson | MCWDT Warn Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | limit register of ggg—gg—ii—gigiie crconqi | (monitoringis | (monitoring is not
value or API. | subcounter0 tigﬁ - = 99 not needed.) needed.)
CONFIG 31:0 | Word Dependson | MCWDT Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | configuration (monitoringis | (monitoring is not
value or API. | register of not needed.) needed.)
subcounter 0

9)qe} 43351824 ssa3dy - g xipuaddy §

3pInS 13sn JdALIP 0°E Sopydiem

uoauljul

e

8T-£0-¥¢0¢

apind Jasn

6¢

I« "Ny 0020€-200

Register Bit |Access |Value Description Timing Monitoring Monitoring value
No. |size mask
CNT 15:0 | Word - MCWDT count Do not use. 0x00000000 0x00000000
(32 bits) register of (monitoringis | (monitoring is not
subcounter 0 not needed.) needed.)
CPU_SELECT 31:0 | Word Dependson | MCWDT CPU Wdg_66_IA Init 0x00000000 0x00000000
(32 bits) | configuration | selection register (monitoringis | (monitoring is not
value or API. not needed.) needed.)
LOCK 31:0 | Word 0x00000003 MCWDT lock Wdg_66_IA Init 0x00000000 0x00000000
32 bits register Wdg_66_IA SetMode , monitoringis | (monitoring is not
() & Wdg 66 IA SetTriggerCondi (i d dg) (ded.) &
tion not needed. needed.
SERVICE 31:0 | Word 0x00000000 MCWDT service Wdg_66_IA SetMode 0x00000000 0x00000000
(32 bits) | 0x00000001 | register Wdg_66_IA SetTriggerCondi | (monitoringis | (monitoringis not
tion not needed.) | needed.)
INTR 31:0 | Word 0x00000000 MCWDT interrupt | Wdg_66_IA WarnIntMCWDT [n] 0x00000000 0x00000000
. . Catl e e e
(32 bits) | 0x00000001 register fidg 66 TA WarnIntMCWDT[n) (monitoringis | (monitoring is not
catz not needed.) needed.)
([n]: the number of specific
MCWDT channel)
INTR_SET 31:0 | Word - MCWDT interrupt | Do not use. 0x00000000 0x00000000
(32 bits) set register (monitoringis | (monitoring is not
not needed.) needed.)
INTR_MASK 31:0 | Word Dependson | MCWDT interrupt | Wdg_66_TIA_ Init 0x00000000 0x00000000
i ; i ; Wdg 66 IA SetMode e S
(32 bits) | configuration | mask register Wdg 66 1A SetTriggerCondi (monitoringis | (monitoring is not
value or API. tion not needed.) needed.)
INTR_MASKED |31:0 | Word - MCWDT interrupt | Do not use. 0x00000000 0x00000000
(32 bits) masked register (monitoringis | (monitoring is not

not needed.)

needed.)

9)qe} 43351824 ssa3dy - g xipuaddy §

3pInS 13sn JdALIP 0°E Sopydiem

uoauljul

e

8T-£0-¥¢0¢

c
Z 8.2 SRSS (WDT)
(o)}
<,
& Table 9 SRSS access register table of WDT
Register Bit |Access |Value Description Timing Monitoring Monitoring value
No. |size mask
CTL 31:0 | Word Dependson | WDT control Wdg_66_IA_ Init 0x80000001 0x80000001
(32 bits) | configuration | register Wdg_66_IA SetlMode (After WDT is set to
Wdg 66 IA SetTriggerCondi .
value or API tion slow/fast mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode Or
after
Wdg 66 IA SetTrigge
rConditioniscalledin
slow/fast mode)
0x00000000
(After WDT is set to off
IS mode by calling
Wdg 66 IA Init/
Wdg 66 IA SetMode)
LOWER_LIMIT |31:0 |Word Dependson | WDT lower limit |Wdg_66_TIA Init 0x00000000 0x00000000
i i i ; Wdg 66 IA SetMode T S
(32 bits) | configuration | register Wdg 66 1A SetTriggerCondi (monitoringis | (monitoringis not
value or API tion not needed.) needed.)
UPPER_LIMIT |31:0 | Word Dependson | WDT upper limit |Wdg_66_TIA_ Init 0x00000000 0x00000000
i ; i ; Wdg 66 IA SetMode e b
(32 bits) | configuration | register Wdg 66 1A SetTriggerCondi (monitoringis | (monitoring is not
value or API tion not needed.) needed.)
WARN_LIMIT 31:0 | Word Dependson | WDT Warn limit |Wdg_66_TA TInit 0x00000000 0x00000000
(32 bits) | configuration | register wdg_66_IA_ SetlMode .| (monitoringis | (monitoring is not
Wdg 66 IA SetTriggerCondi
value or API. tion not needed.) needed.)
3 CONFIG 31:0 | Word Dependson | WDT Wdg_66_IA Init 0x00000000 0x00000000
§ (32 bits) | configuration | configuration (monitoringis | (monitoring is not
S value or API. | register not needed.) needed.)
5
2

9)qe} 43351824 ssa3dy - g xipuaddy §

3pInS 13sn JdALIP 0°E Sopydiem

uoauljul

e

8T-£0-¥¢0¢

apind Jasn

1874

I« "Ny 0020€-200

Register Bit |Access |Value Description Timing Monitoring Monitoring value
No. |size mask
CNT 31:0 | Word - WDT count Do not use. 0x00000000 0x00000000
(32 bits) register (monitoringis | (monitoring is not
not needed.) needed.)
LOCK 31:0 | Word 0x00000003 WDT lock Wdg_66_IA Init 0x00000000 0x00000000
; ; Wdg 66 IA SetMode PP T
(32 bits) register Wdg 66 TA SetTriggerCondi Unfnniyifls Unigi?nng|snot
tion not needed.) needed.)
SERVICE 31:0 | Word 0x00000000 WDT service de_66_IA_SetTrj_ggerCondi 0x00000000 0x00000000
(32 bits) | 0x00000001 | register tion (monitoringis | (monitoring is not
not needed.) needed.)
INTR 31:0 | Word 0x00000000 WDT interrupt Wdg_66_IA WarnIntWDT Catl 0x00000000 0x00000000
(32 bits) | 0x00000001 | register Wdg_66_IA WarnIntWDT _Catz | monitoringis | (monitoringis not
not needed.) needed.)
INTR_SET 31:0 | Word - WDT interrupt Do not use. 0x00000000 0x00000000
(32 bits) set register (monitoringis | (monitoring is not
not needed.) needed.)
INTR_MASK 31:0 | Word Dependson | WDT interrupt Wdg_66_IA Init 0x00000000 0x00000000
i ; ; ; Wdg 66 IA SetMode e b
(32 bits) | configuration | mask register Wdg 66 1A SetTriggerCondi (monitoringis | (monitoring is not
value or API. tion not needed.) needed.)
INTR_MASKED | 31:0 | Word - WDT interrupt Do not use. 0x00000000 0x00000000
(32 bits) masked register (monitoringis | (monitoring is not

not needed.)

needed.)

9)qe} 43351824 ssa3dy - g xipuaddy §

3pInS 13sn JdALIP 0°E Sopydiem

uoauljul

e

Watchdog 3.0 driver user guide

Infineon

Revision history

Revision history

Document Date Description of changes

revision

*x 2020-08-11 Initial release

*A 2020-11-19 Deleted unused memory section from section “Memory Allocation
Keyword”.
Changed description in section “Memory Allocation Keyword”.
MOVED TO INFINEON TEMPLATE.

*B 2021-05-18 Modified description regarding WDG_66_IA_E_PARAM_MODE in
chapter 5.4.2.

*C 2021-08-19 Added a note in 6.1 Interrupts

*D 2021-12-21 Updated to the latest branding guidelines.

*E 2022-07-12 Added caution regarding WDT in chapter 5.4.3.

*F 2023-03-23 Added caution regarding SERVICE register in chapter 5.4.3.
Added chapter 2.6.3.
Updated the description in chapter 4.1.

*G 2023-06-06 Updated the description in chapter 2.6.1.

*H 2023-10-06 Corrected core identification keyword in section 2.6.

*| 2023-12-08 Web release. No content updates.

*J 2024-03-18 Corrected ASIL keyword in section 2.6.

User guide 42 002-30200 Rev. *J

2024-03-18

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-03-18
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document reference
002-30200 Rev. *J

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the WDG driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding
	1.7 Multicore support
	1.7.1 Multicore type
	1.7.1.1 Single core only (multicore type I)
	1.7.1.2 Core-dependent instances (multicore type II)
	1.7.1.3 Core-independent instances (multicore type III)

	1.7.2 Virtual core support

	2 Using the WDG driver
	2.1 Installation and prerequisites
	2.2 Configuring the WDG driver
	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Memory allocation and constraints
	2.6.3 Assembler code

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 AUTOSAR OS
	3.4.2 MCU driver
	3.4.3 DET
	3.4.4 Watchdog interface
	3.4.5 DEM
	3.4.6 BSW scheduler
	3.4.7 Error callout handler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 WDG settings configuration
	4.3 WDG timer configuration list
	4.4 WDG settings fast configuration list
	4.5 WDG settings slow configuration list
	4.6 WDG settings off configuration list
	4.7 WDG DemEventParameter reference
	4.8 WdgMulticore
	4.9 WdgCoreConfiguration
	4.10 WDG external configuration
	4.11 WdgPublishedInformation

	5 Functional description
	5.1 Inclusion
	5.2 Initialization
	5.3 Reconfiguration during runtime
	5.4 API parameter checking
	5.4.1 Wdg_66_IA_Init()
	5.4.2 Wdg_66_IA_SetMode()
	5.4.3 Wdg_66_IA_SetTriggerCondition()
	5.4.4 Wdg_66_IA_GetVersionInfo()

	5.5 Runtime checks
	5.6 Reentrancy
	5.7 Debugging support
	5.8 Functions available without core dependency

	6 Hardware resources
	6.1 Interrupts

	7 Appendix A – API reference
	7.1 Data types
	7.1.1 Wdg_66_IA_ConfigType
	7.1.2 WdgIf_ModeType

	7.2 Constants
	7.2.1 Error codes
	7.2.2 Version information
	7.2.3 Module information
	7.2.4 API service IDs
	7.2.5 Invalid core ID value

	7.3 Functions
	7.3.1 Wdg_66_IA_Init
	7.3.2 Wdg_66_IA_SetMode
	7.3.3 Wdg_66_IA_SetTriggerCondition
	7.3.4 Wdg_66_IA_GetVersionInfo

	7.4 Required callback functions
	7.4.1 DET
	7.4.2 DEM
	7.4.3 Callout functions
	7.4.3.1 Error callout API
	7.4.3.2 Get core ID API

	8 Appendix B – Access register table
	8.1 SRSS (MCWDT)
	8.2 SRSS (WDT)

	Revision history
	Disclaimer

